yashmarathe BigDong commited on
Commit
88d4316
·
0 Parent(s):

Duplicate from openbmb/UltraData-Math

Browse files

Co-authored-by: Yudong Wang <BigDong@users.noreply.huggingface.co>

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +59 -0
  2. README.md +218 -0
  3. README_ZH.md +178 -0
  4. assets/ultradata-math-full-comparison.png +3 -0
  5. assets/ultradata-math-l0-parser-comparison.png +3 -0
  6. assets/ultradata-math-l1l2l3-comparison.png +3 -0
  7. assets/ultradata-math-logo.png +3 -0
  8. assets/ultradata-math-pipeline.png +3 -0
  9. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0001-of-15.parquet +3 -0
  10. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0002-of-15.parquet +3 -0
  11. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0003-of-15.parquet +3 -0
  12. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0004-of-15.parquet +3 -0
  13. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0005-of-15.parquet +3 -0
  14. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0006-of-15.parquet +3 -0
  15. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0007-of-15.parquet +3 -0
  16. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0008-of-15.parquet +3 -0
  17. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0009-of-15.parquet +3 -0
  18. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0010-of-15.parquet +3 -0
  19. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0011-of-15.parquet +3 -0
  20. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0012-of-15.parquet +3 -0
  21. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0013-of-15.parquet +3 -0
  22. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0014-of-15.parquet +3 -0
  23. data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0015-of-15.parquet +3 -0
  24. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0001-of-15.parquet +3 -0
  25. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0002-of-15.parquet +3 -0
  26. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0003-of-15.parquet +3 -0
  27. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0004-of-15.parquet +3 -0
  28. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0005-of-15.parquet +3 -0
  29. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0006-of-15.parquet +3 -0
  30. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0007-of-15.parquet +3 -0
  31. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0008-of-15.parquet +3 -0
  32. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0009-of-15.parquet +3 -0
  33. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0010-of-15.parquet +3 -0
  34. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0011-of-15.parquet +3 -0
  35. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0012-of-15.parquet +3 -0
  36. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0013-of-15.parquet +3 -0
  37. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0014-of-15.parquet +3 -0
  38. data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0015-of-15.parquet +3 -0
  39. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0001-of-15.parquet +3 -0
  40. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0002-of-15.parquet +3 -0
  41. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0003-of-15.parquet +3 -0
  42. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0004-of-15.parquet +3 -0
  43. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0005-of-15.parquet +3 -0
  44. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0006-of-15.parquet +3 -0
  45. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0007-of-15.parquet +3 -0
  46. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0008-of-15.parquet +3 -0
  47. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0009-of-15.parquet +3 -0
  48. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0010-of-15.parquet +3 -0
  49. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0011-of-15.parquet +3 -0
  50. data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0012-of-15.parquet +3 -0
.gitattributes ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mds filter=lfs diff=lfs merge=lfs -text
13
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
14
+ *.model filter=lfs diff=lfs merge=lfs -text
15
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
16
+ *.npy filter=lfs diff=lfs merge=lfs -text
17
+ *.npz filter=lfs diff=lfs merge=lfs -text
18
+ *.onnx filter=lfs diff=lfs merge=lfs -text
19
+ *.ot filter=lfs diff=lfs merge=lfs -text
20
+ *.parquet filter=lfs diff=lfs merge=lfs -text
21
+ *.pb filter=lfs diff=lfs merge=lfs -text
22
+ *.pickle filter=lfs diff=lfs merge=lfs -text
23
+ *.pkl filter=lfs diff=lfs merge=lfs -text
24
+ *.pt filter=lfs diff=lfs merge=lfs -text
25
+ *.pth filter=lfs diff=lfs merge=lfs -text
26
+ *.rar filter=lfs diff=lfs merge=lfs -text
27
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
28
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
30
+ *.tar filter=lfs diff=lfs merge=lfs -text
31
+ *.tflite filter=lfs diff=lfs merge=lfs -text
32
+ *.tgz filter=lfs diff=lfs merge=lfs -text
33
+ *.wasm filter=lfs diff=lfs merge=lfs -text
34
+ *.xz filter=lfs diff=lfs merge=lfs -text
35
+ *.zip filter=lfs diff=lfs merge=lfs -text
36
+ *.zst filter=lfs diff=lfs merge=lfs -text
37
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
38
+ # Audio files - uncompressed
39
+ *.pcm filter=lfs diff=lfs merge=lfs -text
40
+ *.sam filter=lfs diff=lfs merge=lfs -text
41
+ *.raw filter=lfs diff=lfs merge=lfs -text
42
+ # Audio files - compressed
43
+ *.aac filter=lfs diff=lfs merge=lfs -text
44
+ *.flac filter=lfs diff=lfs merge=lfs -text
45
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
46
+ *.ogg filter=lfs diff=lfs merge=lfs -text
47
+ *.wav filter=lfs diff=lfs merge=lfs -text
