File size: 35,493 Bytes
04660a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 |
# Copyright 2025 University of Cambridge (authors: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
from typing import Optional, Tuple
import random
import numpy as np
import torch
import torchaudio
import torch.nn as nn
from torch.nn.utils.rnn import pad_sequence
from torchaudio.compliance.kaldi import fbank as torch_fbank
from .configuration_spear import SpearConfig
from .zipformer import Zipformer2, Conv2dSubsampling
LOG_EPS=math.log(1e-10)
SAMPLING_RATE=16000
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
"""
Args:
lengths:
A 1-D tensor containing sentence lengths.
max_len:
The length of masks.
Returns:
Return a 2-D bool tensor, where masked positions
are filled with `True` and non-masked positions are
filled with `False`.
This function is borrowed from https://github.com/k2-fsa/icefall
>>> lengths = torch.tensor([1, 3, 2, 5])
>>> make_pad_mask(lengths)
tensor([[False, True, True, True, True],
[False, False, False, True, True],
[False, False, True, True, True],
[False, False, False, False, False]])
"""
assert lengths.ndim == 1, lengths.ndim
max_len = max(max_len, lengths.max())
n = lengths.size(0)
seq_range = torch.arange(0, max_len, device=lengths.device)
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
return expaned_lengths >= lengths.unsqueeze(-1)
def get_model(config: SpearConfig) -> nn.Module:
encoder_embed = get_encoder_embed(config)
encoder = get_encoder_model(config)
model = SpearEncoder(
encoder_embed=encoder_embed,
encoder=encoder,
encoder_dim=max(_to_int_tuple(config.encoder_dim)),
num_codebooks=0, # for inference
)
return model
class SpearModel(nn.Module):
def __init__(
self, config: SpearConfig,
):
super().__init__()
model = get_model(config)
self.config = config
self.model = model
def _load_audio_single(self, audio_path: str) -> Tuple[torch.Tensor, int]:
waveform, sr = torchaudio.load(audio_path) # (channels, num_samples)
if waveform.size(0) > 1:
waveform = waveform.mean(dim=0, keepdim=True) # (1, num_samples)
if sr != SAMPLING_RATE:
transform = torchaudio.transforms.Resample(sr, SAMPLING_RATE)
waveform = transform(waveform)
waveform_len = waveform.shape[-1]
return waveform, waveform_len
def load_audio(self, audio_paths: list[str]) -> Tuple[torch.Tensor, torch.Tensor]:
assert isinstance(audio_paths, list), "Must receive a list of files for reading"
waveforms = []
waveform_lens = []
for audio in audio_paths:
wav, wav_len = self._load_audio_single(audio)
waveforms.append(wav.squeeze())
waveform_lens.append(wav_len)
waveforms = pad_sequence(waveforms, batch_first=True) # (N, T)
waveform_lens = torch.tensor(waveform_lens)
return waveforms, waveform_lens
def compute_fbank(
self, wavs: torch.Tensor, wav_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute fbank features
Args:
wavs (torch.Tensor): the mono-channel input waveform, (N, T)
wav_lens (torch.Tensor): the length of each waveform in samples (N)
Returns:
The fbank features, and their lengths
"""
assert wavs.ndim == 2, wavs.shape
low_freq = 20.0
high_freq=-400.0
dither=0.0
snip_egdes=False
features = []
for i, wav in enumerate(wavs):
feat = torch_fbank(
wav[:wav_lens[i]].unsqueeze(0),
sample_frequency=16000, # this is fixed to 16000
num_mel_bins=128,
low_freq=low_freq,
snip_edges=snip_egdes,
high_freq=high_freq,
dither=dither,
energy_floor=1.0e-10,
)
features.append(feat)
feat_len = torch.tensor([f.shape[0] for f in features]).to(wavs.device)
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS).to(wavs.device)
return features, feat_len
def forward(self, audio: torch.Tensor, audio_lens: torch.Tensor, return_middle_layers: bool = True):
"""Encode a batch of audio
Args:
audio (torch.Tensor): Input audio waveforms (N,L)
audio_lens (torch.Tensor): The length of the audio waveforms (N)
return_middle_layers (bool, optional): Output the intermediate features.
