File size: 13,039 Bytes
131e609 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
MODEL = "bigcode/starcoderbase-1b" # Model checkpoint on the Hugging Face Hub
DATASET = "smangrul/hf-stack-v1" # Dataset on the Hugging Face Hub
DATA_COLUMN = "content" # Column name containing the code content
SEQ_LENGTH = 2048 # Sequence length
MAX_STEPS = 2000 # max_steps
BATCH_SIZE = 8 # batch_size
GR_ACC_STEPS = 1 # gradient_accumulation_steps
LR = 5e-4 # learning_rate
LR_SCHEDULER_TYPE = "cosine" # lr_scheduler_type
WEIGHT_DECAY = 0.01 # weight_decay
NUM_WARMUP_STEPS = 30 # num_warmup_steps
EVAL_FREQ = 100 # eval_freq
SAVE_FREQ = 100 # save_freq
LOG_FREQ = 25 # log_freq
OUTPUT_DIR = "peft-starcoder-lora-a100" # output_dir
BF16 = False # bf16
FP16 = False # no_fp16
# FIM trasformations arguments
FIM_RATE = 0.5 # fim_rate
FIM_SPM_RATE = 0.5 # fim_spm_rate
# LORA
LORA_R = 8 # lora_r
LORA_ALPHA = 32 # lora_alpha
LORA_DROPOUT = 0.0 # lora_dropout
LORA_TARGET_MODULES = "c_proj,c_attn,q_attn,c_fc,c_proj" # lora_target_modules
# bitsandbytes config
#USE_NESTED_QUANT = True # use_nested_quant
#BNB_4BIT_COMPUTE_DTYPE = "bfloat16" # bnb_4bit_compute_dtype
SEED = 0
from huggingface_hub import login
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
Trainer,
TrainingArguments,
logging,
set_seed,
BitsAndBytesConfig,
)
from datasets import load_dataset
import torch
from tqdm import tqdm
#Prepare Data
dataset = load_dataset(
DATASET,
data_dir="data",
split="train",
streaming=True,
)
valid_data = dataset.take(4000)
train_data = dataset.skip(4000)
train_data = train_data.shuffle(buffer_size=5000, seed=SEED)
set_seed(SEED)
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
def chars_token_ratio(dataset, tokenizer, data_column, nb_examples=400):
"""
Estimate the average number of characters per token in the dataset.
"""
total_characters, total_tokens = 0, 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
total_characters += len(example[data_column])
total_tokens += len(tokenizer(example[data_column]).tokens())
return total_characters / total_tokens
chars_per_token = chars_token_ratio(train_data, tokenizer, DATA_COLUMN)
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
import functools
import numpy as np
# Helper function to get token ids of the special tokens for prefix, suffix and middle for FIM transformations.
@functools.lru_cache(maxsize=None)
def get_fim_token_ids(tokenizer):
try:
FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD = tokenizer.special_tokens_map["additional_special_tokens"][1:5]
suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = (
tokenizer.vocab[tok] for tok in [FIM_SUFFIX, FIM_PREFIX, FIM_MIDDLE, FIM_PAD]
)
except KeyError:
suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = None, None, None, None
return suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id
## Adapted from https://github.com/bigcode-project/Megatron-LM/blob/6c4bf908df8fd86b4977f54bf5b8bd4b521003d1/megatron/data/gpt_dataset.py
def permute(
sample,
np_rng,
suffix_tok_id,
prefix_tok_id,
middle_tok_id,
pad_tok_id,
fim_rate=0.5,
fim_spm_rate=0.5,
truncate_or_pad=False,
):
"""
Take in a sample (list of tokens) and perform a FIM transformation on it with a probability of fim_rate, using two FIM modes:
PSM and SPM (with a probability of fim_spm_rate).
"""
# The if condition will trigger with the probability of fim_rate
# This means FIM transformations will apply to samples with a probability of fim_rate
if np_rng.binomial(1, fim_rate):
# Split the sample into prefix, middle, and suffix, based on randomly generated indices stored in the boundaries list.
boundaries = list(np_rng.randint(low=0, high=len(sample) + 1, size=2))
boundaries.sort()
prefix = np.array(sample[: boundaries[0]], dtype=np.int64)
middle = np.array(sample[boundaries[0] : boundaries[1]], dtype=np.int64)
suffix = np.array(sample[boundaries[1] :], dtype=np.int64)
if truncate_or_pad:
# calculate the new total length of the sample, taking into account tokens indicating prefix, middle, and suffix
new_length = suffix.shape[0] + prefix.shape[0] + middle.shape[0] + 3
diff = new_length - len(sample)
# trancate or pad if there's a difference in length between the new length and the original
if diff > 0:
if suffix.shape[0] <= diff:
return sample, np_rng
suffix = suffix[: suffix.shape[0] - diff]
elif diff < 0:
suffix = np.concatenate([suffix, np.full((-1 * diff), pad_tok_id)])
# With the probability of fim_spm_rateapply SPM variant of FIM transformations
# SPM: suffix, prefix, middle
if np_rng.binomial(1, fim_spm_rate):
new_sample = np.concatenate(
[
[prefix_tok_id, suffix_tok_id],
suffix,
[middle_tok_id],
prefix,
middle,
]
)
# Otherwise, apply the PSM variant of FIM transformations
# PSM: prefix, suffix, middle
else:
new_sample = np.concatenate(
[
[prefix_tok_id],
prefix,
[suffix_tok_id],
suffix,
[middle_tok_id],
middle,
]
)
else:
# don't apply FIM transformations
new_sample = sample
return list(new_sample), np_rng
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
import random
# Create an Iterable dataset that returns constant-length chunks of tokens from a stream of text files.
class ConstantLengthDataset(IterableDataset):
"""
Iterable dataset that returns constant length chunks of tokens from stream of text files.