48
+ # Image files - uncompressed
49
+ *.bmp filter=lfs diff=lfs merge=lfs -text
50
+ *.gif filter=lfs diff=lfs merge=lfs -text
51
+ *.png filter=lfs diff=lfs merge=lfs -text
52
+ *.tiff filter=lfs diff=lfs merge=lfs -text
53
+ # Image files - compressed
54
+ *.jpg filter=lfs diff=lfs merge=lfs -text
55
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
56
+ *.webp filter=lfs diff=lfs merge=lfs -text
57
+ # Video files - compressed
58
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
59
+ *.webm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ license: apache-2.0
6
+ size_categories:
7
+ - 100B<n<1T
8
+ task_categories:
9
+ - text-generation
10
+ pretty_name: UltraData-Math
11
+ arxiv: xxxx.xxxxx
12
+ tags:
13
+ - llm
14
+ - pretraining
15
+ - math
16
+ - data-synthesis
17
+ - data-filtering
18
+ - high-quality
19
+ - mathematical-reasoning
20
+ configs:
21
+ - config_name: UltraData-Math-L3-Conversation-Synthetic
22
+ data_files: "data/UltraData-Math-L3/Conversation-Synthetic/*.parquet"
23
+ - config_name: UltraData-Math-L3-Multi-Style-Synthetic
24
+ data_files: "data/UltraData-Math-L3/Multi-Style-Synthetic/*.parquet"
25
+ - config_name: UltraData-Math-L3-QA-Synthetic
26
+ data_files: "data/UltraData-Math-L3/QA-Synthetic/*.parquet"
27
+ - config_name: UltraData-Math-L3-Textbook-Exercise-Synthetic
28
+ data_files: "data/UltraData-Math-L3/Textbook-Exercise-Synthetic/*.parquet"
29
+ - config_name: UltraData-Math-L2-preview
30
+ data_files: "data/UltraData-Math-L2-preview/**/*.parquet"
31
+ - config_name: UltraData-Math-L1
32
+ data_files: "data/UltraData-Math-L1/**/*.parquet"
33
+ default_config_name: UltraData-Math-L3-Conversation-Synthetic
34
+ ---
35
+
36
+ # UltraData-Math
37
+
38
+ <div align="center">
39
+ <img src="assets/ultradata-math-logo.png" width="600"/>
40
+ </div>
41
+
42
+ <p align="center">
43
+ <a href="https://huggingface.co/datasets/openbmb/UltraData-Math">🤗 Dataset</a> | <a href="https://github.com/UltraData-OpenBMB/UltraData-Math">💻 Source Code</a> | <a href="https://huggingface.co/datasets/openbmb/UltraData-Math/blob/main/README_ZH.md">🇨🇳 中文 README</a>
44
+ </p>
45
+
46
+ ***UltraData-Math*** is a large-scale, high-quality mathematical pre-training dataset totaling **290B+ tokens** across three progressive tiers—**L1** (170.5B tokens web corpus), **L2** (33.7B tokens quality-selected), and **L3** (88B tokens multi-format refined)—designed to systematically enhance mathematical reasoning in LLMs. It has been applied to the mathematical pre-training of the [MiniCPM Series](https://huggingface.co/collections/openbmb/minicpm4) models.
47
+
48
+ ## 🆕 What's New
49
+
50
+ - **[2026.02.09]**: **UltraData-Math**, a large-scale high-quality mathematical pre-training dataset with 290B+ tokens across three progressive tiers (L1/L2-preview/L3), is now available on Hugging Face. Released as part of the [UltraData](https://ultradata.openbmb.cn/) ecosystem. 🔥🔥🔥
51
+ - **[2026.02.10]**: **UltraData-Math** tops the Hugging Face Datasets Trending list, reaching the #1 spot! ⭐️⭐️⭐️
52
+
53
+ ## 📚 Introduction
54
+
55
+ High-quality pre-training data is crucial for enhancing the mathematical reasoning capabilities of large language models (LLMs). However, existing mathematical pre-training data construction schemes have the following shortcomings:
56
+
57
+ - **HTML Parsing**: General parsers (such as trafilatura, readability) are mainly designed for news/article parsing, lacking specialized processing for mathematical formulas and other content, often leading to formula structure destruction or loss; meanwhile, mathematical discussions on forum-like pages are difficult to extract completely.
58
+ - **Data Quality**: Existing datasets generally lack a systematic quality grading mechanism, with high-value mathematical content mixed with low-quality noise.
59
+ - **Data Diversity**: Mainstream datasets mostly originate from textbooks or competition question banks, lacking mathematical discussions and application scenarios in real web pages; synthetic data formats are single, difficult to cover diverse needs such as multi-turn dialogues and multi-style expressions.
60
+
61
+ To address these issues, we propose ***UltraData-Math***—a large-scale high-quality pre-training dataset for mathematical reasoning tasks. This dataset is developed based on the [UltraData](https://ultradata.openbmb.cn/blog/position-paper) L0-L4 Tiered Data Management Framework, containing four progressive levels:
62
+
63
+ - **L0 Raw Data**: Develops a mathematical parser based on *magic-html*, combined with *w3m* layout preservation rendering and multi-level fallback strategies, standardizing MathML, KaTeX, and AsciiMath into LaTeX format.
64
+ - **L1 Filtered Data**: Cleans noise through heuristic rules and performs document-level deduplication.
65
+ - **L2 Selected Data**: Uses proprietary large models to annotate seed data and distills it into a lightweight embedding classifier to achieve efficient quality grading of the full corpus.
66
+ - **L3 Refined Data**: Produces structured content with clear reasoning through rewriting, synthetic generation, and refinement in various formats such as Q&A, multi-turn dialogues, multi-style rewriting, and knowledge-grounded textbooks.
67
+
68
+ Experiments show that on the MiniCPM-1.2B architecture, ***UltraData-Math*** achieves a score of **37.02pp** on the MATH500 benchmark, an improvement of **+3.62pp** compared to Nemotron-CC 4plus; it achieves **61.79pp** on GSM8K, an improvement of **+3.34pp**, while maintaining code generation and general knowledge capabilities.
69
+
70
+ ***UltraData-Math*** has been applied to the mathematical pre-training of the [MiniCPM Series](https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b) models.
