Update with 51K dataset - 98.6% accuracy
Browse files- README.md +29 -206
- adapter_config.json +4 -4
- adapter_model.safetensors +2 -2
- training_config.json +13 -13
README.md
CHANGED
|
@@ -1,242 +1,65 @@
|
|
| 1 |
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
language:
|
| 4 |
- en
|
| 5 |
-
- es
|
| 6 |
-
- fr
|
| 7 |
-
- de
|
| 8 |
-
- zh
|
| 9 |
- ja
|
| 10 |
-
-
|
| 11 |
-
- ar
|
| 12 |
-
- pt
|
| 13 |
-
- ru
|
| 14 |
-
- hi
|
| 15 |
- multilingual
|
| 16 |
-
|
| 17 |
tags:
|
| 18 |
-
- text-classification
|
| 19 |
- feedback-detection
|
| 20 |
- user-satisfaction
|
| 21 |
- mmbert
|
| 22 |
-
- modernbert
|
| 23 |
-
- multilingual
|
| 24 |
- lora
|
| 25 |
- peft
|
| 26 |
-
|
| 27 |
datasets:
|
| 28 |
- llm-semantic-router/feedback-detector-dataset
|
| 29 |
metrics:
|
| 30 |
- accuracy
|
| 31 |
- f1
|
| 32 |
-
base_model: jhu-clsp/mmBERT-base
|
| 33 |
-
pipeline_tag: text-classification
|
| 34 |
-
model-index:
|
| 35 |
-
- name: mmbert-feedback-detector-lora
|
| 36 |
-
results:
|
| 37 |
-
- task:
|
| 38 |
-
type: text-classification
|
| 39 |
-
name: User Feedback Classification
|
| 40 |
-
dataset:
|
| 41 |
-
name: feedback-detector-dataset
|
| 42 |
-
type: llm-semantic-router/feedback-detector-dataset
|
| 43 |
-
metrics:
|
| 44 |
-
- type: accuracy
|
| 45 |
-
value: 0.9689
|
| 46 |
-
name: Accuracy
|
| 47 |
-
- type: f1
|
| 48 |
-
value: 0.9688
|
| 49 |
-
name: F1 Macro
|
| 50 |
---
|
| 51 |
|
| 52 |
-
# mmBERT Feedback Detector (LoRA
|
| 53 |
-
|
| 54 |
-
A **multilingual** 4-class user feedback classifier built on [jhu-clsp/mmBERT-base](https://huggingface.co/jhu-clsp/mmBERT-base). This is the **LoRA adapter** version for parameter-efficient fine-tuning and inference.
|
| 55 |
|
| 56 |
-
|
| 57 |
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
### Labels
|
| 63 |
-
|
| 64 |
-
| Label | ID | Description |
|
| 65 |
-
|-------|-----|-------------|
|
| 66 |
-
| `SAT` | 0 | User is satisfied with the response |
|
| 67 |
-
| `NEED_CLARIFICATION` | 1 | User needs more explanation or clarification |
|
| 68 |
-
| `WRONG_ANSWER` | 2 | User indicates the response is incorrect |
|
| 69 |
-
| `WANT_DIFFERENT` | 3 | User wants alternative options or different response |
|
| 70 |
-
|
| 71 |
-
## Performance
|
| 72 |
-
|
| 73 |
-
| Metric | Score |
|
| 74 |
|--------|-------|
|
| 75 |
-
| **Accuracy** |
|
| 76 |
-
| **F1 Macro** |
|
| 77 |
-
|
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
| Class | F1 Score |
|
| 82 |
-
|-------|----------|
|
| 83 |
-
| SAT | 100.0% |
|
| 84 |
-
| NEED_CLARIFICATION | 99.7% |
|
| 85 |
-
| WRONG_ANSWER | 94.0% |
|
| 86 |
-
| WANT_DIFFERENT | 93.8% |
|
| 87 |
|
| 88 |
-
##
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
| **Target Modules** | query, key, value, dense |
|
| 95 |
-
| **Dropout** | 0.1 |
|
| 96 |
-
| **Trainable Params** | 3.38M (1.09%) |
|
| 97 |
-
| **Total Params** | 310.9M |
|
| 98 |
|
| 99 |
-
##
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
| 🇪🇸 Spanish | 100% |
|
| 107 |
-
| 🇫🇷 French | 100% |
|
| 108 |
-
| 🇩🇪 German | 100% |
|
| 109 |
-
| 🇨🇳 Chinese | 100% |
|
| 110 |
-