Returns:
The encoded representations, and the length of each representation (N,T,C), (N)
"""
# return the results in the form of a dictionary
# containing final encoder output, the output length, and the intermediate representations
x, x_lens = self.compute_fbank(audio, audio_lens) # fbank features
outputs = self.model.forward_encoder(
x=x,
x_lens=x_lens,
return_middle_out=return_middle_layers,
return_dict=True,
)
return outputs
class SpearEncoder(nn.Module):
def __init__(
self,
encoder_embed: nn.Module,
encoder: nn.Module,
encoder_dim: int,
num_codebooks: int=8,
distillation_layer: int=9,
distillation_delta: int=0,
teacher_frame_ratio: int = 2,
interpolate_teacher: bool = False,
n_mels: int = 128,
mask_mode: str = "w2v2",
mask_prob: float = 0.65,
mask_length: int = 10,
mask_selection: str = "static",
mask_other: float = 0.0,
min_masks: int = 2,
mask_channel_prob: float = 0.0,
mask_channel_length: int = 10,
mask_channel_selection: str = "static",
mask_channel_other: float = 0.0,
loss_only_mask: bool = False,
):
"""A model that performs MVQ KD pre-training .
Args:
encoder_embed:
It is a Convolutional 2D subsampling module. It converts
an input of shape (N, T, idim) to an output of of shape
(N, T', odim), where T' = (T-3)//2-2 = (T-7)//2.
encoder:
It is the transcription network in the paper. Its accepts
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
It returns two tensors: `logits` of shape (N, T, encoder_dim) and
`logit_lens` of shape (N,).
num_codebooks:
The number of codebooks used in the target
distillation_layer:
Use which layer to do MVQ pre-training
distillation_delta:
How many frames to delay the alignment between the model and the target frames.
Should be zero for non-streaming models, and a positive number for streaming models
teacher_frame_ratio:
The frame rate ratio between the target and the model output
mask_mode:
The masking mode.
w2v2: the wav2vec2 style of masking, allows overlap
custom: no overlap, therefore bigger masking ratio
mask_prob:
The probability of selecting choosing one frame as the start index
mask_length:
The length of each mask
mask_selection:
How to determine the length of the mask, see ``compute_mask_indices''
"""
super().__init__()
self.encoder_embed = encoder_embed
self.encoder = encoder
self.encoder_dim = encoder_dim
self.distillation_layer = distillation_layer
# the frame ratio between the teacher and student
# if larger than one, we are basically having more than one set of
# codebooks for each frame
self.num_codebooks= num_codebooks
self.teacher_frame_ratio = teacher_frame_ratio
self.interpolate_teacher = interpolate_teacher
self.distillation_delta = distillation_delta
if num_codebooks > 0:
from .spear_modules import JointCodebookLoss
self.codebook_loss_net = JointCodebookLoss(
input_dim=encoder_dim,
num_codebooks=num_codebooks * self.teacher_frame_ratio,
reduction="none",
)
else:
self.codebook_loss_net = None
# masking related
assert mask_mode in ["w2v2", "block"], f"Unseen mask mode: {mask_mode}"
self.mask_mode = mask_mode
self.mask_emb = nn.Parameter(torch.FloatTensor(n_mels).normal_())
self.mask_prob = mask_prob
self.mask_length = mask_length
self.mask_selection = mask_selection
self.mask_other = mask_other
self.min_masks = min_masks
self.mask_channel_prob = mask_channel_prob
self.mask_channel_length = mask_channel_length
self.mask_channel_selection = mask_channel_selection
self.mask_channel_other = mask_channel_other
self.loss_only_mask = loss_only_mask
def forward_encoder(
self, x: torch.Tensor, x_lens: torch.Tensor, return_middle_out: bool = False, return_dict: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute encoder outputs.