71
+
72
+ - **[UltraData-Math-L1](https://huggingface.co/datasets/openbmb/UltraData-Math)**: Large-scale high-quality mathematical pre-training dataset, containing 170.5B tokens of web mathematical corpus.
73
+ - **[UltraData-Math-L2](https://huggingface.co/datasets/openbmb/UltraData-Math-L2)**: High-quality mathematical pre-training dataset selected by the quality model, containing 33.7B tokens of high-quality web mathematical corpus.
74
+ - **[UltraData-Math-L3](https://huggingface.co/datasets/openbmb/UltraData-Math-L3)**: High-quality refined mathematical dataset, containing 88B tokens of multi-format refined data (Q&A, multi-turn dialogues, knowledge textbooks, etc.).
75
+
76
+ ## 🏗️ Data Processing Pipeline
77
+
78
+ To break through the limitations of existing mathematical datasets in quality and diversity, we established a refined grading standard centered on "mathematical content integrity" and "information density". ***UltraData-Math*** adopts the **L0-L4 Tiered Data Management Framework** proposed by the [UltraData](https://ultradata.openbmb.cn/blog/position-paper) paper. Through standardized level definitions, it achieves orderly management and efficient flow of mathematical data assets. Each level represents higher data purity and mathematical value, while also corresponding to a more refined degree of processing.
79
+
80
+ <div align="center">
81
+ <img src="assets/ultradata-math-pipeline.png" width="900"/>
82
+ </div>
83
+
84
+ ### L0: Raw Data Parsing and Standardization
85
+
86
+ **Goal**: Address the poor support of general HTML parsers for mathematical formulas and maximize the preservation of mathematical semantics in web pages.
87
+
88
+ The L0 phase mainly processes raw web data obtained from sources such as Common Crawl. Given the specificity of mathematical web pages, we develop specialized parsing strategies through the [UltraData-Math-Parser](https://huggingface.co/spaces/openbmb/UltraData-Math-L0-Parser) instead of directly using general parsers like trafilatura or readability.
89
+
90
+ - **Unified Parsing Mode**: Automatically identifies page types to ensure complete content extraction as much as possible.
91
+ - **Multi-level Fallback Strategy**: To prevent data loss due to parsing failures, we implement a multi-level fallback mechanism to ensure text content is captured even if structured parsing fails.
92
+ - **Mathematical Formula Standardization**: We unify different mathematical expressions in web pages into standard LaTeX format, achieving data format normalization for unified model learning.
93
+
94
+ ### L1: Heuristic Cleaning and Filtering
95
+
96
+ **Goal**: Remove format noise and improve data readability and standardization.
97
+
98
+ After obtaining text containing complete mathematical formulas, we clean the L0 data through a series of heuristic rules:
99
+
100
+ - **Format Repair**:
101
+ - Clean invisible characters, garbled text, and unnatural continuous line breaks.
102
+ - Remove irrelevant web noise such as navigation bars, footers, ad pop-ups, and "read more".
103
+ - **Content Filtering**:
104
+ - *Length Filtering*: Remove overly short text fragments, which usually lack context and are difficult to support effective mathematical reasoning training.
105
+ - *Language Identification*: Ensure the dataset is composed mainly of high-quality English and Chinese mathematical content.
106
+ - *Document Deduplication*: Perform deduplication at the document level to prevent duplicate content from biasing model training.
107
+
108
+ ### L2: Selection Based on Quality Models
109
+
110
+ **Goal**: Identify core corpora with high value from massive data.
111
+
112
+ Although L1 data has a clean format, the content quality varies. The L2 phase introduces a model-based quality assessment system:
113
+
114
+ - **Seed Data Annotation**: Use proprietary large models to score a portion of seed data across multiple dimensions.
115
+ - **Classifier Training and Distillation**: Train lightweight embedding classifiers based on annotated data to equip them with the ability to identify high-value mathematical content.
116
+ - **Full-scale Inference**: Use the trained classifier to score and screen L1 data in full.
117
+ - *Retention*: Content containing detailed problem-solving steps, mathematical concept explanations, and high-level academic discussions.
118
+ - *Exclusion*: Simple stacking of nouns, meaningless lists of numbers, juvenile content, or noise from non-mathematical fields.
119
+
120
+ ### L3: Refined Data
121
+
122
+ **Goal**: Produce structured content with clear reasoning and explicit educational intent through rewriting, synthetic generation, and refinement, achieving textbook-quality standards and ensuring maximum learnability.
123
+
124
+ Natural web data is mostly declarative text, lacking structured reasoning steps and diverse pedagogical formats. To enhance the model's chain-of-thought (CoT) capabilities and multi-turn interaction skills, we build the L3 refined data layer through the [UltraData-Math-Generator](https://huggingface.co/spaces/openbmb/UltraData-Math-L3-Generator):
125
+
126
+ - **Q&A Pair Generation**: Use high-performance models to rewrite declarative documents into "Question-Answer" pairs, constructing QA-style data with explicit reasoning steps.
127
+ - **Multi-turn Dialogue Synthesis**: Simulate "Teacher-Student" tutoring scenarios to generate multi-turn dialogue data containing follow-up questions, corrections, and guidance.
128
+ - **Multi-style Rewriting**: Rewrite single-source data into multiple styles (such as rigorous textbook style, competition problem-solving style, intuitive popular science style) to improve model generalization.
129
+ - **Knowledge Point Textbook Generation**: Generate systematic textbook-like content based on specific knowledge points to ensure the model masters core mathematical concepts.
