File size: 15,610 Bytes
c6ce1be
 
 
 
 
 
 
 
1a33636
 
 
c6ce1be
 
1a33636
 
 
 
 
9b43eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ce1be
1a33636
 
 
c6ce1be
 
 
59adff8
4dd6467
59adff8
 
919111a
c6ce1be
66a0fa3
c6ce1be
9b43eab
c6ce1be
919111a
3c865c7
1a33636
c6ce1be
1a33636
 
919111a
1a33636
 
 
 
c6ce1be
 
da4bbd1
 
e224ac6
da4bbd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e224ac6
 
da4bbd1
 
 
 
 
 
 
e224ac6
 
 
 
 
 
 
da4bbd1
 
 
e224ac6
 
da4bbd1
 
 
 
 
 
 
e224ac6
da4bbd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ce1be
bcecc9a
 
 
c6ce1be
bcecc9a
 
 
 
c6ce1be
3c865c7
 
919111a
3c865c7
 
 
1a33636
3c865c7
1a33636
 
3c865c7
1a33636
 
3c865c7
1a33636
 
3c865c7
 
1a33636
919111a
1a33636
 
 
 
 
 
c6ce1be
ea73f5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51ec8e9
 
 
 
 
 
 
 
 
 
ea73f5d
 
51ec8e9
ea73f5d
 
 
 
 
 
1a33636
c6ce1be
 
94a1346
 
c6ce1be
94a1346
919111a
c6ce1be
94a1346
919111a
1a33636
3d813dc
94a1346
 
1a33636
94a1346
c6ce1be
94a1346
 
1a33636
331a585
c6ce1be
 
 
 
94a1346
1a33636
 
 
94a1346
1a33636
 
94a1346
 
c6ce1be
94a1346
1a33636
 
 
94a1346
1a33636
94a1346
 
c6ce1be
3c865c7
94a1346
 
1a33636
94a1346
 
 
 
 
 
1a33636
94a1346
 
 
 
1a33636
 
94a1346
 
1a33636
 
94a1346
 
 
1a33636
 
 
 
 
94a1346
 
c6ce1be
 
 
3c865c7
94a1346
 
 
 
 
 
1a33636
94a1346
 
 
 
1a33636
 
94a1346
 
1a33636
 
94a1346
 
 
1a33636
 
 
94a1346
1a33636
94a1346
 
3c865c7
c6ce1be
7f50c64
 
 
 
 
 
 
 
919111a
7f50c64
 
919111a
7f50c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
919111a
7f50c64
 
919111a
7f50c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a33636
c6ce1be
1a33636
c6ce1be
1a33636
 
919111a
1a33636
 
 
 
c6ce1be
0661f94
 
 
 
 
 
 
 
 
 
1a33636
c6ce1be
1a33636
 
919111a
1a33636
c6ce1be
 
 
919111a
1a33636
 
 
 
 
 
 
 
 
 
 
c6ce1be
1a33636
 
 
919111a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
---
library_name: transformers
pipeline_tag: image-text-to-text
license: cc-by-nc-4.0
tags:
- multimodal
- multilingual
- vlm
- vision-language
- qwen3
- siglip2
language:
- en
- zh
- ar
- pt
- ru
- tr
- de
- es
- fr
- it
- ja
- ko
- vi
- th
- id
- hi
- bn
- nl
- pl
- sv
- fi
- da
- "no"
- cs
- el
- he
- uk
- ro
- hu
- multilingual
base_model:
- Qwen/Qwen3-1.7B-Base
- google/siglip2-so400m-patch14-384
inference: false
---

<p align="center">
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
</p>

# jina-vlm: Small Multilingual Vision Language Model

[Blog](https://jina.ai/news/jina-vlm-small-multilingual-vision-language-model/) | API | AWS | Azure | GCP | [Arxiv](https://arxiv.org/abs/2512.04032)

`jina-vlm` is a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. Training data comprises approximately 5M multimodal samples and 12B text tokens across 29 languages, with roughly half in English and the remainder spanning high- and moderate-resource languages.