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
Returns:
encoder_out:
Encoder output, of shape (N, T, C).
encoder_out_lens:
Encoder output lengths, of shape (N,).
"""
# logging.info(f"Memory allocated at entry: {torch.cuda.memory_allocated() // 1000000}M")
x, x_lens = self.encoder_embed(x, x_lens)
# logging.info(f"Memory allocated after encoder_embed: {torch.cuda.memory_allocated() // 1000000}M")
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens, middle_out = self.encoder(x, x_lens, src_key_padding_mask, return_middle_out=True)
middle_out = [feat.permute(1,0,2) for feat in middle_out] # (N, T, C) -> (T, N, C)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
assert torch.all(encoder_out_lens > 0), (x_lens, encoder_out_lens)
if not return_dict:
return encoder_out, encoder_out_lens, middle_out
else:
outputs = {
"encoder_out": encoder_out,
"encoder_out_lens": encoder_out_lens,
"hidden_states": middle_out,
}
return outputs
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
codebook_indexes: torch.Tensor = None,
mask: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
codebook_indexes:
Codebook indexes of teacher embeddings
mask:
If we perform w2v2 style of masking over the fbank frames
Returns:
Return the codebook loss
"""
assert x.ndim == 3, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert codebook_indexes is not None
# apply masking
if self.training and mask:
padding_mask = make_pad_mask(x_lens)
# apply masking to the fbank features
x, mask_indices = self.apply_mask(
x.clone(),
padding_mask=padding_mask
) # (N,T,C), (N,T)
else:
mask_indices = None
# Compute encoder outputs
encoder_out, encoder_out_lens, _ = self.forward_encoder(x, x_lens)
# compute the codebook loss
if codebook_indexes is not None and self.codebook_loss_net is not None:
codebook_loss = self.forward_codebook_loss(
encoder_out, encoder_out_lens, codebook_indexes, reduction="none"
)
if self.loss_only_mask and mask_indices is not None:
# downsample the mask
mask_indices = nn.functional.avg_pool1d(mask_indices, 4) >= 0.5
assert mask_indices.size(1) >= codebook_loss.size(1)
mask_indices = mask_indices[:, :codebook_loss.size(1)].float()
codebook_loss = codebook_loss * mask_indices
codebook_loss = codebook_loss.sum(dim=1) # (B,)
else:
codebook_loss = None
return codebook_loss
def forward_codebook_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
codebook_indexes: torch.Tensor,
reduction: str = "sum",
):
# align the encoder features with the codebook indexes
if self.interpolate_teacher:
codebook_indexes = self.interpolate_codebook_indexes(
encoder_out, codebook_indexes
)
else:
if codebook_indexes.shape[1] != encoder_out.shape[1]:
# align the codebook indexes to the frame rate of the student encoder out
codebook_indexes = self.concat_successive_codebook_indexes(
encoder_out, codebook_indexes, ratio=self.teacher_frame_ratio
)
# the delta is associated with the frame-rate of the encoder
# so a bigger delta maybe necessary for 50Hz student encoder
if self.distillation_delta > 0:
codebook_indexes = codebook_indexes[:,:-self.distillation_delta, :]
encoder_out = encoder_out[:, self.distillation_delta:, :]
truncated_padding_mask = make_pad_mask(encoder_out_lens - self.distillation_delta)
codebook_indexes = codebook_indexes.masked_fill(truncated_padding_mask.unsqueeze(-1), value=-100)
N,T,_ = encoder_out.shape
codebook_loss = self.codebook_loss_net(encoder_out.float(), codebook_indexes)
