Build uploaded using `kernels`.
Browse files
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
build/torch29-cu130-x86_64-windows/activation/_activation_a793e44.pyd filter=lfs diff=lfs merge=lfs -text
|
build/torch29-cu130-x86_64-windows/activation/__init__.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from ._ops import ops
|
| 4 |
+
|
| 5 |
+
from . import layers
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 9 |
+
ops.silu_and_mul(out, x)
|
| 10 |
+
return out
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 14 |
+
ops.mul_and_silu(out, x)
|
| 15 |
+
return out
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 19 |
+
ops.gelu_and_mul(out, x)
|
| 20 |
+
return out
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 24 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 25 |
+
return out
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
|
| 29 |
+
ops.fatrelu_and_mul(out, x, threshold)
|
| 30 |
+
return out
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def gelu(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 34 |
+
ops.gelu(out, x)
|
| 35 |
+
return out
|
| 36 |
+
|
| 37 |
+
def silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 38 |
+
ops.silu(out, x)
|
| 39 |
+
return out
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def gelu_tanh(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 43 |
+
ops.gelu_tanh(out, x)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 48 |
+
ops.gelu_fast(out, x)
|
| 49 |
+
return out
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 53 |
+
ops.gelu_new(out, x)
|
| 54 |
+
return out
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 58 |
+
ops.gelu_quick(out, x)
|
| 59 |
+
return out
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
__all__ = [
|
| 63 |
+
"silu_and_mul",
|
| 64 |
+
"mul_and_silu",
|
| 65 |
+
"gelu_and_mul",
|
| 66 |
+
"gelu_tanh_and_mul",
|
| 67 |
+
"fatrelu_and_mul",
|
| 68 |
+
"gelu_fast",
|
| 69 |
+
"gelu_new",
|
| 70 |
+
"gelu_quick",
|
| 71 |
+
"gelu_tanh",
|
| 72 |
+
"silu",
|
| 73 |
+
"gelu",
|
| 74 |
+
"layers",
|
| 75 |
+
]
|
build/torch29-cu130-x86_64-windows/activation/_activation_a793e44.pyd
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8de6eeb73be0a0d63b6c8f824f90f8b2fe9b1977d27d36bdf5187603a45a7b8f
|
| 3 |
+
size 2230784
|
build/torch29-cu130-x86_64-windows/activation/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _activation_a793e44
|
| 3 |
+
ops = torch.ops._activation_a793e44
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_activation_a793e44::{op_name}"
|
build/torch29-cu130-x86_64-windows/activation/layers.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
"""An activation function for SwiGLU.
|
| 9 |
+
|
| 10 |
+
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
| 11 |
+
|
| 12 |
+
Shapes:
|
| 13 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
| 14 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
can_torch_compile: bool = True
|
| 18 |
+
|
| 19 |
+
def forward(self, x: torch.Tensor):
|
| 20 |
+
d = x.shape[-1] // 2
|
| 21 |
+
output_shape = x.shape[:-1] + (d,)
|
| 22 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 23 |
+
ops.silu_and_mul(out, x)
|
| 24 |
+
return out
|
| 25 |
+
|
| 26 |
+
class Silu(nn.Module):
|
| 27 |
+
"""An activation function for SiLU.
|
| 28 |
+
|
| 29 |
+
The function computes x -> silu(x).
|
| 30 |
+
|
| 31 |
+
Shapes:
|
| 32 |
+
x: (num_tokens, d) or (batch_size, seq_len, d)
|
| 33 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
can_torch_compile: bool = True
|
| 37 |
+
|
| 38 |
+
def forward(self, x: torch.Tensor):
|
| 39 |
+
out = torch.empty_like(x)
|
| 40 |
+
ops.silu(out, x)
|
| 41 |
+
return out
|
| 42 |
+
|
| 43 |
+
class Gelu(nn.Module):
|
| 44 |
+
"""An activation function for GELU.
|
| 45 |
+
|
| 46 |
+
The function computes x -> gelu(x).
|
| 47 |
+
|
| 48 |
+
Shapes:
|
| 49 |
+
x: (num_tokens, d) or (batch_size, seq_len, d)
|
| 50 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
can_torch_compile: bool = True
|
| 54 |
+
|
| 55 |
+
def forward(self, x: torch.Tensor):
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
class GeluTanh(nn.Module):
|
| 61 |
+
"""An activation function for GELU with `tanh` approximation.