![jina-vlm architecture](./assets/jvlm_architecture.png)

Built on [Qwen3-1.7B-Base](https://huggingface.co/Qwen/Qwen3-1.7B-Base) with [SigLIP2-So400M](https://huggingface.co/google/siglip2-so400m-patch14-384), it processes images via overlapping tiling with attention-based token pooling that reduces visual tokens by 4x while preserving spatial information. The model achieves the highest average score (72.3) across eight VQA benchmarks while leading on multilingual multimodal understanding (MMMB: 78.8, Multilingual MMBench: 74.3).

| Model | Params | VQA Avg | MMMB | MM-Bench | RealWorld QA |
|-------|--------|---------|------|----------|--------------|
| **jina-vlm** | 2.4B | **72.3** | **78.8** | **74.3** | **68.2** |
| Qwen2-VL-2B | 2.2B | 66.4 | 71.3 | 69.4 | 62.9 |
| Qwen3-VL-2B | 2.2B | 71.6 | 75.0 | 72.3 | 63.9 |
| InternVL3-2B | 2.2B | 69.2 | 73.6 | 71.9 | 64.3 |
| InternVL3.5-2B | 2.2B | 71.6 | 74.6 | 70.9 | 62.0 |


## Via Jina API

We provide an OpenAI-compatible API at `https://api-beta-vlm.jina.ai`. All requests require a Jina API key in the Authorization header, get your API key at [jina.ai](https://jina.ai).


### Image from URL

| Format | Example |
|--------|---------|
| HTTP/HTTPS URL | `https://example.com/image.jpg` |
| Base64 data URI | `...` |

```bash
curl https://api-beta-vlm.jina.ai/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $JINA_API_KEY" \
  -d '{
    "model": "jina-vlm",
    "messages": [{
      "role": "user",
      "content": [
        {"type": "text", "text": "Describe this image"},
        {"type": "image_url", "image_url": {"url": "https://example.com/photo.jpg"}}
      ]
    }]
  }'
```


### Local image (base64)

```bash
curl https://api-beta-vlm.jina.ai/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $JINA_API_KEY" \
  -d '{
    "model": "jina-vlm",
    "messages": [{
      "role": "user",
      "content": [
        {"type": "text", "text": "What is in this image?"},
        {"type": "image_url", "image_url": {"url": "data:image/jpeg;base64,'$(base64 -i image.jpg)'"}}
      ]
    }]
  }'
```


### Text-only query

```bash
curl https://api-beta-vlm.jina.ai/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $JINA_API_KEY" \
  -d '{
    "model": "jina-vlm",
    "messages": [{"role": "user", "content": "What is the capital of France?"}]
  }'
```

### Streaming response

Add `"stream": true` to receive tokens as they're generated:

```bash
curl https://api-beta-vlm.jina.ai/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $JINA_API_KEY" \
  -d '{
    "model": "jina-vlm",
    "stream": true,
    "messages": [{"role": "user", "content": "Write a haiku about coding"}]
  }'
```

When the service is cold starting, you'll receive:

```json
{
  "error": {
    "message": "Model is loading, please retry in 30-60 seconds. Cold start takes ~30s after the service scales up.",
    "code": 503
  }
}
```

Simply retry your request after waiting.


## Local Installation

```bash
uv sync
```

For CUDA users with FlashAttention2 support:
```bash
uv sync --extra flash-attn
```

### Using the CLI

You can directly chat with `jina-vlm` using the `infer.py` CLI:

```bash
# Single image
python infer.py -i image.jpg -p "What's in this image?"

# Streaming output
python infer.py -i image.jpg -p "Describe this image" --stream

# Multiple images
python infer.py -i img1.jpg -i img2.jpg -p "Compare these images"

# Text-only
python infer.py -p "What is the capital of France?"
```

**Options:**
- `-m, --model`: Model path. Auto-detects local repo (if `config.json` exists) or falls back to `jinaai/jina-vlm` from HuggingFace.
- `-i, --image`: Image path, URL, or glob pattern (can specify multiple times).
- `-p, --prompt`: Text prompt (can specify multiple times).
- `--max-crops`: Maximum crops (default: 12).
- `--max-tokens`: Maximum output tokens (default: 1024).
- `--max-pixels`: Max pixels per image, larger images are resized preserving aspect ratio.
- `--stream`: Enable streaming output.

**Example:**

```bash
python infer.py -i assets/the_persistence_of_memory.jpg -p "Describe this picture"
```

<table>
<tr>
<td width="40%"><b>Input</b></td>
<td width="60%"><b>Output</b></td>
</tr>
<tr>
<td><img src="./assets/the_persistence_of_memory.jpg" width="100%"></td>
<td>

```
* Conversation 1/1
├── 🖼️Images: ['the_persistence_of_memory.jpg']
├── 📜Prompt: Describe this picture
└── 🧠Response: This image is a surreal painting
by Salvador Dalí, titled "The Persistence of
Memory." It features a dreamlike landscape with
a variety of melting clocks and other objects.
The central focus is a melting clock with a blue
face and yellow hands, which is hanging from a
branch...

Token usage: 1753 tokens (4.3%)
Generated in 8.68s | 20.04 tok/s
```