codebook_loss = codebook_loss.reshape(N,T,-1)
num_cb = codebook_loss.size(-1)
# normalize the loss by the number of codebooks
if reduction == "sum":
codebook_loss = codebook_loss.sum(dim=(1,2)) / num_cb # (B,)
elif reduction == "none":
codebook_loss = codebook_loss.sum(dim=2) / num_cb # (B,T)
else:
raise NotImplementedError()
return codebook_loss
def apply_mask(
self,
x: torch.Tensor,
padding_mask: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Apply mask according to the mask_mode, return the masked features and the masked positions
Args:
x (torch.Tensor): The input fbank features
padding_mask (torch.Tensor, optional): The padding mask
Returns:
The masked fbank feature and the masked_indices, with masked positions as 1
"""
# apply mask to the fbank features, two modes applicable
if self.mask_mode == "w2v2":
x, masked_indices = self.apply_mask_w2v2(x, padding_mask)
elif self.mask_mode == "block":
x, masked_indices = self.apply_mask_block(x, padding_mask)
else:
raise NotImplementedError()
if random.random() > 0.97:
logging.info(f"Apply {self.mask_mode} masking. A proportion of {masked_indices.sum()/masked_indices.numel():.2f} frames are masked")
return x, masked_indices
def apply_mask_block(
self,
x: torch.Tensor,
padding_mask: torch.Tensor = None
):
B,T,C = x.shape
assert self.mask_prob > 0.0
mask_indices = compute_mask_indices_block(
shape=(B,T),
padding_mask=padding_mask,
mask_prob=self.mask_prob,
mask_length=self.mask_length,
min_masks=self.min_masks,
).to(x.device)
x = index_put(x, mask_indices.bool(), self.mask_emb)
return x, mask_indices
def apply_mask_w2v2(
self,
x: torch.Tensor,
padding_mask: torch.Tensor = None
):
# this function is modified from fairseq: https://github.com/facebookresearch/fairseq/blob/bedb259bf34a9fc22073c13a1cee23192fa70ef3/fairseq/models/wav2vec/wav2vec2.py#L429
# The masked indices have value 1
B, T, C = x.shape
# we mask channel first, then mask timestamps
if self.mask_channel_prob > 0:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=False,
min_space=1,
require_same_masks=False,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
if random.random() > 0.98:
logging.info(f"A proportion of {mask_channel_indices.sum()/mask_channel_indices.numel():.2f} feature dims are masked")
x[mask_channel_indices] = 0
if self.mask_prob > 0:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob,
self.mask_length,
mask_type=self.mask_selection,
mask_other=self.mask_other,
min_masks=2, # fixed
no_overlap=False, # False
min_space=1, # 1
require_same_masks=False,
)
mask_indices = torch.from_numpy(mask_indices).to(x.device)
x = index_put(x, mask_indices, self.mask_emb)
mask_indices = mask_indices.float()
else:
mask_indices = None
return x, mask_indices
@staticmethod
def interpolate_codebook_indexes(middle_layer_output, codebook_indexes):
# This function addresses the case where the teacher has a lower frame rate
# than the student model
t_expected = middle_layer_output.shape[1]
N, T, C = codebook_indexes.shape # C should be 256
codebook_indexes = codebook_indexes.permute(0,2,1).float() # (N,C,T)
codebook_indexes = torch.nn.functional.interpolate(codebook_indexes, t_expected)
codebook_indexes = codebook_indexes.permute(0,2,1).int() # (N,T,C)
assert codebook_indexes.shape[1] == middle_layer_output.shape[1]
return codebook_indexes
@staticmethod
def concat_successive_codebook_indexes(middle_layer_output, codebook_indexes, ratio=2):