130
+ - **Format Repair and Enhancement**: Fix formatting issues in the source data (e.g., broken LaTeX formulas, inconsistent notation) and enhance content coherence to achieve textbook-quality standards.
131
+
132
+ Based on the above methodology, we produce the following ***UltraData-Math*** datasets:
133
+
134
+ | Dataset | # Tokens | # Documents |
135
+ |:---|:---:|:---:|
136
+ | UltraData-Math-L1 | 170.5B | 85.6M |
137
+ | UltraData-Math-L2-preview | 33.7B | 14.98M |
138
+ | UltraData-Math-L3 | 88B | 81.4M |
139
+
140
+ ## 🚀 Quick Start
141
+
142
+ You can load the dataset directly from Hugging Face:
143
+
144
+ ```python
145
+ from datasets import load_dataset
146
+
147
+ # Load UltraData-Math-L1
148
+ ds = load_dataset("openbmb/UltraData-Math", "UltraData-Math-L1")
149
+
150
+ # Load UltraData-Math-L2-preview
151
+ ds = load_dataset("openbmb/UltraData-Math", "UltraData-Math-L2-preview")
152
+
153
+ # Load UltraData-Math-L3 (default: Conversation-Synthetic)
154
+ ds = load_dataset("openbmb/UltraData-Math", "UltraData-Math-L3-Conversation-Synthetic")
155
+
156
+ # Other L3 configs:
157
+ # - UltraData-Math-L3-Multi-Style-Synthetic
158
+ # - UltraData-Math-L3-QA-Synthetic
159
+ # - UltraData-Math-L3-Textbook-Exercise-Synthetic
160
+ ```
161
+
162
+ ## 📈 Experimental Results
163
+
164
+ We evaluated data quality using the **Decay Verification** method: continuing pre-training of a **MiniCPM-1.2B** base model (pre-trained on 1.3T tokens with **MiniCPM3-4B** tokenizer) with **~100B tokens** (30% target data + 70% general data). We used [OpenCompass](https://github.com/open-compass/opencompass) as our evaluation framework. Evaluation benchmarks include:
165
+
166
+ - **General English:** MMLU, ARC-E, ARC-C, BigBench Hard (BBH), CommonSenseQA, HellaSwag, OpenbookQA, PIQA, SIQA, Winogrande
167
+ - **General Chinese:** C-Eval, CMMLU
168
+ - **Math Reasoning:** MATH500, GSM8K, Math-Bench, R-Bench-Math
169
+ - **Code Reasoning:** MBPP, HumanEval
170
+
171
+ ### Effectiveness of L0 Parsing Strategy
172
+
173
+ To fairly compare different parsing strategies, we conducted experiments on a data subset sampled from the **2023-2024** distribution. We re-parsed the raw HTML from this source using different parsers. This comparison demonstrates the **effectiveness of our L0 Parser** against other parsers.
174
+
175
+ <div align="center">
176
+ <img src="assets/ultradata-math-l0-parser-comparison.png" width="700"/>
177
+ </div>
178
+
179
+
180
+ ### Pipeline Effectiveness (L1 vs L2 vs L3)
181
+
182
+ To validate the effectiveness of our L0-L3 tiered framework, we conducted ablation studies comparing models trained on different tiers of UltraData-Math. Unlike the L0 parser comparison above (which used a 2023-2024 subset), these results are based on the **full dataset**. Results demonstrate that higher-tier data (L3) significantly boosts mathematical reasoning (MATH500, GSM8K) and general capabilities.
183
+
184
+ <div align="center">
185
+ <img src="assets/ultradata-math-l1l2l3-comparison.png" width="700"/>
186
+ </div>
187
+
188
+ ### Full Evaluation Results
189
+
190
+ To compare against existing public mathematical pre-training datasets, we trained models independently on each dataset using the same model architecture and training budget (~100B tokens). The baselines include [Nemotron-CC-Math](https://huggingface.co/datasets/nvidia/Nemotron-CC-Math-v1), [MegaMath-Web-Pro](https://huggingface.co/datasets/LLM360/MegaMath), and [FineMath](https://huggingface.co/datasets/HuggingFaceTB/finemath). All models are evaluated under identical conditions for a fair comparison:
191
+
192
+ <div align="center">
193
+ <img src="assets/ultradata-math-full-comparison.png" width="700"/>
194
+ </div>
195
+
196
+ ## ❤️ Acknowledgements
197
+
198
+ - **L0 Parsing Layer**: [magic-html](https://github.com/opendatalab/magic-html), [w3m](http://w3m.sourceforge.net/), [trafilatura](https://github.com/adbar/trafilatura)
199
+ - **L3 Synthesis Layer**: [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct), [Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B), [GLM-4.5](https://huggingface.co/zai-org/GLM-4.5)
200
+ - **Seed Data**: [Nemotron-CC-Math](https://huggingface.co/datasets/nvidia/Nemotron-CC-Math-v1), [MegaMath](https://huggingface.co/datasets/LLM360/MegaMath), [FineMath](https://huggingface.co/datasets/HuggingFaceTB/finemath)
201
+
202
+ ## 📖 Citation
203
+
204
+ If you find **UltraData-Math** useful in your research, please consider citing:
205
+
206
+ ```bibtex
207
+ @misc{ultradata-math,
208
+ title={UltraData-Math},
209
+ author={UltraData Team},
210
+ year={2026},
211
+ url={https://huggingface.co/datasets/openbmb/UltraData-Math},
212
+ publisher={Hugging Face}
213
+ }
214
+ ```
215
+
216
+ ## 📜 License
217
+
218
+ This project is licensed under the [Apache 2.0](./LICENSE) license.