| 🇯🇵 Japanese | 100% |
|
| 111 |
-
| 🇰🇷 Korean | 100% |
|
| 112 |
-
| 🇸🇦 Arabic | 100% |
|
| 113 |
|
| 114 |
## Usage
|
| 115 |
|
| 116 |
-
### With PEFT
|
| 117 |
-
|
| 118 |
-
```python
|
| 119 |
-
from peft import PeftModel, PeftConfig
|
| 120 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 121 |
-
import torch
|
| 122 |
-
|
| 123 |
-
# Load base model and LoRA adapter
|
| 124 |
-
base_model_name = "jhu-clsp/mmBERT-base"
|
| 125 |
-
adapter_name = "llm-semantic-router/mmbert-feedback-detector-lora"
|
| 126 |
-
|
| 127 |
-
# Load tokenizer
|
| 128 |
-
tokenizer = AutoTokenizer.from_pretrained(adapter_name)
|
| 129 |
-
|
| 130 |
-
# Load base model
|
| 131 |
-
base_model = AutoModelForSequenceClassification.from_pretrained(
|
| 132 |
-
base_model_name,
|
| 133 |
-
num_labels=4,
|
| 134 |
-
trust_remote_code=True
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
# Load LoRA adapter
|
| 138 |
-
model = PeftModel.from_pretrained(base_model, adapter_name)
|
| 139 |
-
model.eval()
|
| 140 |
-
|
| 141 |
-
# Classify feedback
|
| 142 |
-
text = "Thanks, that's exactly what I needed!"
|
| 143 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 144 |
-
|
| 145 |
-
with torch.no_grad():
|
| 146 |
-
outputs = model(**inputs)
|
| 147 |
-
probs = torch.softmax(outputs.logits, dim=-1)
|
| 148 |
-
pred = probs.argmax().item()
|
| 149 |
-
|
| 150 |
-
labels = ["SAT", "NEED_CLARIFICATION", "WRONG_ANSWER", "WANT_DIFFERENT"]
|
| 151 |
-
print(f"Prediction: {labels[pred]} ({probs[0][pred]:.1%})")
|
| 152 |
-
```
|
| 153 |
-
|
| 154 |
-
### Merge and Save
|
| 155 |
-
|
| 156 |
```python
|
|
|
|
| 157 |
from peft import PeftModel
|
| 158 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 159 |
|
| 160 |
-
|
| 161 |
-
base_model = AutoModelForSequenceClassification.from_pretrained(
|
| 162 |
-
"jhu-clsp/mmBERT-base",
|
| 163 |
-
num_labels=4,
|
| 164 |
-
trust_remote_code=True
|
| 165 |
-
)
|
| 166 |
model = PeftModel.from_pretrained(base_model, "llm-semantic-router/mmbert-feedback-detector-lora")
|
| 167 |
-
merged_model = model.merge_and_unload()
|
| 168 |
-
|
| 169 |
-
# Save merged model
|
| 170 |
-
merged_model.save_pretrained("./merged_model")
|
| 171 |
tokenizer = AutoTokenizer.from_pretrained("llm-semantic-router/mmbert-feedback-detector-lora")
|
| 172 |
-
tokenizer.save_pretrained("./merged_model")
|
| 173 |
-
```
|
| 174 |
-
|
| 175 |
-
### Continue Fine-tuning
|
| 176 |
-
|
| 177 |
-
```python
|
| 178 |
-
from peft import PeftModel, get_peft_model, LoraConfig
|
| 179 |
-
from transformers import AutoModelForSequenceClassification
|
| 180 |
-
|
| 181 |
-
# Load existing adapter
|
| 182 |
-
base_model = AutoModelForSequenceClassification.from_pretrained(
|
| 183 |
-
"jhu-clsp/mmBERT-base",
|
| 184 |
-
num_labels=4,
|
| 185 |
-
trust_remote_code=True
|
| 186 |
-
)
|
| 187 |
-
model = PeftModel.from_pretrained(base_model, "llm-semantic-router/mmbert-feedback-detector-lora")
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
```
|
| 193 |
-
|
| 194 |
-
## Training Details
|
| 195 |
-
|
| 196 |
-
- **Base Model**: [jhu-clsp/mmBERT-base](https://huggingface.co/jhu-clsp/mmBERT-base)