# Output rate of hubert is 50 frames per second,
# while that of current encoder is 25.
# Following code handling two issues:
# 1.
# Roughly speaking, to generate another frame output,
# hubert needes extra two frames,
# while current encoder needs extra four frames.
# Suppose there are only extra three frames provided,
# hubert will generate another frame while current encoder does nothing.
# 2.
# codebook loss is a frame-wise loss, to enalbe 25 frames studnet output
# learns from 50 frames teacher output, two successive frames of teacher model
# output is concatenated together.
t_expected = middle_layer_output.shape[1]
N, T, C = codebook_indexes.shape # C should be 256
# Handling issue 1.
if T >= t_expected * ratio:
codebook_indexes = codebook_indexes[:, : t_expected * ratio, :]
else:
assert t_expected * ratio - T <= 5, (T, t_expected, ratio)
diff = t_expected * ratio - T
codebook_indexes = torch.cat(
[
codebook_indexes,
torch.full((N,diff,C), -100).to(codebook_indexes.device).to(codebook_indexes.dtype)
],
dim=1,
)
assert codebook_indexes.size(1) == middle_layer_output.size(1) * ratio
# Handling issue 2.
codebook_indexes = codebook_indexes.reshape(N, t_expected, C * ratio)
assert middle_layer_output.shape[1] == codebook_indexes.shape[1]
return codebook_indexes
def index_put(tensor, indices, value):
tensor[indices] = value
return tensor
def compute_mask_indices_block(
shape,
padding_mask,
mask_prob: float = 0.5,
mask_length: int = 10,
min_masks: int = 2,
):
# self-implemented mask, no overlap
B,T = shape
mask_indices = []
for i in range(B):
if padding_mask is not None:
num_segments = (T - padding_mask[i].sum()) // mask_length # discard the last few frames
else:
num_segments = T // mask_length
segment_mask = torch.rand(num_segments) < mask_prob
while sum(segment_mask) < min_masks:
segment_mask = torch.rand(num_segments) < mask_prob
segment_mask_expanded = segment_mask.unsqueeze(-1).expand(num_segments, mask_length)
segment_mask_expanded = segment_mask_expanded.reshape(-1).float()
if segment_mask_expanded.size(0) < T:
pad = T - segment_mask_expanded.size(0)
segment_mask_expanded = torch.cat([segment_mask_expanded, torch.zeros(pad)])
mask_indices.append(segment_mask_expanded)
mask_indices = torch.stack(mask_indices)
return mask_indices
def compute_mask_indices(
shape: Tuple[int, int],
padding_mask: Optional[torch.Tensor],
mask_prob: float,
mask_length: int,
mask_type: str = "static",
mask_other: float = 0.0,
min_masks: int = 0,
no_overlap: bool = False,
min_space: int = 0,
require_same_masks: bool = True,
mask_dropout: float = 0.0,
add_masks: bool = False,
seed: Optional[int] = None,
epoch: Optional[int] = None,
indices: Optional[torch.Tensor] = None,
idc_select_ver: int = 1, # 2 to reproduce mask_tokens_dataset
num_mask_ver: int = 2, # 2 to reproduce mask_tokens_dataset
) -> np.ndarray:
"""
Computes random mask spans for a given shape
Args:
shape: the the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_type: how to compute mask lengths
static = fixed size
uniform = sample from uniform distribution [mask_other, mask_length*2]
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
poisson = sample from possion distribution with lambda = mask length
min_masks: minimum number of masked spans
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample
mask_dropout: randomly dropout this percentage of masks in each example
"""
bsz, all_sz = shape
mask = np.full((bsz, all_sz), False)
if num_mask_ver == 1:
all_num_mask = int(
# add a random number for probabilistic rounding
mask_prob * all_sz / float(mask_length)
+ np.random.rand()
)
all_num_mask = max(min_masks, all_num_mask)
mask_idcs = []
for i in range(bsz):