|
| 62 |
+
|
| 63 |
+
The function computes x -> gelu_tanh(x).
|
| 64 |
+
|
| 65 |
+
Shapes:
|
| 66 |
+
x: (num_tokens, d) or (batch_size, seq_len, d)
|
| 67 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
can_torch_compile: bool = True
|
| 71 |
+
|
| 72 |
+
def forward(self, x: torch.Tensor):
|
| 73 |
+
out = torch.empty_like(x)
|
| 74 |
+
ops.gelu_tanh(out, x)
|
| 75 |
+
return out
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class MulAndSilu(nn.Module):
|
| 79 |
+
"""An activation function for SwiGLU.
|
| 80 |
+
|
| 81 |
+
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
|
| 82 |
+
|
| 83 |
+
Shapes:
|
| 84 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
| 85 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
can_torch_compile: bool = True
|
| 89 |
+
|
| 90 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 91 |
+
d = x.shape[-1] // 2
|
| 92 |
+
output_shape = x.shape[:-1] + (d,)
|
| 93 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 94 |
+
ops.mul_and_silu(out, x)
|
| 95 |
+
return out
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class GeluAndMul(nn.Module):
|
| 99 |
+
"""An activation function for GeGLU.
|
| 100 |
+
|
| 101 |
+
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
| 102 |
+
|
| 103 |
+
Shapes:
|
| 104 |
+
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
| 105 |
+
return: (batch_size, seq_len, d) or (num_tokens, d)
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
can_torch_compile: bool = True
|
| 109 |
+
|
| 110 |
+
def forward(self, x: torch.Tensor):
|
| 111 |
+
d = x.shape[-1] // 2
|
| 112 |
+
output_shape = x.shape[:-1] + (d,)
|
| 113 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 114 |
+
ops.gelu_and_mul(out, x)
|
| 115 |
+
return out
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class GeluTanhAndMul(nn.Module):
|
| 119 |
+
can_torch_compile: bool = True
|
| 120 |
+
|
| 121 |
+
def forward(self, x: torch.Tensor):
|
| 122 |
+
d = x.shape[-1] // 2
|
| 123 |
+
output_shape = x.shape[:-1] + (d,)
|
| 124 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 125 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 126 |
+
return out
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class FatreluAndMul(nn.Module):
|
| 130 |
+
"""An activation function for FATReLU.
|
| 131 |
+
|
| 132 |
+
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
| 133 |
+
d = x.shape[-1] // 2.
|
| 134 |
+
This is used in openbmb/MiniCPM-S-1B-sft.
|
| 135 |
+
|
| 136 |
+
Shapes:
|
| 137 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
| 138 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
can_torch_compile: bool = True
|
| 142 |
+
|
| 143 |
+
def __init__(self, threshold: float = 0.0):
|
| 144 |
+
super().__init__()
|
| 145 |
+
self.threshold = threshold
|
| 146 |
+
|
| 147 |
+
def forward(self, x: torch.Tensor):
|
| 148 |
+
d = x.shape[-1] // 2
|
| 149 |
+
output_shape = x.shape[:-1] + (d,)
|
| 150 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 151 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 152 |
+
return out
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
class FastGELU(nn.Module):
|
| 156 |
+
can_torch_compile: bool = True
|
| 157 |
+
|
| 158 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 159 |
+
out = torch.empty_like(x)
|
| 160 |
+
ops.gelu_fast(out, x)
|
| 161 |
+
return out
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
class NewGELU(nn.Module):
|
| 165 |
+
can_torch_compile: bool = True
|
| 166 |
+
|
| 167 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 168 |
+
out = torch.empty_like(x)
|
| 169 |
+
ops.gelu_new(out, x)
|
| 170 |
+
return out
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
class QuickGELU(nn.Module):
|
| 174 |
+
can_torch_compile: bool = True
|
| 175 |
+
|
| 176 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 177 |
+
out = torch.empty_like(x)
|
| 178 |
+
ops.gelu_quick(out, x)
|
| 179 |
+
return out
|