Liliang Ren
revert to V0 as latest vLLM has removed V0 support and V1 integration is still in progress
057c6c3
| # coding=utf-8 | |
| # Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch Phi4Flash model.""" | |
| import inspect | |
| import math | |
| import warnings | |
| from typing import List, Optional, Tuple, Union, Dict, Any | |
| import copy | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
| from transformers.activations import ACT2FN | |
| from transformers.cache_utils import Cache, DynamicCache | |
| from transformers.utils import is_torchdynamo_compiling | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutputWithPast, | |
| CausalLMOutputWithPast, | |
| SequenceClassifierOutputWithPast, | |
| TokenClassifierOutput, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.generation import GenerationMixin | |
| from transformers.utils import ( | |
| add_code_sample_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| is_flash_attn_greater_or_equal_2_10, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from einops import rearrange, repeat | |
| from .configuration_phi4flash import Phi4FlashConfig | |
| logger = logging.get_logger(__name__) | |
| from flash_attn import flash_attn_func, flash_attn_varlen_func | |
| from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
| _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) | |
| if not _flash_supports_window_size: | |
| raise ValueError("Please update flash-attention to support window size.") | |
| from causal_conv1d import causal_conv1d_fn, causal_conv1d_update | |
| import causal_conv1d_cuda | |
| from mamba_ssm.ops.triton.selective_state_update import selective_state_update | |
| from torch.amp import custom_bwd, custom_fwd | |
| import selective_scan_cuda | |
| _CHECKPOINT_FOR_DOC = "microsoft/Phi-4-mini-flash-reasoning" | |
| _CONFIG_FOR_DOC = "Phi4FlashConfig" | |
| # monkey patch to add support for our cache | |
| def _prepare_cache_for_generation( | |
| self, | |
| generation_config, | |
| model_kwargs: Dict, | |
| assistant_model: "PreTrainedModel", | |
| batch_size: int, | |
| max_cache_length: int, | |
| device: torch.device, | |
| ) -> bool: | |
| """ | |
| Prepares the cache for generation (if applicable), given `generate`'s parameterization. If a cache is | |
| instantiated, writes it to `model_kwargs`, under the name expected by the model. | |
| """ | |
| cache_name = "past_key_values" | |
| # Quick escape route 2: if the user specifies no cache is to be used. (conflicting arguments are handled in | |
| # `generation_config.validate()`) | |
| if generation_config.use_cache is False: | |
| return | |
| # Otherwise we NEED to prepare a cache, based on `generation_config.cache_implementation` | |
| # TODO(joao): support static caches in assisted generation. assisted generation needs to roll back caches, | |
| # which is only supported in dynamic caches atm | |
| if assistant_model is not None: | |
| logger.warning_once( | |
| "An assistant model is provided, using a dynamic cache instead of a cache of type=" | |
| f"'{generation_config.cache_implementation}'." | |
| ) | |
| model_kwargs[cache_name] = DynamicCache() | |
| return | |
| model_kwargs[cache_name] = self._get_cache( | |
| cache_implementation="sambay", | |
| batch_size=max(generation_config.num_beams, generation_config.num_return_sequences) * batch_size, | |
| max_cache_len=max_cache_length, | |
| device=device, | |
| model_kwargs=model_kwargs, | |
| ) | |
| def _get_cache( | |
| self, cache_implementation: str, batch_size: int, max_cache_len: int, device: torch.device, model_kwargs | |
| ) -> Cache: | |
| """ | |
| Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a | |
| new `generate` call requires a larger cache or uses a different batch size. | |
| Returns the resulting cache object. | |
| """ | |
| cache_cls: Cache = SambaYCache | |
| requires_cross_attention_cache = ( | |
| self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None | |
| ) | |
| if hasattr(self, "_cache"): | |
| cache_to_check = self._cache.self_attention_cache if requires_cross_attention_cache else self._cache | |
| if cache_implementation == "sliding_window": | |
| max_cache_len = min(self.config.sliding_window[1], max_cache_len) | |
| need_new_cache = ( | |
| not hasattr(self, "_cache") | |
| or (not isinstance(cache_to_check, cache_cls)) | |
| or cache_to_check.batch_size != batch_size | |
| ) | |
| if cache_implementation != "mamba": | |
| need_new_cache = need_new_cache or cache_to_check.max_cache_len < max_cache_len | |
| if requires_cross_attention_cache and hasattr(self, "_cache"): | |
| need_new_cache = ( | |
| need_new_cache | |
| or self._cache.cross_attention_cache.max_cache_len != model_kwargs["encoder_outputs"][0].shape[1] | |
| ) | |
| if need_new_cache: | |
| if hasattr(self.config, "_pre_quantization_dtype"): | |
