Create handler.py
Browse files- handler.py +106 -0
handler.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, List
|
| 2 |
+
import base64, io, os
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from transformers import AutoProcessor
|
| 7 |
+
# Use the vendor'ed GUI-Actor sources (copied into the repo as /gui_actor)
|
| 8 |
+
from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer
|
| 9 |
+
from gui_actor.inference import inference
|
| 10 |
+
|
| 11 |
+
class EndpointHandler:
|
| 12 |
+
"""
|
| 13 |
+
Accepts JSON like:
|
| 14 |
+
{
|
| 15 |
+
"image": "data:image/png;base64,...." OR "image_b64": "<raw_base64>",
|
| 16 |
+
"image_url": "https://...png", # optional (qwen-vl-utils supports it)
|
| 17 |
+
"prompt": "Click the close button",
|
| 18 |
+
"topk": 3,
|
| 19 |
+
"return_pixels": true,
|
| 20 |
+
"screen_w": 1920,
|
| 21 |
+
"screen_h": 1080
|
| 22 |
+
}
|
| 23 |
+
Returns:
|
| 24 |
+
{
|
| 25 |
+
"points_norm": [[x,y], ...], # 0..1 normalized
|
| 26 |
+
"points_px": [[x_px,y_px], ...] # if screen_w/h given
|
| 27 |
+
}
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
def __init__(self, path: str = ""):
|
| 31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
+
# bfloat16 on GPU is fine for Qwen2.5; fallback to float32 on CPU
|
| 33 |
+
dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
| 34 |
+
|
| 35 |
+
self.processor = AutoProcessor.from_pretrained(path)
|
| 36 |
+
self.tokenizer = self.processor.tokenizer
|
| 37 |
+
|
| 38 |
+
# Avoid hard requiring flash-attn; it will use PyTorch SDPA if unavailable
|
| 39 |
+
self.model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
|
| 40 |
+
path, torch_dtype=dtype, device_map="auto"
|
| 41 |
+
).eval()
|
| 42 |
+
|
| 43 |
+
def _load_pil(self, data: Dict[str, Any]) -> Image.Image:
|
| 44 |
+
if "image" in data and isinstance(data["image"], str) and data["image"].startswith("data:image"):
|
| 45 |
+
# "data:image/png;base64,......"
|
| 46 |
+
b64 = data["image"].split("base64,")[-1]
|
| 47 |
+
return Image.open(io.BytesIO(base64.b64decode(b64))).convert("RGB")
|
| 48 |
+
if "image_b64" in data:
|
| 49 |
+
return Image.open(io.BytesIO(base64.b64decode(data["image_b64"]))).convert("RGB")
|
| 50 |
+
# If image_url is provided, pass URL through; Qwen utils can handle URLs internally
|
| 51 |
+
return None
|
| 52 |
+
|
| 53 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 54 |
+
# Handle both direct input and HuggingFace's nested input format
|
| 55 |
+
if "inputs" in data:
|
| 56 |
+
payload = data["inputs"]
|
| 57 |
+
else:
|
| 58 |
+
payload = data
|
| 59 |
+
|
| 60 |
+
prompt = payload.get("prompt", "")
|
| 61 |
+
topk = int(payload.get("topk", 3))
|
| 62 |
+
img = self._load_pil(payload)
|
| 63 |
+
|
| 64 |
+
# Build conversation per model card
|
| 65 |
+
user_content = []
|
| 66 |
+
if img is not None:
|
| 67 |
+
user_content.append({"type": "image", "image": img})
|
| 68 |
+
elif "image_url" in payload:
|
| 69 |
+
user_content.append({"type": "image", "image_url": payload["image_url"]})
|
| 70 |
+
else:
|
| 71 |
+
raise ValueError("No image provided. Supply 'image' (data URL), 'image_b64', or 'image_url'.")
|
| 72 |
+
|
| 73 |
+
user_content.append({"type": "text", "text": prompt})
|
| 74 |
+
conversation = [
|
| 75 |
+
{
|
| 76 |
+
"role": "system",
|
| 77 |
+
"content": [{"type": "text",
|
| 78 |
+
"text": "You are a GUI agent. Given a screenshot of the current GUI and a human instruction, "
|
| 79 |
+
"locate the target element and output a click position."}]
|
| 80 |
+
},
|
| 81 |
+
{"role": "user", "content": user_content},
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
try:
|
| 85 |
+
pred = inference(
|
| 86 |
+
conversation,
|
| 87 |
+
self.model,
|
| 88 |
+
self.tokenizer,
|
| 89 |
+
self.processor,
|
| 90 |
+
use_placeholder=True,
|
| 91 |
+
topk=topk,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
points = pred.get("topk_points") or []
|
| 95 |
+
result = {"points_norm": points}
|
| 96 |
+
|
| 97 |
+
# Optional: convert to pixels
|
| 98 |
+
if payload.get("return_pixels") and payload.get("screen_w") and payload.get("screen_h"):
|
| 99 |
+
w = int(payload["screen_w"])
|
| 100 |
+
h = int(payload["screen_h"])
|
| 101 |
+
result["points_px"] = [[int(x*w), int(y*h)] for (x, y) in points]
|
| 102 |
+
|
| 103 |
+
return result
|
| 104 |
+
|
| 105 |
+
except Exception as e:
|
| 106 |
+
return {"error": str(e), "points_norm": [], "points_px": []}
|