README_ZH.md ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # UltraData-Math
2
+
3
+ <div align="center">
4
+ <img src="assets/ultradata-math-logo.png" width="600"/>
5
+ </div>
6
+
7
+ <p align="center">
8
+ <a href="https://huggingface.co/datasets/openbmb/UltraData-Math">🤗 数据集</a> | <a href="https://github.com/UltraData-OpenBMB/UltraData-Math">💻 源代码</a> | <a href="README.md">🇺🇸 English README</a>
9
+ </p>
10
+
11
+ ***UltraData-Math*** 是一个面向数学推理的大规模高质量预训练数据集,总计 **290B+ tokens**,涵盖三个递进层级——**L1**(170.5B tokens 网页语料)、**L2**(33.7B tokens 质量精选)、**L3**(88B tokens 多格式精炼),旨在系统性提升大语言模型的数学推理能力。已应用于 [MiniCPM 系列](https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b) 模型的数学预训练。
12
+
13
+ ## 📚 简介
14
+
15
+ 高质量预训练数据对提升大语言模型的数学推理能力至关重要。然而,现有数学预训练数据构建方案存在以下不足:
16
+
17
+ - **HTML 解析层面**:通用提取器(如 trafilatura、readability)主要面向新闻/文章场景设计,对数学公式等内容缺乏专门处理,常导致公式结构破坏或丢失;同时论坛类页面的数学讨论部分,难以完整提取。
18
+ - **数据质量层面**:现有数据集普遍缺乏系统的质量分级机制,高价值数学内容与低质噪声混杂。
19
+ - **数据多样性层面**:主流数据集多源自教科书或竞赛题库,缺少真实网页中的数学讨论与应用场景;合成数据格式单一,难以覆盖多轮对话、多风格表达等多样化需求。
20
+
21
+ 针对上述问题,我们提出 ***UltraData-Math***——一个面向数学推理任务的大规模高质量预训练数据集。本数据集基于 [UltraData](https://ultradata.openbmb.cn/blog/position-paper) 的 L0-L4 分级数据管理框架开发,包含四个递进层级:
22
+
23
+ - **L0 原始数据层**:基于 *magic-html* 开发数学解析器,结合 *w3m* 布局保持渲染与多级回退策略,将 MathML、KaTeX、AsciiMath 标准化为 LaTeX 格式。
24
+ - **L1 过滤数据层**:通过启发式规则清洗噪声并进行文档级去重。
25
+ - **L2 精选数据层**:使用闭源大模型标注种子数据并蒸馏至轻量 embedding 分类器,实现全量语料的高效质量分级。
26
+ - **L3 精炼数据层**:通过改写、合成生成与精炼,生成具有清晰推理链条的结构化内容,涵盖 Q&A、多轮对话、多风格改写、知识教材等多种格式。
27
+
28
+ 实验表明,在 MiniCPM-1.2B 架构上,***UltraData-Math*** 在 MATH500 基准上达到 **37.02pp**,相较 Nemotron-CC 4plus 提升 **+3.62pp**;在 GSM8K 上达到 **61.79pp**,提升 **+3.34pp**,同时保持代码生成与通用知识能力。
29
+
30
+ ***UltraData-Math*** 已应用于 [MiniCPM 系列](https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b) 模型的数学预训练。
31
+
32
+ - **[UltraData-Math-L1](https://huggingface.co/datasets/openbmb/UltraData-Math)**: 大规模高质量数学预训练数据集,包含 170.5B tokens 的网页数学语料。
33
+ - **[UltraData-Math-L2](https://huggingface.co/datasets/openbmb/UltraData-Math-L2)**: 经质量模型精选的高质量数学预训练数据集,包含 33.7B tokens 的高质量网页数学语料。
34
+ - **[UltraData-Math-L3](https://huggingface.co/datasets/openbmb/UltraData-Math-L3)**: 高质量精炼数学数据集,包含 88B tokens 的多格式精炼数据(Q&A、多轮对话、知识教材等)。
35
+
36
+ ## 🏗️ 数据处理流水线
37
+
38
+ 为突破现有数学数据集在质量与多样性上的局限,我们建立了一套以"数学内容完整性"和"信息密度"为核心的精细化分级标准。***UltraData-Math*** 采用了 [UltraData](https://ultradata.openbmb.cn/blog/position-paper) 论文提出的 **L0-L4 分级数据管理框架**,通过标准化的层级定义,实现数学数据资产的有序管理与高效流转。每一级都代表了更高的数据纯度与数学价值,同时也对应着更精细的加工程度。
39
+
40
+ <div align="center">
41
+ <img src="assets/ultradata-math-pipeline.png" width="900"/>
42
+ </div>
43
+
44
+ ### L0:原始数据解析与标准化
45
+
46
+ **目标**:解决通用 HTML 解析器对数学公式支持不佳的问题,最大限度保留网页中的数学语义。
47
+
48
+ L0 阶段主要处理从 Common Crawl 等来源获取的原始网页数据。针对数学网页的特殊性,我们通过 [UltraData-Math-Parser](https://huggingface.co/spaces/openbmb/UltraData-Math-L0-Parser) 开发了专用的解析策略,而非直接使用通用的 trafilatura 或 readability。
49
+
50
+ - **统一解析模式**:自动识别页面类型,尽可能保证完整内容提取。
51
+ - **多级回退策略**:为了防止解析失败导致数据丢失,我们实施了多级回退机制,确保在结构化解析失败时仍能捕获文本内容。
52
+ - **数学公式标准化**:我们将网页中不同的数学表达统一转换为标准的 LaTeX 格式,实现了数据格式的归一化,便于模型统一学习。
53
+
54
+ ### L1:启发式清洗与过滤
55
+
56
+ **目标**:去除格式噪声,提升数据的可读性和规范性。
57
+
58
+ 在获取了包含完整数学公式的文本后,我们通过一系列启发式规则对 L0 数据进行清洗:
59
+
60
+ - **格式修复**:
61
+ - 清理不可见字符、乱码及非自然的连续换行。
62
+ - 移除导航栏、页脚、广告弹窗及"阅读更多"等无关网页噪音。
63
+ - **内容过滤**:
64
+ - *长度过滤*:移除过短的文本片段,这些片段通常缺乏上下文,难以支持有效的数学推理训练。
65
+ - *语言识别*:确保数据集主要由高质量的英文及中文数学内容组成。
66
+ - *文档去重*:在文档级别进行去重,防止重复内容对模型训练造成偏差。
67
+
68
+ ### L2:基于质量模型的精选
69
+
70
+ **目标**:从海量数据中识别出具有高价值的核心语料。
71
+
72
+ L1 数据虽然格式整洁,但内容质量参差不齐。L2 阶段引入了基于模型的质量评估体系:
73
+
74
+ - **种子数据标注**:使用闭源大模型对一部分种子数据进行多维度打分。
75
+ - **分类器训练与蒸馏**:基于标注数据训练轻量级的 embedding 分类器,使其具备识别高价值数学内容的能力。
76
+ - **全量推理**:使用训练好的分类器对 L1 数据进行全量打分与筛选。
77
+ - *保留*:包含详细解题步骤、数学概念解释、高水平学术讨论的内容。
78
+ - *剔除*:简单的名词堆砌、无意义的数字列表、低幼或非数学领域的噪声。
79
+
80
+ ### L3:精炼数据
81
+
82
+ **目标**:通过改写、合成生成与精炼,生成具有清晰推理链条和显式教学意图的结构化内容,达到教科书级质量标准,确保最大化可学习性。
83
+
84
+ 自然网页数据多为陈述性文本,缺乏结构化的推理步骤和多样化的教学格式。为了增强模型的推理链条(CoT)能力和多轮交互能力,我们通过 [UltraData-Math-Generator](https://huggingface.co/spaces/openbmb/UltraData-Math-L3-Generator) 构建了 L3 精炼数据层:
85
+
86
+ - **Q&A 对生成**:利用高性能模型将陈述性文档改写为"问题-回答"对,构建包含显式推理步骤的 QA 风格数据。
87
+ - **多轮对话合成**:模拟"老师-学生"的辅导场景,生成包含追问、纠错、引导的多轮对话数据。
88
+ - **多风格改写**:将单一来源的数据改写为多种风格(如教科书严谨风格、竞赛解题风格、科普直观风格),提升模型的泛化能力。
89
+ - **知识点教材生成**:基于特定知识点生成系统化的教材类内容,确保模型掌握核心数学概念。