|
| 197 |
-
- **Method**: LoRA (Low-Rank Adaptation)
|
| 198 |
-
- **LoRA Rank**: 16
|
| 199 |
-
- **LoRA Alpha**: 32
|
| 200 |
-
- **Learning Rate**: 2e-5
|
| 201 |
-
- **Batch Size**: 32
|
| 202 |
-
- **Epochs**: 5
|
| 203 |
-
- **Max Length**: 512
|
| 204 |
-
- **Dataset**: [llm-semantic-router/feedback-detector-dataset](https://huggingface.co/datasets/llm-semantic-router/feedback-detector-dataset)
|
| 205 |
-
|
| 206 |
-
## Use Cases
|
| 207 |
-
|
| 208 |
-
- **Conversational AI**: Understand if users are satisfied with chatbot responses
|
| 209 |
-
- **Customer Support**: Route dissatisfied users to human agents
|
| 210 |
-
- **Quality Monitoring**: Track response quality across languages
|
| 211 |
-
- **Feedback Analysis**: Categorize user feedback automatically
|
| 212 |
-
- **Continued Fine-tuning**: Adapt to domain-specific feedback patterns
|
| 213 |
-
|
| 214 |
-
## Advantages of LoRA
|
| 215 |
-
|
| 216 |
-
- **Storage Efficient**: Only ~13MB adapter vs ~1.2GB full model
|
| 217 |
-
- **Fast Training**: Train in minutes on consumer GPUs
|
| 218 |
-
- **Composable**: Stack with other adapters
|
| 219 |
-
- **Base Model Updates**: Benefit from base model improvements
|
| 220 |
-
|
| 221 |
-
## Related Models
|
| 222 |
-
|
| 223 |
-
- [llm-semantic-router/mmbert-feedback-detector-merged](https://huggingface.co/llm-semantic-router/mmbert-feedback-detector-merged) - Merged version
|
| 224 |
-
- [llm-semantic-router/mmbert-intent-classifier-lora](https://huggingface.co/llm-semantic-router/mmbert-intent-classifier-lora) - Intent classification
|
| 225 |
-
- [llm-semantic-router/mmbert-fact-check-lora](https://huggingface.co/llm-semantic-router/mmbert-fact-check-lora) - Fact checking
|
| 226 |
-
- [llm-semantic-router/mmbert-jailbreak-detector-lora](https://huggingface.co/llm-semantic-router/mmbert-jailbreak-detector-lora) - Security
|
| 227 |
-
|
| 228 |
-
## Citation
|
| 229 |
-
|
| 230 |
-
```bibtex
|
| 231 |
-
@misc{mmbert-feedback-detector-lora,
|
| 232 |
-
title={mmBERT Feedback Detector LoRA Adapter},
|
| 233 |
-
author={vLLM Semantic Router Team},
|
| 234 |
-
year={2025},
|
| 235 |
-
publisher={Hugging Face},
|
| 236 |
-
url={https://huggingface.co/llm-semantic-router/mmbert-feedback-detector-lora}
|
| 237 |
-
}
|
| 238 |
-
```
|
| 239 |
-
|
| 240 |
-
## License
|
| 241 |
-
|
| 242 |
-
Apache 2.0
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
- ja
|
| 5 |
+
- tr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
- multilingual
|
| 7 |
+
license: apache-2.0
|
| 8 |
tags:
|
|
|
|
| 9 |
- feedback-detection
|
| 10 |
- user-satisfaction
|
| 11 |
- mmbert
|
|
|
|
|
|
|
| 12 |
- lora
|
| 13 |
- peft
|
| 14 |
+
base_model: jhu-clsp/mmBERT-base
|
| 15 |
datasets:
|
| 16 |
- llm-semantic-router/feedback-detector-dataset
|
| 17 |
metrics:
|
| 18 |
- accuracy
|
| 19 |
- f1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
---
|
| 21 |
|
| 22 |
+
# mmBERT Feedback Detector (LoRA)
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
A multilingual 4-class feedback classification model fine-tuned with LoRA on mmBERT-base.