Args:
tokenizer (Tokenizer): The processor used for proccessing the data.
dataset (dataset.Dataset): Dataset with text files.
infinite (bool): If True the iterator is reset after dataset reaches end else stops.
seq_length (int): Length of token sequences to return.
num_of_sequences (int): Number of token sequences to keep in buffer.
chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.
fim_rate (float): Rate (0.0 to 1.0) that sample will be permuted with FIM.
fim_spm_rate (float): Rate (0.0 to 1.0) of FIM permuations that will use SPM.
seed (int): Seed for random number generator.
"""
def __init__(
self,
tokenizer,
dataset,
infinite=False,
seq_length=1024,
num_of_sequences=1024,
chars_per_token=3.6,
content_field="content",
fim_rate=0.5,
fim_spm_rate=0.5,
seed=0,
):
self.tokenizer = tokenizer
self.concat_token_id = tokenizer.eos_token_id
self.dataset = dataset
self.seq_length = seq_length
self.infinite = infinite
self.current_size = 0
self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
self.content_field = content_field
self.fim_rate = fim_rate
self.fim_spm_rate = fim_spm_rate
self.seed = seed
(
self.suffix_tok_id,
self.prefix_tok_id,
self.middle_tok_id,
self.pad_tok_id,
) = get_fim_token_ids(self.tokenizer)
if not self.suffix_tok_id and self.fim_rate > 0:
print("FIM is not supported by tokenizer, disabling FIM")
self.fim_rate = 0
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
np_rng = np.random.RandomState(seed=self.seed)
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.max_buffer_size:
break
try:
buffer.append(next(iterator)[self.content_field])
buffer_len += len(buffer[-1])
except StopIteration:
if self.infinite:
iterator = iter(self.dataset)
else:
more_examples = False
break
tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"]
all_token_ids = []
for tokenized_input in tokenized_inputs:
# optionally do FIM permutations
if self.fim_rate > 0:
tokenized_input, np_rng = permute(
tokenized_input,
np_rng,
self.suffix_tok_id,
self.prefix_tok_id,
self.middle_tok_id,
self.pad_tok_id,
fim_rate=self.fim_rate,
fim_spm_rate=self.fim_spm_rate,
truncate_or_pad=False,
)
all_token_ids.extend(tokenized_input + [self.concat_token_id])
examples = []
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]
if len(input_ids) == self.seq_length:
examples.append(input_ids)
random.shuffle(examples)
for example in examples:
self.current_size += 1
yield {
"input_ids": torch.LongTensor(example),
"labels": torch.LongTensor(example),
}
train_dataset = ConstantLengthDataset(
tokenizer,
train_data,
infinite=True,
seq_length=SEQ_LENGTH,
chars_per_token=chars_per_token,
content_field=DATA_COLUMN,
fim_rate=FIM_RATE,
fim_spm_rate=FIM_SPM_RATE,
seed=SEED,
)
eval_dataset = ConstantLengthDataset(
tokenizer,
valid_data,
infinite=False,
seq_length=SEQ_LENGTH,
chars_per_token=chars_per_token,
content_field=DATA_COLUMN,
fim_rate=FIM_RATE,
fim_spm_rate=FIM_SPM_RATE,
seed=SEED,
)
import torch
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from peft.tuners.lora import LoraLayer
#load_in_8bit = False
# 4-bit quantization
#compute_dtype = getattr(torch, BNB_4BIT_COMPUTE_DTYPE)
#compute_float32 = torch.float32
#bnb_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype=compute_float32,
# bnb_4bit_use_double_quant=USE_NESTED_QUANT,
# bnb_4bit_quant_storage=compute_float32
#)
#import os
#device_map = int(os.environ.get("LOCAL_RANK", -1))
model = AutoModelForCausalLM.from_pretrained(
MODEL,
#quantization_config=bnb_config,
device_map=None,
use_cache=False, # We will be using gradient checkpointing
trust_remote_code=True,
torch_dtype = torch.float32,
)
#from collections import Counter
#print(Counter(p.dtype for p in model.parameters()))
#model = prepare_model_for_kbit_training(model)
#from collections import Counter
#print("after prepare_model_for_kbit_training ", Counter(p.dtype for p in model.parameters()))
peft_config = LoraConfig(
lora_alpha=LORA_ALPHA,
lora_dropout=LORA_DROPOUT,
r=LORA_R,
bias="none",
task_type="CAUSAL_LM",
target_modules=LORA_TARGET_MODULES.split(","),
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
#from collections import Counter
#print("after get_peft_model ", Counter(p.dtype for p in model.parameters()))
train_data.start_iteration = 0
training_args = TrainingArguments(
output_dir=f"limernyou/{OUTPUT_DIR}",
dataloader_drop_last=True,
eval_strategy="steps",
save_strategy="steps",
max_steps=MAX_STEPS,
eval_steps=EVAL_FREQ,
save_steps=SAVE_FREQ,
logging_steps=LOG_FREQ,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
learning_rate=LR,
lr_scheduler_type=LR_SCHEDULER_TYPE,
warmup_steps=NUM_WARMUP_STEPS,
gradient_accumulation_steps=GR_ACC_STEPS,
gradient_checkpointing_kwargs={"use_reentrant": False},
gradient_checkpointing=True,
fp16=FP16,
bf16=BF16,
weight_decay=WEIGHT_DECAY,
push_to_hub=True,
include_tokens_per_second=True,
)
#from trl import SFTConfig, SFTTrainer
trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset)
print("Training...")
trainer.train()
trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT")
trainer.save_model()
trainer.push_to_hub() |