Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -63,8 +63,8 @@ print(f"Validation tokens: {len(val_data):,}")
|
|
| 63 |
from transformers import PreTrainedTokenizerFast
|
| 64 |
|
| 65 |
tokenizer = PreTrainedTokenizerFast.from_pretrained(
|
| 66 |
-
|
| 67 |
-
|
| 68 |
)
|
| 69 |
|
| 70 |
# Example usage
|
|
@@ -84,6 +84,39 @@ print(f"Decoded: {tokenizer.decode(tokens)}")
|
|
| 84 |
- **`tokenized/tokenizer.json`**: Tokenizer vocabulary and merges
|
| 85 |
- **`tokenized/tokenizer_config.json`**: Tokenizer configuration
|
| 86 |
- **`tokenized/special_tokens_map.json`**: Special tokens mapping
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
### Data Fields
|
| 89 |
|
|
@@ -104,18 +137,18 @@ import numpy as np
|
|
| 104 |
import torch
|
| 105 |
|
| 106 |
def get_batch(split='train', batch_size=64, block_size=2048):
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
|
| 113 |
# Training loop
|
| 114 |
for step in range(num_steps):
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
```
|
| 120 |
|
| 121 |
## Tokenizer Details
|
|
|
|
| 63 |
from transformers import PreTrainedTokenizerFast
|
| 64 |
|
| 65 |
tokenizer = PreTrainedTokenizerFast.from_pretrained(
|
| 66 |
+
"ifkash/fineweb-6b",
|
| 67 |
+
subfolder="tokenized"
|
| 68 |
)
|
| 69 |
|
| 70 |
# Example usage
|
|
|
|
| 84 |
- **`tokenized/tokenizer.json`**: Tokenizer vocabulary and merges
|
| 85 |
- **`tokenized/tokenizer_config.json`**: Tokenizer configuration
|
| 86 |
- **`tokenized/special_tokens_map.json`**: Special tokens mapping
|
| 87 |
+
- **`distillation/`**: Knowledge distillation data (see below)
|
| 88 |
+
|
| 89 |
+
### Distillation Data
|
| 90 |
+
|
| 91 |
+
The `distillation/` directory contains precomputed teacher logits from [SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) for knowledge distillation:
|
| 92 |
+
|
| 93 |
+
| File | Description | Size (6B tokens) |
|
| 94 |
+
|------|-------------|------------------|
|
| 95 |
+
| `metadata.json` | Configuration and vocab info | ~1 KB |
|
| 96 |
+
| `train_tokens.bin` | Token IDs (uint16) | ~11.2 GB |
|
| 97 |
+
| `train_topk_ids.bin` | Top-128 token indices | ~1.4 GB |
|
| 98 |
+
| `train_topk_probs.bin` | Top-128 probabilities (float16) | ~1.4 GB |
|
| 99 |
+
| `val_tokens.bin` | Validation token IDs | ~56 MB |
|
| 100 |
+
| `val_topk_ids.bin` | Validation top-128 indices | ~7 MB |
|
| 101 |
+
| `val_topk_probs.bin` | Validation top-128 probs | ~7 MB |
|
| 102 |
+
|
| 103 |
+
**Loading distillation data:**
|
| 104 |
+
```python
|
| 105 |
+
import numpy as np
|
| 106 |
+
import json
|
| 107 |
+
|
| 108 |
+
# Load metadata
|
| 109 |
+
with open("distillation/metadata.json") as f:
|
| 110 |
+
metadata = json.load(f)
|
| 111 |
+
|
| 112 |
+
# Load memory-mapped files
|
| 113 |
+
tokens = np.memmap("distillation/train_tokens.bin", dtype=np.uint16, mode="r")
|
| 114 |
+
topk_ids = np.memmap("distillation/train_topk_ids.bin", dtype=np.uint16, mode="r").reshape(-1, 128)
|
| 115 |
+
topk_probs = np.memmap("distillation/train_topk_probs.bin", dtype=np.float16, mode="r").reshape(-1, 128)
|
| 116 |
+
|
| 117 |
+
print(f"Tokens: {len(tokens):,}")
|
| 118 |
+
print(f"Teacher model: {metadata['teacher_model']}")
|
| 119 |
+
```
|
| 120 |
|
| 121 |
### Data Fields
|
| 122 |
|
|
|
|
| 137 |
import torch
|
| 138 |
|
| 139 |
def get_batch(split='train', batch_size=64, block_size=2048):
|
| 140 |
+
data = np.memmap(f'tokenized/{split}.bin', dtype=np.uint16, mode='r')
|
| 141 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
| 142 |
+
x = torch.stack([torch.from_numpy(data[i:i+block_size].astype(np.int64)) for i in ix])
|
| 143 |
+
y = torch.stack([torch.from_numpy(data[i+1:i+1+block_size].astype(np.int64)) for i in ix])
|
| 144 |
+
return x.cuda(), y.cuda()
|
| 145 |
|
| 146 |
# Training loop
|
| 147 |
for step in range(num_steps):
|
| 148 |
+
x, y = get_batch('train')
|
| 149 |
+
logits, loss = model(x, y)
|
| 150 |
+
loss.backward()
|
| 151 |
+
optimizer.step()
|
| 152 |
```
|
| 153 |
|
| 154 |
## Tokenizer Details
|