ylshen commited on
Commit
8ef3499
·
verified ·
1 Parent(s): b6b840b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -0
README.md ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FactNet FactSynset Dataset
2
+
3
+ ## Overview
4
+
5
+ FactSynset is the semantic equivalence layer of FactNet that aggregates similar FactStatements into unified semantic classes with normalized values. It provides a cross-lingual view of semantically equivalent facts, enabling reasoning across language barriers.
6
+
7
+ ## Dataset Format
8
+
9
+ The dataset contains parquet files with the following key fields:
10
+
11
+ - `synset_id`: Unique identifier for the semantic equivalence class
12
+ - `aggregation_key`: Aggregation key (S||P||NormValue||NormQuals)
13
+ - `member_statement_ids`: List of FactStatement IDs in this synset
14
+ - `member_factsense_ids`: List of FactSense IDs associated with this synset
15
+ - `canonical_statement_id`: Representative FactStatement ID
16
+ - `canonical_mentions`: Best mentions per language (lang → {factsense_id, sentence, page_title, confidence})
17
+ - `subject_qid`: Subject entity QID
18
+ - `property_pid`: Property PID
19
+ - `normalized_value`: Normalized value representation
20
+ - `value_variants`: List of original value variants
21
+ - `qualifier_variants`: List of qualifier variants
22
+ - `aggregate_confidence`: Aggregated confidence score
23
+ - `source_count`: Number of independent references
24
+ - `language_coverage`: Language distribution (lang → mention_count)
25
+ - `time_span`: Temporal coverage information
26
+ - `aggregation_reason`: Reason for aggregation (e.g., value_normalization, qualifier_difference)
27
+ - `updated_at`: Last update timestamp
28
+
29
+ ## Usage
30
+
31
+ FactSynsets provide a unified semantic view of facts across languages, enabling advanced applications like cross-lingual fact checking, multilingual knowledge graph completion, and semantic reasoning.
32
+
33
+ ## License
34
+
35
+ This dataset is derived from Wikidata and Wikipedia and is available under the CC BY-SA license.
36
+
37
+ ## Citation
38
+
39
+ ```
40
+ @article{shen2026factnet,
41
+ title={FactNet: A Billion-Scale Knowledge Graph for Multilingual Factual Grounding},
42
+ author={Shen, Yingli and Lai, Wen and Zhou, Jie and Zhang, Xueren and Wang, Yudong and Luo, Kangyang and Wang, Shuo and Gao, Ge and Fraser, Alexander and Sun, Maosong},
43
+ journal={arXiv preprint arXiv:2602.03417},
44
+ year={2026}
45
+ }
46
+ ```