|
| 25 |
|
| 26 |
+
## Model Performance
|
| 27 |
|
| 28 |
+
| Metric | Value |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|--------|-------|
|
| 30 |
+
| **Accuracy** | 98.63% |
|
| 31 |
+
| **F1 Macro** | 97.94% |
|
| 32 |
+
| F1 SAT | 100.0% |
|
| 33 |
+
| F1 NEED_CLARIFICATION | 99.7% |
|
| 34 |
+
| F1 WRONG_ANSWER | 96.2% |
|
| 35 |
+
| F1 WANT_DIFFERENT | 95.9% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
## Labels
|
| 38 |
|
| 39 |
+
- **SAT** (0): User is satisfied
|
| 40 |
+
- **NEED_CLARIFICATION** (1): User needs more information
|
| 41 |
+
- **WRONG_ANSWER** (2): System gave incorrect response
|
| 42 |
+
- **WANT_DIFFERENT** (3): User wants something different
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
## Training
|
| 45 |
|
| 46 |
+
- **Base Model**: jhu-clsp/mmBERT-base
|
| 47 |
+
- **Dataset**: 51,694 examples (llm-semantic-router/feedback-detector-dataset)
|
| 48 |
+
- **LoRA**: rank=32, alpha=64
|
| 49 |
+
- **Epochs**: 5
|
| 50 |
+
- **Batch Size**: 64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
## Usage
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
```python
|
| 55 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 56 |
from peft import PeftModel
|
|
|
|
| 57 |
|
| 58 |
+
base_model = AutoModelForSequenceClassification.from_pretrained("jhu-clsp/mmBERT-base", num_labels=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
model = PeftModel.from_pretrained(base_model, "llm-semantic-router/mmbert-feedback-detector-lora")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
tokenizer = AutoTokenizer.from_pretrained("llm-semantic-router/mmbert-feedback-detector-lora")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
inputs = tokenizer("Thank you, that was helpful!", return_tensors="pt")
|
| 63 |
+
outputs = model(**inputs)
|
| 64 |
+
label = outputs.logits.argmax(-1).item()
|
| 65 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
adapter_config.json
CHANGED
|
@@ -13,7 +13,7 @@
|
|
| 13 |
"layers_pattern": null,
|
| 14 |
"layers_to_transform": null,
|
| 15 |
"loftq_config": {},
|
| 16 |
-
"lora_alpha":
|
| 17 |
"lora_bias": false,
|
| 18 |
"lora_dropout": 0.1,
|
| 19 |
"megatron_config": null,
|
|
@@ -24,14 +24,14 @@
|
|
| 24 |
],
|
| 25 |
"peft_type": "LORA",
|
| 26 |
"qalora_group_size": 16,
|
| 27 |
-
"r":
|
| 28 |
"rank_pattern": {},
|
| 29 |
"revision": null,
|
| 30 |
"target_modules": [
|
|
|
|
| 31 |
"attn.Wo",
|
| 32 |
"mlp.Wi",
|
| 33 |