</td>
</tr>
</table>

### Using Transformers

```python
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig

processor = AutoProcessor.from_pretrained(
    'jinaai/jina-vlm', use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
    'jinaai/jina-vlm',
    device_map='auto',
    trust_remote_code=True
)

image = 'https://picsum.photos/800/600'
conversation = [
    {
        'role': 'user',
        'content': [
            {'type': 'image', 'image': image},
            {'type': 'text', 'text': 'Describe this image'},
        ],
    }
]

text = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=[text], images=[image], padding='longest', return_tensors='pt')
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}

output = model.generate(
    **inputs,
    generation_config=GenerationConfig(max_new_tokens=512, do_sample=False),
    return_dict_in_generate=True,
    use_model_defaults=True,
)

response = processor.tokenizer.decode(
    output.sequences[0][inputs['input_ids'].shape[-1]:],
    skip_special_tokens=True
)
print(response)
```

<details>
<summary>Multi-image inference</summary>

```python
images = ['https://picsum.photos/id/1/800/600', 'https://picsum.photos/id/2/800/600']
conversation = [
    {
        'role': 'user',
        'content': [
            {'type': 'image', 'image': images[0]},
            {'type': 'image', 'image': images[1]},
            {'type': 'text', 'text': 'What is the difference between these images?'},
        ],
    }
]
text = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=[text], images=images, padding='longest', return_tensors='pt')
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}

output = model.generate(
    **inputs,
    generation_config=GenerationConfig(max_new_tokens=512, do_sample=False),
    return_dict_in_generate=True,
    use_model_defaults=True,
)
response = processor.tokenizer.decode(
    output.sequences[0][inputs['input_ids'].shape[-1]:],
    skip_special_tokens=True
)
print(response)
```

</details>

<details>
<summary>Text-only inference</summary>

```python
conversation = [
    {
        'role': 'user',
        'content': [
            {'type': 'text', 'text': 'Explain quantum computing in simple terms'},
        ],
    }
]
text = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=[text], padding='longest', return_tensors='pt')
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}

output = model.generate(
    **inputs,
    generation_config=GenerationConfig(max_new_tokens=512, do_sample=False),
    return_dict_in_generate=True,
    use_model_defaults=True,
)
response = processor.tokenizer.decode(
    output.sequences[0][inputs['input_ids'].shape[-1]:],
    skip_special_tokens=True
)
print(response)
```

</details>

<details>
<summary>Batch inference</summary>

```python
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig

processor = AutoProcessor.from_pretrained(
    'jinaai/jina-vlm', use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
    'jinaai/jina-vlm',
    device_map='auto',
    torch_dtype=torch.bfloat16,
    attn_implementation='flash_attention_2',
    trust_remote_code=True
)

images = [
    'https://picsum.photos/id/22/800/600',
    'https://picsum.photos/id/49/800/600'
]
conversations = [
    [
        {
            'role': 'user',
            'content': [
                {'type': 'image', 'image': images[0]},
                {'type': 'text', 'text': 'What is the man doing in this image?'},
            ],
        }
    ],
    [
        {
            'role': 'user',
            'content': [
                {'type': 'image', 'image': images[1]},
                {'type': 'text', 'text': 'What country\'s flag is in this image?'},
            ],
        }
    ],
]

texts = processor.apply_chat_template(conversations, add_generation_prompt=True)
inputs = processor(text=texts, images=images, padding='longest', return_tensors='pt')
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}

output = model.generate(
    **inputs,
    generation_config=GenerationConfig(max_new_tokens=512, do_sample=False),
    return_dict_in_generate=True,
    use_model_defaults=True,
)

for idx in range(len(output.sequences)):
    gen_ids = output.sequences[idx][inputs['input_ids'].shape[-1]:]
    response = processor.tokenizer.decode(gen_ids, skip_special_tokens=True)
    print(f"Response {idx+1}: {response}")
```