90
+ - **格式修复与增强**:修复源数据中的格式问题(如损坏的 LaTeX 公式、不一致的符号标记),并增强内容连贯性,以达到教科书级质量标准。
91
+
92
+ 基于上述方法,我们最终产出了以下 ***UltraData-Math*** 数据集:
93
+
94
+ | 数据集 | # Tokens | # Documents |
95
+ |:---|:---:|:---:|
96
+ | UltraData-Math-L1 | 170.5B | 85.6M |
97
+ | UltraData-Math-L2-preview | 33.7B | 14.98M |
98
+ | UltraData-Math-L3 | 88B | 81.4M |
99
+
100
+ ## 🚀 快速开始
101
+
102
+ 你可以直接从 Hugging Face 加载数据集:
103
+
104
+ ```python
105
+ from datasets import load_dataset
106
+
107
+ # 加载 UltraData-Math-L1
108
+ ds = load_dataset("openbmb/UltraData-Math", "UltraData-Math-L1")
109
+
110
+ # 加载 UltraData-Math-L2-preview
111
+ ds = load_dataset("openbmb/UltraData-Math", "UltraData-Math-L2-preview")
112
+
113
+ # 加载 UltraData-Math-L3(默认:Conversation-Synthetic)
114
+ ds = load_dataset("openbmb/UltraData-Math", "UltraData-Math-L3-Conversation-Synthetic")
115
+
116
+ # 其他 L3 配置:
117
+ # - UltraData-Math-L3-Multi-Style-Synthetic
118
+ # - UltraData-Math-L3-QA-Synthetic
119
+ # - UltraData-Math-L3-Textbook-Exercise-Synthetic
120
+ ```
121
+
122
+ ## 📈 实验结果
123
+
124
+ 我们使用 **衰减验证(Decay Verification)** 方法评估数据质量:在 **MiniCPM-1.2B** 基座模型(使用 **MiniCPM3-4B** 分词器,预训练 1.3T tokens)上继续训练 **~100B tokens**(30% 目标数据 + 70% 通用数据)。我们使用 [OpenCompass](https://github.com/open-compass/opencompass) 作为评估框架。评估基准包括:
125
+
126
+ - **通用英文:** MMLU、ARC-E、ARC-C、BigBench Hard (BBH)、CommonSenseQA、HellaSwag、OpenbookQA、PIQA、SIQA、Winogrande
127
+ - **通用中文:** C-Eval、CMMLU
128
+ - **数学推理:** MATH500、GSM8K、Math-Bench、R-Bench-Math
129
+ - **代码推理:** MBPP、HumanEval
130
+
131
+ ### L0 解析策略有效性
132
+
133
+ 为公平对比不同解析策略,我们在 **2023-2024** 年分布的数据子集上进行实验。我们使用不同解析器重新解析原始 HTML。该对比展示了我们 **L0 解析器的有效性**。
134
+
135
+ <div align="center">
136
+ <img src="assets/ultradata-math-l0-parser-comparison.png" width="700"/>
137
+ </div>
138
+
139
+
140
+ ### 流水线有效性(L1 vs L2 vs L3)
141
+
142
+ 为验证 L0-L3 分级框架的有效性,我们对使用不同层级 UltraData-Math 训练的模型进行了消融实验。与上文 L0 解析器对比(使用 2023-2024 子集)不同,以下结果基于**全量数据集**。结果表明,更高层级的数据(L3)显著提升了数学推理能力(MATH500、GSM8K)及通用能力。
143
+
144
+ <div align="center">
145
+ <img src="assets/ultradata-math-l1l2l3-comparison.png" width="700"/>
146
+ </div>
147
+
148
+ ### 完整评测结果
149
+
150
+ 为与现有公开数学预训练数据集进行对比,我们使用相同的模型架构和训练预算(~100B tokens)在每个数据集上独立训练模型。基线包括 [Nemotron-CC-Math](https://huggingface.co/datasets/nvidia/Nemotron-CC-Math-v1)、[MegaMath-Web-Pro](https://huggingface.co/datasets/LLM360/MegaMath) 和 [FineMath](https://huggingface.co/datasets/HuggingFaceTB/finemath)。所有模型在相同条件下评估以确保公平对比:
151
+
152
+ <div align="center">
153
+ <img src="assets/ultradata-math-full-comparison.png" width="700"/>
154
+ </div>
155
+
156
+ ## ❤️ 致谢
157
+
158
+ - **L0 解析层**:[magic-html](https://github.com/opendatalab/magic-html)、[w3m](http://w3m.sourceforge.net/)、[trafilatura](https://github.com/adbar/trafilatura)
159
+ - **L3 精炼层**:[Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct)、[Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B)、[GLM-4.5](https://huggingface.co/zai-org/GLM-4.5)
160
+ - **种子数据**:[Nemotron-CC-Math](https://huggingface.co/datasets/nvidia/Nemotron-CC-Math-v1)、[MegaMath](https://huggingface.co/datasets/LLM360/MegaMath)、[FineMath](https://huggingface.co/datasets/HuggingFaceTB/finemath)
161
+
162
+ ## 📖 引用
163
+
164
+ 如果您觉得 **UltraData-Math** 对您的研究有帮助,请考虑引用:
165
+
166
+ ```bibtex
167
+ @misc{ultradata-math,
168
+ title={UltraData-Math},
169
+ author={UltraData Team},
170
+ year={2026},
171
+ url={https://huggingface.co/datasets/openbmb/UltraData-Math},
172
+ publisher={Hugging Face}
173
+ }
174
+ ```
175
+
176
+ ## 📜 许可证
177
+
178
+ 本项目基于 [Apache 2.0](./LICENSE) 许可证发布。
assets/ultradata-math-full-comparison.png ADDED

Git LFS Details

  • SHA256: a6bb63525dd382940346b1c8cf2a4a463d89ce9b196f440d2c20bd047d5585dd
  • Pointer size: 130 Bytes
  • Size of remote file: 41.8 kB
assets/ultradata-math-l0-parser-comparison.png ADDED

Git LFS Details

  • SHA256: e9ff6e5d1bbcc67686d665bf398adabf6cb203b56329fb267bdff4fa18ffac28
  • Pointer size: 130 Bytes
  • Size of remote file: 34.2 kB
assets/ultradata-math-l1l2l3-comparison.png ADDED

Git LFS Details

  • SHA256: b7c6f5a02371032ccb3a1bf16cbe207fc6edcebbc8f0cdfc075574e1d88f8df1
  • Pointer size: 131 Bytes
  • Size of remote file: 148 kB
assets/ultradata-math-logo.png ADDED

Git LFS Details

  • SHA256: e533439e2d2155406d1fead7bf1a882a2cb37dc7b8016690d928667cebcea284
