--- library_name: diffusers license: apache-2.0 datasets: - laion/relaion400m base_model: - black-forest-labs/FLUX.2-dev tags: - tae - taef2 --- # About Tiny AutoEncoder trained on the latent space of [black-forest-labs/FLUX.2-dev](https://huggingface.co/black-forest-labs/FLUX.2-dev)'s autoencoder. Works to convert between latent and image space up to 20x faster and in 28x fewer parameters at the expense of a small amount of quality. Code for this model is available [here](https://huggingface.co/fal/FLUX.2-Tiny-AutoEncoder/blob/main/flux2_tiny_autoencoder.py). # Round-Trip Comparisons | Source | Image | | ------ | ----- | | https://www.pexels.com/photo/mirror-lying-on-open-book-11495792/ | ![compare_autoencoders_1](https://cdn-uploads.huggingface.co/production/uploads/64429aaf7feb866811b12f73/u7ZnjY8FAwu09-iyEC_um.png) | | https://www.pexels.com/photo/brown-hummingbird-selective-focus-photography-1133957/ | ![compare_autoencoders_2](https://cdn-uploads.huggingface.co/production/uploads/64429aaf7feb866811b12f73/ZzvJu3VfrzlvZ7bDDASog.png) | | https://www.pexels.com/photo/person-with-body-painting-1209843/ | ![compare_autoencoders_3](https://cdn-uploads.huggingface.co/production/uploads/64429aaf7feb866811b12f73/B56LPhLYiGT0ffnBVIRbP.png) | # Example Usage ```py import torch import torchvision.transforms.functional as F from PIL import Image from flux2_tiny_autoencoder import Flux2TinyAutoEncoder device = torch.device("cuda") tiny_vae = Flux2TinyAutoEncoder.from_pretrained( "fal/FLUX.2-Tiny-AutoEncoder", ).to(device=device, dtype=torch.bfloat16) pil_image = Image.open("/path/to/image.png") image_tensor = F.to_tensor(pil_image) image_tensor = image_tensor.unsqueeze(0) * 2.0 - 1.0 image_tensor = image_tensor.to(device, dtype=tiny_vae.dtype) with torch.inference_mode(): latents = tiny_vae.encode(image_tensor, return_dict=False) recon = tiny_vae.decode(latents, return_dict=False) recon = recon.squeeze(0).clamp(-1, 1) / 2.0 + 0.5 recon = recon.float().detach().cpu() recon_image = F.to_pil_image(recon) recon_image.save("reconstituted.png") ``` ## Use with Diffusers 🧨 ```py import torch from diffusers import AutoModel, Flux2Pipeline device = torch.device("cuda") tiny_vae = AutoModel.from_pretrained( "fal/FLUX.2-Tiny-AutoEncoder", trust_remote_code=True, torch_dtype=torch.bfloat16 ).to(device) pipe = Flux2Pipeline.from_pretrained( "black-forest-labs/FLUX.2-dev", vae=tiny_vae, torch_dtype=torch.bfloat16 ).to(device) ```