# Apache License # # Copyright 2025 fal - features and labels, inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from diffusers.models import AutoencoderTiny from diffusers.models.modeling_utils import ModelMixin from diffusers.models.autoencoders.vae import EncoderOutput, DecoderOutput from diffusers.configuration_utils import ConfigMixin, register_to_config class Flux2TinyAutoEncoder(ModelMixin, ConfigMixin): @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, latent_channels: int = 128, encoder_block_out_channels: list[int] = [64, 64, 64, 64], decoder_block_out_channels: list[int] = [64, 64, 64, 64], act_fn: str = "silu", upsampling_scaling_factor: int = 2, num_encoder_blocks: list[int] = [1, 3, 3, 3], num_decoder_blocks: list[int] = [3, 3, 3, 1], latent_magnitude: float = 3.0, latent_shift: float = 0.5, force_upcast: bool = False, scaling_factor: float = 0.13025, ) -> None: super().__init__() self.tiny_vae = AutoencoderTiny( in_channels=in_channels, out_channels=out_channels, encoder_block_out_channels=encoder_block_out_channels, decoder_block_out_channels=decoder_block_out_channels, act_fn=act_fn, latent_channels=latent_channels // 4, upsampling_scaling_factor=upsampling_scaling_factor, num_encoder_blocks=num_encoder_blocks, num_decoder_blocks=num_decoder_blocks, latent_magnitude=latent_magnitude, latent_shift=latent_shift, force_upcast=force_upcast, scaling_factor=scaling_factor, ) self.extra_encoder = nn.Conv2d( latent_channels // 4, latent_channels, kernel_size=4, stride=2, padding=1 ) self.extra_decoder = nn.ConvTranspose2d( latent_channels, latent_channels // 4, kernel_size=4, stride=2, padding=1 ) self.residual_encoder = nn.Sequential( nn.Conv2d(latent_channels, latent_channels, kernel_size=3, padding=1), nn.GroupNorm(8, latent_channels), nn.SiLU(), nn.Conv2d(latent_channels, latent_channels, kernel_size=3, padding=1), ) self.residual_decoder = nn.Sequential( nn.Conv2d(latent_channels // 4, latent_channels // 4, kernel_size=3, padding=1), nn.GroupNorm(8, latent_channels // 4), nn.SiLU(), nn.Conv2d(latent_channels // 4, latent_channels // 4, kernel_size=3, padding=1), ) def encode(self, x: torch.Tensor, return_dict: bool = True) -> EncoderOutput: encoded = self.tiny_vae.encode(x, return_dict=False)[0] compressed = self.extra_encoder(encoded) enhanced = self.residual_encoder(compressed) + compressed if return_dict: return EncoderOutput(latent=enhanced) return enhanced def decode(self, z: torch.Tensor, return_dict: bool = True) -> DecoderOutput: decompressed = self.extra_decoder(z) enhanced = self.residual_decoder(decompressed) + decompressed decoded = self.tiny_vae.decode(enhanced, return_dict=False)[0] if return_dict: return DecoderOutput(sample=decoded) return decoded def forward(self, sample: torch.Tensor, return_dict: bool = True) -> DecoderOutput: encoded = self.encode(sample, return_dict=False)[0] decoded = self.decode(encoded, return_dict=False)[0] if return_dict: return DecoderOutput(sample=decoded) return decoded