if seed is not None and epoch is not None and indices is not None:
seed_i = int(hash((seed, epoch, indices[i].item())) % 1e6)
else:
seed_i = None
rng = np.random.default_rng(seed_i)
if padding_mask is not None:
sz = all_sz - padding_mask[i].long().sum().item()
assert sz >= 0, sz
else:
sz = all_sz
if num_mask_ver == 1:
if padding_mask is not None:
num_mask = int(
# add a random number for probabilistic rounding
mask_prob * sz / float(mask_length)
+ np.random.rand()
)
num_mask = max(min_masks, num_mask)
else:
num_mask = all_num_mask
elif num_mask_ver == 2:
num_mask = int(
# add a random number for probabilistic rounding
mask_prob * sz / float(mask_length)
+ rng.random()
)
num_mask = max(min_masks, num_mask)
hard_max = sz // mask_length
num_mask = min(hard_max, num_mask) # prevent whole sequence being masked
else:
raise ValueError()
if mask_type == "static":
lengths = np.full(num_mask, mask_length)
elif mask_type == "uniform":
lengths = rng.randint(mask_other, mask_length * 2 + 1, size=num_mask)
elif mask_type == "normal":
lengths = rng.normal(mask_length, mask_other, size=num_mask)
lengths = [max(1, int(round(x))) for x in lengths]
elif mask_type == "poisson":
lengths = rng.poisson(mask_length, size=num_mask)
lengths = [int(round(x)) for x in lengths]
else:
raise Exception("unknown mask selection " + mask_type)
if sum(lengths) == 0:
if mask_type == "static":
raise ValueError("this should never happens")
else:
lengths = [min(mask_length, sz - 1)]
if no_overlap:
mask_idc = []
def arrange(s, e, length, keep_length):
span_start = rng.randint(s, e - length)
mask_idc.extend(span_start + i for i in range(length))
new_parts = []
if span_start - s - min_space >= keep_length:
new_parts.append((s, span_start - min_space + 1))
if e - span_start - length - min_space > keep_length:
new_parts.append((span_start + length + min_space, e))
return new_parts
parts = [(0, sz)]
min_length = min(lengths)
for length in sorted(lengths, reverse=True):
lens = np.fromiter(
(e - s if e - s >= length + min_space else 0 for s, e in parts),
np.int,
)
l_sum = np.sum(lens)
if l_sum == 0:
break
probs = lens / np.sum(lens)
c = rng.choice(len(parts), p=probs)
s, e = parts.pop(c)
parts.extend(arrange(s, e, length, min_length))
mask_idc = np.asarray(mask_idc)
else:
if idc_select_ver == 1:
min_len = min(lengths)
if sz - min_len <= num_mask:
min_len = sz - num_mask - 1
mask_idc = rng.choice(sz - min_len, num_mask, replace=False)
elif idc_select_ver == 2:
mask_idc = rng.choice(sz, num_mask, replace=False)
else:
raise ValueError()
mask_idc = np.asarray(
[
mask_idc[j] + offset
for j in range(len(mask_idc))
for offset in range(lengths[j])
]
)
mask_idc = np.unique(mask_idc[mask_idc < sz])
if len(mask_idc) >= sz:
raise ValueError(
(
f"the entire sequence is masked. "
f"sz={sz}; mask_idc[mask_idc]; "
f"index={indices[i] if indices is not None else None}"
)
)
mask_idcs.append(mask_idc)
target_len = None
if require_same_masks:
if add_masks:
target_len = max([len(m) for m in mask_idcs])
else:
target_len = min([len(m) for m in mask_idcs])
for i, mask_idc in enumerate(mask_idcs):
if target_len is not None and len(mask_idc) > target_len:
mask_idc = rng.choice(mask_idc, target_len, replace=False)
mask[i, mask_idc] = True
if target_len is not None and len(mask_idc) < target_len:
unmasked = np.flatnonzero(~mask[i])
to_mask = rng.choice(unmasked, target_len - len(mask_idc), replace=False)
mask[i, to_mask] = True
if mask_dropout > 0:
masked = np.flatnonzero(mask[i])
num_holes = np.rint(len(masked) * mask_dropout).astype(int)
to_drop = rng.choice(masked, num_holes, replace=False)
mask[i, to_drop] = False
return mask
def _to_int_tuple(s: str):
return tuple(map(int, s.split(",")))
