File size: 6,349 Bytes
0fde3cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import requests
import pandas as pd
import json

translation_dict = {
     'VindkraftAnleggId': 'WindPowerPlantId',
     'Navn': 'Name',
     'IdriftsettelseForsteByggetrinn': 'CommissioningFirstPhase',
     'AnleggsNr': 'FacilityNumber',
     'InstallertEffekt_MW': 'InstalledCapacity_MW',
     'HovedEierNavn': 'MainOwnerName',
     'HovedEierOrgNr': 'MainOwnerOrgNumber',
     'ElspotomraadeNummer': 'ElspotAreaNumber',
     'Fylke': 'County',
     'Kommune': 'Municipality',
     'NormalAArsproduksjon_GWh': 'NormalAnnualProduction_GWh',
     'GjsnittGeneratorytelse': 'AvgGeneratorOutput',
     'GjsnittNavhoeyde': 'AvgHubHeight',
     'GjsnittRotordiameter': 'AvgRotorDiameter',
     'EnergiPerSveiptAreal': 'EnergyPerSweptArea',
     'AntallOperativeTurbiner': 'NumberOfOperationalTurbines',
     'AnlKonsNr_Vind': 'FacilityPermitNumber_Wind',
     'AntallTurbiner': 'NumberOfTurbines',
     'DatoIdriftsatt': 'CommissioningDate',
     'DatoUtavdrift': 'DecommissioningDate',
     'ForventetProd_NormalAAr_GWh': 'ExpectedProduction_NormalYear_GWh',
     'KR_Saksid': 'NVE_CaseId',
     'TurbinID': 'TurbineID',
     'TurbinProdusent': 'TurbineManufacturer',
     'TurbinStorrelse_kW': 'TurbineSize_kW',
     'TurbinType': 'TurbineType',
     'TurbintypeID': 'TurbineTypeID',
     }

def translate_keys_recursive(obj, translation_dict):
    if isinstance(obj, dict):
        return {
            translation_dict.get(k, k): translate_keys_recursive(v, translation_dict)
            for k, v in obj.items()
        }
    elif isinstance(obj, list):
        return [translate_keys_recursive(item, translation_dict) for item in obj]
    else:
        return obj

def get_power():
        
    output_path = 'data/vindprod2002-2024_kraftverk_utcplus1.xlsx'
    url = 'https://www.nve.no/media/18018/vindprod2002-2024_kraftverk_utcplus1.xlsx'

    response = requests.get(url)
    with open(output_path, 'wb') as f:
        f.write(response.content)

    print("Power data saved to:", output_path)
    
def get_metadata():
        
    output_path = 'data/metadata.json'
    url = 'https://api.nve.no/web/WindPowerplant/GetWindPowerPlants'
    # url = "https://api.nve.no/web/WindPowerplant/GetWindPowerPlantsInOperation"

    response = requests.get(url)
    data = response.json()

    with open(output_path, 'w', encoding='utf-8') as f:
        json.dump(data, f, indent=4, ensure_ascii=False)

    print("Metadata saved to:", output_path)    

def get_geodata():
    
    output_path = 'data/geodata.json'
    latlon_wkid = 4326
    url = f'https://nve.geodataonline.no/arcgis/rest/services/Vindkraft2/MapServer/0/query?f=json&cacheHint=true&resultOffset=0&resultRecordCount=1000&where=1%3D1&orderByFields=OBJECTID&outFields=*&outSR={latlon_wkid}&spatialRel=esriSpatialRelIntersects'        

    response = requests.get(url)
    data = response.json()

    with open(output_path, 'w', encoding='utf-8') as f:
        json.dump(data, f, indent=4, ensure_ascii=False)

    print("Geodata saved to:", output_path) 

    
def extract_meta():
    
    output_path_1 = 'nve-windpower-metadata.csv'
    output_path_2 = 'nve-windpower-metadata-extended.csv'
    
    file_path_1 = 'data/metadata.json'
    file_path_2 = 'data/geodata.json'
    
    with open(file_path_1, 'r', encoding='utf-8') as f:
        metadata = json.load(f)
    with open(file_path_2, 'r', encoding='utf-8') as f:
        geodata = json.load(f)        
    
    metadata = translate_keys_recursive(metadata, translation_dict)
    
    # Convert to pandas dataframe
    metadata_df = pd.DataFrame(metadata)
    geodata_df = pd.DataFrame([{'name': park_feature['attributes']['anleggNavn'],
                         'code': park_feature['attributes']['anleggsNr'],
                         'capacity_MW': park_feature['attributes']['effekt_MW'],
                         'no_turbines': park_feature['attributes']['antallTurbiner'],
                         'start_date': pd.to_datetime(park_feature['attributes']['forsteIdriftDato'], unit='ms'),
                         'lat': park_feature['geometry']['y'],
                         'lon': park_feature['geometry']['x']
                       }
                      for park_feature in geodata['features']])

    metadata_df = metadata_df.set_index('FacilityNumber')
    geodata_df = geodata_df.set_index('code')
    
    # Add lat and lon from geodata_df
    metadata_df['lat'] = geodata_df['lat']
    metadata_df['lon'] = geodata_df['lon']
    
    # Reset index
    metadata_df = metadata_df.reset_index()
    
    # Set colums as int
    for c in ['WindPowerPlantId','FacilityNumber','MainOwnerOrgNumber','ElspotAreaNumber','NumberOfOperationalTurbines']:
        metadata_df[c] = pd.to_numeric(metadata_df[c], errors='coerce').astype('Int64')

    # Remove column with turbine meta
    metadata_df1 = metadata_df.copy()
    metadata_df1 = metadata_df1.drop('Turbiner', axis=1)
    metadata_df1 = metadata_df1.set_index('WindPowerPlantId').sort_index()

    # Explode turbine list
    df_exploded = metadata_df.explode('Turbiner').reset_index(drop=True)
    # Normalize turbine dictionaries into columns
    data_normalized = pd.json_normalize(df_exploded['Turbiner'])
    # Combine with original dataframe (without the old turbine column)
    metadata_df2 = pd.concat([df_exploded.drop(columns='Turbiner'), data_normalized], axis=1)
    metadata_df2 = metadata_df2.set_index('WindPowerPlantId').sort_index()

    # Save dataframe as cvs
    metadata_df1.to_csv(output_path_1, index=True)
    metadata_df2.to_csv(output_path_2, index=True)

def extract_power():
    
    output_path = 'nve-windpower-timeseries.csv'

    file_path = 'data/vindprod2002-2024_kraftverk_utcplus1.xlsx'
    
    power = pd.read_excel(file_path, header=1, skiprows=[2])

    power = power.rename(columns={'kraftverknr':'datetime'})
    power = power.set_index('datetime')
    power.index = pd.to_datetime(power.index, utc=True)
    
    # Sort by park id
    power = power[sorted(power.columns)]
    
    # Save dataframe as cvs
    power.to_csv(output_path, index=True)


if __name__ == '__main__':
    get_power()
    get_metadata()
    extract_meta()
    extract_power()