  • Pointer size: 129 Bytes
  • Size of remote file: 8.16 kB
assets/ultradata-math-pipeline.png ADDED

Git LFS Details

  • SHA256: 6b210c0e6c3883aba1ad3a8b1f9ce3957e2c5c0e544a43f1812af8883d092843
  • Pointer size: 131 Bytes
  • Size of remote file: 288 kB
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0001-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd7758b8ca698e659620ae1d28baf4cad13a7844429da5d60c67043d05c56ecb
3
+ size 202350064
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0002-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:844d9a34dc267737c91c0914901a59219795e07969f3967870b78268b264b1ea
3
+ size 204548139
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0003-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d821504b2f929b5680a4508fa5865d6bdb9f23b4b7f4f9c87db30b34bbe64aa7
3
+ size 204518014
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0004-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a427a5a1ec06d5b565fe6e04d19f2bbf9329c8019cfd888349ccddfdfa1e9ec5
3
+ size 203836082
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0005-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05a0a9d24853eb6bfc3140c76bde8e53063b56db01953b6e99322d289863f49f
3
+ size 203771902
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0006-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22cfd096ea29a9d44fe2fe1c86f9e6d6ecc09adda5f25fce7149c605d3aff2ea
3
+ size 200765034
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0007-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32cdef4b15ae8178dcab75afc9031796ebbf112803a3832bf674945b9caa6a07
3
+ size 202404791
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0008-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a001f728c01fc389540df0e5a9e62eb2fee7b00738eef33b1c6e3488a95232fd
3
+ size 202928402
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0009-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6de935c29e502555ed403bde79e28e490af3c28aa1e83978de08516520fb4808
3
+ size 204373369
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0010-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b6b8dcb6ba5eea1bd0319620bd78c25e96cea541d7918f01c7b13faea5999f0
3
+ size 204531204
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0011-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dd40e367342cf159e986aef129a8d4bdf7bec50b0771306283b6fc6b542052c
3
+ size 201537761
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0012-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85aaf9bc0989766ac6a1c154daef6049de81cdb2af3901affd5d0cb0121e2f33
3
+ size 202558687
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0013-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88cacc282df36346e40d1feb30179af350ccabb95af03106f287f93f240daf10
3
+ size 203148612
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0014-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0943a828bf612e1d6e36fb1b73b18476314f312a502b030675a11e37f1b7391f
3
+ size 203152018
data/UltraData-Math-L1/CC-MAIN-2014-15/UltraData-Math-L1-CC-MAIN-2014-15-part-0015-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74cd8483466366830f4c0a656bdac52c3ca44bcb6825ab625ba25c9dba8e821e
3
+ size 205240337
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0001-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d2aefe80069d9438b88b4b5ec1a57936e1f035c889e313b98b8525750050cad
3
+ size 270296834
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0002-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dc82086f500630175a12fe30b3c89647285367440772ccffd0fbd89c4083180
3
+ size 264657628
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0003-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9fc97d097214cb858c267fde7466a424ac46328c0d74ecc5c76a6ddf0302fcf
3
+ size 267040405
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0004-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8004ae5bf034f0657833d02326c44ecd6d760bdcfb072b9f9b3c54d385712313
3
+ size 268957740
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0005-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb154151fdfd7b4aeee7a2edfc6b7b88195fc08b485312c1101104c99ab53ebe
3
+ size 264266962
