indraroy commited on
Commit
7018700
·
1 Parent(s): f927803

Fix loader path for HF dataset

Browse files
Files changed (1) hide show
  1. isonetpp_loader.py +78 -37
isonetpp_loader.py CHANGED
@@ -7,41 +7,75 @@ from huggingface_hub import hf_hub_download
7
  from subiso_dataset import (
8
  SubgraphIsomorphismDataset,
9
  TRAIN_MODE, VAL_MODE, TEST_MODE, BROAD_TEST_MODE,
10
- GMN_DATA_TYPE, PYG_DATA_TYPE
11
  )
12
 
13
- # Normalize names users pass ("aids" or "aids240k" → stored names are aids240k)
14
- def _normalize_name(name: str) -> str:
15
- if name.endswith("240k") or name.endswith("80k"):
16
- return name
17
- # assume large dataset default = 240k
18
- return name + "240k"
19
 
20
- def _folder(dataset_size: str) -> str:
 
 
 
21
  return "small_dataset" if dataset_size == "small" else "large_dataset"
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  def _ensure_paths(
24
  repo_id: str,
25
  mode: str,
26
- dataset_name: str,
27
- dataset_size: str,
28
  local_root: Optional[str] = None,
29
  ) -> Dict[str, str]:
 
 
 
 
 
 
 
 
 
 
 
30
 
31
- dataset_name = _normalize_name(dataset_name)
32
- folder = _folder(dataset_size) # "large_dataset" or "small_dataset"
33
- prefix = "test" if "test" in mode.lower() else mode
34
- pairs = "80k" if dataset_size == "small" else "240k"
35
-
36
- query_fname = f"{prefix}_{dataset_name}{pairs}_query_subgraphs.pkl"
37
- rel_fname = f"{prefix}_{dataset_name}{pairs}_rel_nx_is_subgraph_iso.pkl"
38
- corpus_fname = f"{dataset_name}{pairs}_corpus_subgraphs.pkl"
39
 
40
- repo_query_path = f"{folder}/splits/{mode}/{query_fname}"
41
- repo_rel_path = f"{folder}/splits/{mode}/{rel_fname}"
42
  repo_corpus_path = f"{folder}/corpus/{corpus_fname}"
43
 
44
- kwargs = dict(repo_id=repo_id, repo_type="dataset", local_dir=local_root, local_dir_use_symlinks=False)
 
 
 
 
 
45
 
46
  query_path = hf_hub_download(filename=repo_query_path, **kwargs)
47
  rel_path = hf_hub_download(filename=repo_rel_path, **kwargs)
@@ -49,19 +83,27 @@ def _ensure_paths(
49
 
50
  return {"query": query_path, "rel": rel_path, "corpus": corpus_path}
51
 
 
 
 
 
52
  def load_isonetpp_benchmark(
53
  repo_id: str = "structlearning/isonetpp-benchmark",
54
- mode: str = "train",
55
- dataset_name: str = "aids",
56
- dataset_size: str = "large",
57
  batch_size: int = 128,
58
- data_type: str = "pyg",
59
  device: Optional[str] = None,
60
  download_root: Optional[str] = None,
61
  ):
 
62
  mode_map = {
63
- "train": TRAIN_MODE, "val": VAL_MODE, "test": TEST_MODE,
64
- "extra_test_300": BROAD_TEST_MODE, "Extra_test_300": BROAD_TEST_MODE
 
 
 
65
  }
66
  mode_norm = mode_map.get(mode, mode)
67
 
@@ -70,25 +112,24 @@ def load_isonetpp_benchmark(
70
  mode=mode_norm,
71
  dataset_name=dataset_name,
72
  dataset_size=dataset_size,
73
- local_root=download_root
74
  )
75
 
76
- # The downloaded structure is:
77
- # <cache>/.../<folder>/splits/<mode>/<files>
78
- # <cache>/.../<folder>/corpus/<files>
79
- #
80
- # So dataset_base_path = parent of <folder>
81
- base_path = os.path.dirname(os.path.dirname(paths["query"])) # .../<folder>/splits
82
- dataset_base_path = os.path.dirname(base_path) # .../<folder>
83
 
84
  dataset_config = dict(
85
  mode=mode_norm,
86
- dataset_name=_normalize_name(dataset_name),
87
  dataset_size=dataset_size,
88
  batch_size=batch_size,
89
  data_type=data_type,
90
  dataset_base_path=dataset_base_path,
91
- dataset_path_override=_folder(dataset_size), # 🟢 critical fix
92
  experiment=None,
93
  device=device,
94
  )
 
7
  from subiso_dataset import (
8
  SubgraphIsomorphismDataset,
9
  TRAIN_MODE, VAL_MODE, TEST_MODE, BROAD_TEST_MODE,
 
10
  )
11
 
12
+ # ----------------------------
13
+ # Helpers
14
+ # ----------------------------
 
 
 
15
 
16
+ def _pairs_for_size(dataset_size: str) -> str:
17
+ return "80k" if dataset_size == "small" else "240k"
18
+
19
+ def _folder_for_size(dataset_size: str) -> str:
20
  return "small_dataset" if dataset_size == "small" else "large_dataset"
21
 