-
"mlp.Wo"
|
| 34 |
-
"attn.Wqkv"
|
| 35 |
],
|
| 36 |
"target_parameters": null,
|
| 37 |
"task_type": "SEQ_CLS",
|
|
|
|
| 13 |
"layers_pattern": null,
|
| 14 |
"layers_to_transform": null,
|
| 15 |
"loftq_config": {},
|
| 16 |
+
"lora_alpha": 64,
|
| 17 |
"lora_bias": false,
|
| 18 |
"lora_dropout": 0.1,
|
| 19 |
"megatron_config": null,
|
|
|
|
| 24 |
],
|
| 25 |
"peft_type": "LORA",
|
| 26 |
"qalora_group_size": 16,
|
| 27 |
+
"r": 32,
|
| 28 |
"rank_pattern": {},
|
| 29 |
"revision": null,
|
| 30 |
"target_modules": [
|
| 31 |
+
"attn.Wqkv",
|
| 32 |
"attn.Wo",
|
| 33 |
"mlp.Wi",
|
| 34 |
+
"mlp.Wo"
|
|
|
|
| 35 |
],
|
| 36 |
"target_parameters": null,
|
| 37 |
"task_type": "SEQ_CLS",
|
adapter_model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1df0ab37e51dd11727ccdcbbdd040a4a05d0f5f4cf66b0296b5cfd54d1e01afd
|
| 3 |
+
size 27067968
|
training_config.json
CHANGED
|
@@ -21,8 +21,8 @@
|
|
| 21 |
"base_model": "jhu-clsp/mmBERT-base",
|
| 22 |
"max_length": 512,
|
| 23 |
"use_lora": true,
|
| 24 |
-
"lora_rank":
|
| 25 |
-
"lora_alpha":
|
| 26 |
"class_weights": [
|
| 27 |
1.0,
|
| 28 |
1.0,
|
|
@@ -30,17 +30,17 @@
|
|
| 30 |
1.0
|
| 31 |
],
|
| 32 |
"metrics": {
|
| 33 |
-
"eval_loss": 0.
|
| 34 |
-
"eval_accuracy": 0.
|
| 35 |
-
"eval_f1_macro": 0.
|
| 36 |
-
"eval_f1_weighted": 0.
|
| 37 |
-
"eval_f1_SAT":
|
| 38 |
-
"eval_f1_NEED_CLARIFICATION": 0.
|
| 39 |
-
"eval_f1_WRONG_ANSWER": 0.
|
| 40 |
-
"eval_f1_WANT_DIFFERENT": 0.
|
| 41 |
-
"eval_runtime": 1.
|
| 42 |
-
"eval_samples_per_second":
|
| 43 |
-
"eval_steps_per_second":
|
| 44 |
"epoch": 5.0
|
| 45 |
}
|
| 46 |
}
|
|
|
|
| 21 |
"base_model": "jhu-clsp/mmBERT-base",
|
| 22 |
"max_length": 512,
|
| 23 |
"use_lora": true,
|
| 24 |
+
"lora_rank": 32,
|
| 25 |
+
"lora_alpha": 64,
|
| 26 |
"class_weights": [
|
| 27 |
1.0,
|
| 28 |
1.0,
|
|
|
|
| 30 |
1.0
|
| 31 |
],
|
| 32 |
"metrics": {
|
| 33 |
+
"eval_loss": 0.060757871717214584,
|
| 34 |
+
"eval_accuracy": 0.9819095477386934,
|
| 35 |
+
"eval_f1_macro": 0.9729965135266696,
|
| 36 |
+
"eval_f1_weighted": 0.9818680631789307,
|
| 37 |
+
"eval_f1_SAT": 0.999664767013074,
|
| 38 |
+
"eval_f1_NEED_CLARIFICATION": 0.996,
|
| 39 |
+
"eval_f1_WRONG_ANSWER": 0.9474747474747475,
|
| 40 |
+
"eval_f1_WANT_DIFFERENT": 0.9488465396188566,
|
| 41 |
+
"eval_runtime": 1.2344,
|
| 42 |
+
"eval_samples_per_second": 2418.084,
|
| 43 |
+
"eval_steps_per_second": 19.442,
|
| 44 |
"epoch": 5.0
|
| 45 |
}
|
| 46 |
}
|