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0006-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f873b95b2c4923c4a4868df5878f64685525b0830b72b045ad181b8ae9bc9bed
3
+ size 269289395
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0007-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:590129147ee6df2015286afaf3b4d419be7baeaecf75141bfa96b13ac6ce0233
3
+ size 271233497
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0008-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cb88324db373e090acf245ccaf270798c5882f10ee4536344ef7409dbb51abb
3
+ size 266383967
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0009-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d8e01d9dba8a7e9ffa32ff3921765207f46ce793f3210bc3be7f1fb2991ced6
3
+ size 267361875
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0010-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d869185d0a03352dd3526536089b3bee0b172a5158bf9f8bf69ec08d838504dc
3
+ size 265045621
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0011-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9792d13ba76fadfcb23a91e12742b1a4f6990a66e265932260004b7a3ad0ffda
3
+ size 266652597
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0012-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c18a9977b75cd528a63470aff45160388ee4ed24a662ecb4a76a79ac0cbf5916
3
+ size 270130336
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0013-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:618831b2987b810936de76564870113bd600502974b797f84d53a771aef5eb02
3
+ size 273007526
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0014-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:988539d23d927a5a0776e0354b6fd7d2b52b9e9f49ca327f8aba12659fd6a16e
3
+ size 263682237
data/UltraData-Math-L1/CC-MAIN-2014-23/UltraData-Math-L1-CC-MAIN-2014-23-part-0015-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:763d5351561e561e8b605e44c71576a649b39c3c45eb36de2edf51081bb1d626
3
+ size 269083775
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0001-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff1c5faf3d0a9219024914c2253ff2b36817383cd6e8a0f70a15ec496acf8d9b
3
+ size 234556306
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0002-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42d51c8760e7266c79d3e4425029e234220a17d13288be2f202aba8f19a45d29
3
+ size 233996357
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0003-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8501ea70045651edbf3c605500da23df77ad2947a1fcbda39a107b7098cb3e6
3
+ size 231800283
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0004-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36c8801b0b1b923691f8ab2170c613a309a3c619d25af5b113b32960e1945655
3
+ size 235543963
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0005-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:162e63f39dd36e8bd04592ce49eaa8b629789553f62e1ecdb953c240f6333a74
3
+ size 232745686
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0006-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60470d0152ca830081238b92ac13b2d2b07dd7354cf276f36a08535821bae5af
3
+ size 233484144
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0007-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c858df01a97782905ba0e5bbe2ae5aee24e292b38792128548e06cfed450c46
3
+ size 237538921
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0008-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7449e057e9b9c18c87720c6fcfa78788f8f6f6f0fe24ffdf3eab9a5d6e77b892
3
+ size 235220719
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0009-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbdd2b6b88f4bb0ed964e121b1507e9e001b04a4e25f1c6d889e7f21f2c84864
3
+ size 233507056
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0010-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62cae0c0edccbd3989e8fc07c08e1d29792603555c221db2b3eee39bd77e66ee
3
+ size 233692014
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0011-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50f01a9ddc458bed7dbcc0035e6441d83df6d1be0d5ea0069eae6bdfc47ebd15
3
+ size 236381951
data/UltraData-Math-L1/CC-MAIN-2014-35/UltraData-Math-L1-CC-MAIN-2014-35-part-0012-of-15.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:689af43a572e9c8b10bc241c71c36ffbf59db2b76fc36eaa00dad01ce39d700a
3
+ size 233550467