</details>

<details>
<summary>Batch inference with mixed examples</summary>

```python
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig

processor = AutoProcessor.from_pretrained(
    'jinaai/jina-vlm', use_fast=False, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
    'jinaai/jina-vlm',
    device_map='auto',
    torch_dtype=torch.bfloat16,
    attn_implementation='flash_attention_2',
    trust_remote_code=True
)

images = [
    ['https://picsum.photos/id/22/800/600'],
    ['https://picsum.photos/id/49/800/600'],
    ['https://picsum.photos/id/0/800/600', 'https://picsum.photos/id/2/800/600'],
    [],
]
conversations = [
    [
        {
            'role': 'user',
            'content': [
                {'type': 'image', 'image': images[0][0]},
                {'type': 'text', 'text': 'What is the man doing in this image?'},
            ],
        }
    ],
    [
        {
            'role': 'user',
            'content': [
                {'type': 'image', 'image': images[1][0]},
                {'type': 'text', 'text': 'What country\'s flag is in this image?'},
            ],
        }
    ],
    [
        {
            'role': 'user',
            'content': [
                {'type': 'image', 'image': images[2][0]},
                {'type': 'image', 'image': images[2][1]},
                {'type': 'text', 'text': 'What is the difference between these two images?'},
            ],
        }
    ],
    [
        {
            'role': 'user',
            'content': [
                {'type': 'text', 'text': 'Describe the concept of polymorphism in Computer Science'},
            ],
        }
    ],
]

texts = processor.apply_chat_template(conversations, add_generation_prompt=True)
inputs = processor(text=texts, images=images, padding='longest', return_tensors='pt')
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}

output = model.generate(
    **inputs,
    generation_config=GenerationConfig(max_new_tokens=512, do_sample=False),
    return_dict_in_generate=True,
    use_model_defaults=True,
)

for idx in range(len(output.sequences)):
    gen_ids = output.sequences[idx][inputs['input_ids'].shape[-1]:]
    response = processor.tokenizer.decode(gen_ids, skip_special_tokens=True)
    print(f"Response {idx+1}: {response}")
```

</details>

## Evaluation

### Multilingual Understanding

| Model | MMMB ar | MMMB cn | MMMB en | MMMB avg | MMBench avg | Overall |
|-------|---------|---------|---------|----------|-------------|---------|
| **jina-vlm** | **76.9** | **80.0** | **82.0** | **78.8** | **74.3** | **59.6** |
| Qwen2-VL-2B | 68.3 | 74.2 | 78.3 | 71.3 | 69.4 | 53.8 |
| Qwen3-VL-2B | 72.7 | 75.7 | 80.7 | 75.0 | 72.3 | 58.2 |
| InternVL3-2B | 68.6 | 78.3 | 81.9 | 73.6 | 71.9 | 57.4 |
| InternVL3.5-2B | 68.5 | 77.7 | 80.2 | 74.6 | 70.9 | 58.0 |

### General VQA Tasks

| Model | AI2D | ChartQA | TextVQA | DocVQA | InfoVQA | OCRBench | SEED-2+ | CharXiv | Avg |
|-------|------|---------|---------|--------|---------|----------|---------|---------|-----|
| **jina-vlm** | **82.0** | **81.9** | **83.2** | 90.6 | 71.6 | 778 | 67.2 | **32.3**/63.5 | **72.3** |
| Qwen2-VL-2B | 74.7 | 73.5 | 79.7 | 89.2 | 64.0 | 809 | 62.4 | 23.3/55.0 | 66.4 |
| Qwen3-VL-2B | 76.9 | 77.2 | 79.5 | **92.3** | **71.9** | **858** | 67.3 | 28.8/62.3 | 71.6 |
| InternVL3-2B | 78.6 | 80.2 | 77.0 | 87.4 | 67.1 | 835 | 64.6 | 28.3/54.7 | 69.2 |
| InternVL3.5-2B | 78.8 | 80.7 | 76.5 | 88.5 | 69.3 | 836 | **68.0** | 31.6/**65.0** | 71.6 |

### Text-Only Performance

| Model | MMLU | MMLU-Pro | GSM-8K | ARC-C | HellaSwag |
|-------|------|----------|--------|-------|-----------|
| **jina-vlm** | 56.1 | **30.3** | 71.3 | **77.3** | **59.4** |
| Qwen3-1.7B | **62.6** | 46.4 | **75.3** | 73.4 | 59.0 |

## Citation

If you find `jina-vlm` useful in your research, please cite our [technical report](https://arxiv.org/abs/2512.04032):

```bibtex
@misc{koukounas2025jinavlm,
    title={Jina-VLM: Small Multilingual Vision Language Model},
    author={Andreas Koukounas and Georgios Mastrapas and Florian Hönicke and Sedigheh Eslami and Guillaume Roncari and Scott Martens and Han Xiao},
    year={2025},
    eprint={2512.04032},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    url={https://arxiv.org/abs/2512.04032},
}
```

## License

`jina-vlm` is licensed under CC BY-NC 4.0. For commercial usage inquiries, feel free to [contact us](https://jina.ai/contact-sales/).