def get_encoder_embed(config: SpearConfig) -> nn.Module:
# initialize the convolution subsampling module
encoder_embed = Conv2dSubsampling(
in_channels=config.num_mel_bins,
out_channels=_to_int_tuple(config.encoder_dim)[0],
)
return encoder_embed
def get_encoder_model(config: SpearConfig) -> nn.Module:
# initialize the Zipformer encoder model
encoder = Zipformer2(
output_downsampling_factor=config.output_downsampling_factor,
downsampling_factor=_to_int_tuple(config.downsampling_factor),
num_encoder_layers=_to_int_tuple(config.num_encoder_layers),
encoder_dim=_to_int_tuple(config.encoder_dim),
encoder_unmasked_dim=_to_int_tuple(config.encoder_unmasked_dim),
query_head_dim=_to_int_tuple("32"),
pos_head_dim=_to_int_tuple("4"),
value_head_dim=_to_int_tuple("12"),
pos_dim=config.pos_dim,
num_heads=_to_int_tuple(config.num_heads),
feedforward_dim=_to_int_tuple(config.feedforward_dim),
cnn_module_kernel=_to_int_tuple(config.cnn_module_kernel),
warmup_batches=4000.0,
causal=config.causal,
chunk_size=config.chunk_size,
left_context_frames=config.left_context_frames,
)
return encoder
def _test_w2v2_channel_mask():
x = torch.ones(100, 1000, 128)
B, T, C = x.shape
configs = [(0.25, 15), (0.25, 20), (0.5, 15),]
# configs = [(0.2, 20), (0.3, 20), (0.4, 20),]
for config in configs:
mask_channel_prob, mask_channel_length = config
ratios = []
for i in range(20):
mask_channel_indices = compute_mask_indices(
(B, C),
None,
mask_channel_prob,
mask_channel_length,
"static",
0.0,
no_overlap=False,
min_space=1,
require_same_masks=False,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
ratio = mask_channel_indices.sum() / mask_channel_indices.numel()
ratios.append(ratio)
avg_ratio = sum(ratios) / len(ratios)
print(f"Current config: mask_channel_prob = {mask_channel_prob}, mask_channel_length = {mask_channel_length}")
print(f"Averaged masking ratio: {avg_ratio}")
def _test_w2v2_mask():
x = torch.ones(100, 1000, 128)
B, T, C = x.shape
mask_prob = 0.65
mask_length = 10
# configs = [(0.65, 10), (0.01, 40), (0.1, 40), (0.2, 40), (0.2, 20), (0.35, 10), (0.35, 20), (0.25, 20)]
configs = []
for i in range(6):
p = 0.05 + (i+1) * 0.1
for l in [10, 20, 30, 40]:
configs.append((p, l))
configs = [(0.65, 10), (0.02, 40), (0.05, 40), (0.1, 40)]
for config in configs:
mask_prob, mask_length = config
ratios = []
for i in range(20):
mask_indices = compute_mask_indices(
(B, T),
None,
mask_prob,
mask_length,
mask_type="static",
mask_other=0.0,
min_masks=2,
no_overlap=False, # False
min_space=1, # 1
require_same_masks=False,
)
mask_indices = torch.from_numpy(mask_indices)
ratio = mask_indices.sum() / mask_indices.numel()
ratios.append(ratio)
avg_ratio = sum(ratios) / len(ratios)
print(f"Current config: mask_prob = {mask_prob}, mask_length = {mask_length}")
print(f"Averaged masking ratio: {avg_ratio}")
def _test_custom_mask():
x = torch.ones(100, 1000, 128)
B, T, C = x.shape
configs = [(0.5, 20), (0.2, 20), (0.3, 20), (0.4, 20), (0.5, 20)]
for config in configs:
mask_prob, mask_length = config
ratios = []
for i in range(20):
all_possible_mask_lengths = [mask_length + i * 2 for i in range(-5, 6)]
mask_length = random.sample(all_possible_mask_lengths, 1)[0]
assert mask_length > 0, f"Sampled mask_length smaller than 0, {mask_length}"
mask_indices = compute_mask_indices_block(
shape=(B, T),
padding_mask=None,
mask_prob=mask_prob,
mask_length=mask_length,
min_masks=2,
)
ratio = mask_indices.sum() / mask_indices.numel()
ratios.append(ratio)
avg_ratio = sum(ratios) / len(ratios)
print(f"Current config: mask_prob = {mask_prob}, mask_length = {mask_length}")
print(f"Averaged masking ratio: {avg_ratio}")
if __name__=="__main__":
_test_w2v2_channel_mask()
_test_w2v2_mask()
_test_custom_mask() |