22
+ def _normalize_name(base_name: str, dataset_size: str) -> str:
23
+ """
24
+ Accepts 'aids' or 'aids240k'.
25
+ If user passes bare name, append pairs; if they already passed '...80k/240k', keep as-is.
26
+ """
27
+ pairs = _pairs_for_size(dataset_size)
28
+ if base_name.endswith(("80k", "240k")):
29
+ return base_name
30
+ return f"{base_name}{pairs}"
31
+
32
+ def _mode_prefix_and_dir(mode: str) -> tuple[str, str]:
33
+ """
34
+ File prefix uses 'test' when mode contains 'test' (your repo convention).
35
+ Directory only has train/val/test. Map Extra_test_300 => 'test'.
36
+ """
37
+ prefix = "test" if "test" in mode.lower() else mode
38
+ mode_dir = "test" if "test" in mode.lower() else mode # maps Extra_test_300 -> test
39
+ return prefix, mode_dir
40
+
41
+ # ----------------------------
42
+ # Path resolution + downloads
43
+ # ----------------------------
44
+
45
  def _ensure_paths(
46
  repo_id: str,
47
  mode: str,
48
+ dataset_name: str, # can be 'aids' or 'aids240k'
49
+ dataset_size: str, # 'small' | 'large'
50
  local_root: Optional[str] = None,
51
  ) -> Dict[str, str]:
52
+ """
53
+ Download the three files needed into cache (or local_root if set):
54
+ - splits/<mode_dir>/<prefix>_<base>_query_subgraphs.pkl
55
+ - splits/<mode_dir>/<prefix>_<base>_rel_nx_is_subgraph_iso.pkl
56
+ - corpus/<base>_corpus_subgraphs.pkl
57
+ where <base> is the normalized dataset name (includes 80k/240k exactly once).
58
+ """
59
+ pairs = _pairs_for_size(dataset_size)
60
+ folder = _folder_for_size(dataset_size) # "large_dataset" or "small_dataset"
61
+ base = _normalize_name(dataset_name, dataset_size) # e.g., "aids240k" (no double-append)
62
+ prefix, mode_dir = _mode_prefix_and_dir(mode)
63
 
64
+ # exact filenames used in your repo
65
+ query_fname = f"{prefix}_{base}_query_subgraphs.pkl"
66
+ rel_fname = f"{prefix}_{base}_rel_nx_is_subgraph_iso.pkl"
67
+ corpus_fname = f"{base}_corpus_subgraphs.pkl"
 
 
 
 
68
 
69
+ repo_query_path = f"{folder}/splits/{mode_dir}/{query_fname}"
70
+ repo_rel_path = f"{folder}/splits/{mode_dir}/{rel_fname}"
71
  repo_corpus_path = f"{folder}/corpus/{corpus_fname}"
72
 
73
+ kwargs = dict(
74
+ repo_id=repo_id,
75
+ repo_type="dataset",
76
+ local_dir=local_root,
77
+ local_dir_use_symlinks=False,
78
+ )
79
 
80
  query_path = hf_hub_download(filename=repo_query_path, **kwargs)
81
  rel_path = hf_hub_download(filename=repo_rel_path, **kwargs)
 
83
 
84
  return {"query": query_path, "rel": rel_path, "corpus": corpus_path}
85
 
86
+ # ----------------------------
87
+ # Public entrypoint
88
+ # ----------------------------
89
+
90
  def load_isonetpp_benchmark(
91
  repo_id: str = "structlearning/isonetpp-benchmark",
92
+ mode: str = "train", # "train" | "val" | "test" | "Extra_test_300"
93
+ dataset_name: str = "aids", # "aids" or "aids240k" (same for mutag/ptc_*)
94
+ dataset_size: str = "large", # "small" | "large"
95
  batch_size: int = 128,
96
+ data_type: str = "pyg", # "pyg" or "gmn"
97
  device: Optional[str] = None,
98
  download_root: Optional[str] = None,
99
  ):
100
+ # Map user mode to your class constants
101
  mode_map = {
102
+ "train": TRAIN_MODE,
103
+ "val": VAL_MODE,
104
+ "test": TEST_MODE,
105
+ "extra_test_300": BROAD_TEST_MODE,
106
+ "Extra_test_300": BROAD_TEST_MODE,
107
  }
108
  mode_norm = mode_map.get(mode, mode)
109
 
 
112
  mode=mode_norm,
113
  dataset_name=dataset_name,
114
  dataset_size=dataset_size,
115
+ local_root=download_root,
116
  )
117
 
118
+ # paths["query"] points to .../<folder>/splits/<mode_dir>/<file>
119
+ # dataset_base_path must be the parent "<folder>" so that subiso_dataset finds:
120
+ # dataset_base_path/{splits/<mode_dir>/..., corpus/...}
121
+ splits_dir = os.path.dirname(paths["query"]) # .../<folder>/splits/<mode_dir>
122
+ folder_dir = os.path.dirname(splits_dir) # .../<folder>
123
+ dataset_base_path = folder_dir
 
124
 
125
  dataset_config = dict(
126
  mode=mode_norm,
127
+ dataset_name=_normalize_name(dataset_name, dataset_size), # ensure '...240k' once
128
  dataset_size=dataset_size,
129
  batch_size=batch_size,
130
  data_type=data_type,
131
  dataset_base_path=dataset_base_path,
132
+ dataset_path_override=_folder_for_size(dataset_size), # critical: "large_dataset"/"small_dataset"
133
  experiment=None,
134
  device=device,
135
  )