| cache_dtype = self.config._pre_quantization_dtype | |
| else: | |
| if not is_torchdynamo_compiling(): | |
| cache_dtype = self.dtype | |
| else: | |
| # NOTE: self.dtype is not compatible with torch.compile, as it calls `self.parameters()`. | |
| # Workaround: trust the lm_head, whose attribute name is somewhat consistent across generative | |
| # models. May cause trobles with non-text modalities. | |
| cache_dtype = self.get_output_embeddings().weight.dtype | |
| def get_layer_device_map(execution_device_map: Optional[dict] = None): | |
| if execution_device_map is None: | |
| return None | |
| elif len(execution_device_map) == 1 and "" in execution_device_map: | |
| return {idx: execution_device_map[""] for idx in range(self.config.num_hidden_layers)} | |
| layer_device_map = {} | |
| for layer in execution_device_map: | |
| for idx in range(self.config.num_hidden_layers): | |
| if f".{idx}." in f"{layer}.": | |
| layer_device_map[idx] = execution_device_map[layer] | |
| break | |
| for idx in range(self.config.num_hidden_layers): | |
| if idx not in layer_device_map: | |
| raise RuntimeError(f"layer {idx} has not been mapped to a device.") | |
| return layer_device_map | |
| execution_device_map = None | |
| # Taken from dispatch_model from accelerate. | |
| # This is needed here if we don't want to make changes in accelerate in order to save execution_device | |
| # For offloaded case, we need to get the execution device, not just the device where it is offloaded | |
| if hasattr(self, "hf_device_map"): | |
| main_device = [d for d in self.hf_device_map.values() if d not in ["cpu", "disk"]][0] | |
| execution_device_map = { | |
| name: main_device if device in ["cpu", "disk"] else device | |
| for name, device in self.hf_device_map.items() | |
| } | |
| layer_device_map = get_layer_device_map(execution_device_map) | |
| cache_kwargs = { | |
| "config": self.config.get_text_config(), | |
| "batch_size": batch_size, | |
| "max_cache_len": max_cache_len, | |
| "device": device, | |
| "dtype": cache_dtype, | |
| "layer_device_map": layer_device_map, | |
| } | |
| self._cache = cache_cls(**cache_kwargs) | |
| else: | |
| self._cache.reset() | |
| return self._cache | |
| GenerationMixin._prepare_cache_for_generation = _prepare_cache_for_generation | |
| GenerationMixin._get_cache = _get_cache | |
| class SambaYCache(Cache): | |
| """ | |
| A dynamic cache that can handle the sliding window attention cache, one layer of full attention cache and the mamba cache | |
| (which has a constant shape regardless of seq_len). | |
| """ | |
| def __init__(self, | |
| config: Phi4FlashConfig, | |
| batch_size: int = None, | |
| max_cache_len: int = None, | |
| device: Union[torch.device, str] = "cuda", | |
| dtype: torch.dtype = torch.float16, | |
| max_batch_size: Optional[int] = None, | |
| layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None, | |
| ) -> None: | |
| super().__init__() | |
| self.dtype = dtype | |
| self.has_previous_state = False # only used by mamba | |
| intermediate_size = config.mamba_expand * config.hidden_size | |
| ssm_state_size = config.mamba_d_state | |
| conv_kernel_size = config.mamba_d_conv | |
| self.conv_kernel_size = conv_kernel_size | |
| if batch_size is not None: | |
| logger.warning_once( | |
| f"The 'batch_size' argument of {self.__class__.__name__} is deprecated and will be removed in " | |
| "v4.49. Use the more precisely named 'max_batch_size' argument instead." | |
| ) | |
| self.max_cache_len = max_cache_len | |
| self.max_batch_size = batch_size or max_batch_size | |
| # Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads | |
| self.head_dim = config.hidden_size // config.num_attention_heads | |
| self.num_key_value_heads = config.num_key_value_heads | |
| self.global_attn_idx = config.num_hidden_layers//2 + 1 | |
| self.key_cache: List[torch.Tensor] = [] | |
| self.value_cache: List[torch.Tensor] = [] | |
| global_cache_shape = (self.max_batch_size, self.num_key_value_heads, max_cache_len, self.head_dim) | |
| sliding_cache_shape = ( | |
| self.max_batch_size, | |
| self.num_key_value_heads, | |
| min(config.sliding_window[1], max_cache_len), | |
| self.head_dim, | |
| ) | |
| conv_cache_shape = (self.max_batch_size, intermediate_size, conv_kernel_size) | |
| ssm_cache_shape = (self.max_batch_size, intermediate_size, ssm_state_size) | |
| for i in range(config.num_hidden_layers//2 + 2): | |
| if layer_device_map is not None: | |
| layer_device = layer_device_map[i] | |
| else: | |
| layer_device = device | |
| # Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph | |
| # breaks when updating the cache. | |
| if i == self.global_attn_idx: | |
| key_cache_shape = value_cache_shape = global_cache_shape | |
| elif i % 2 == 0: | |
| key_cache_shape = conv_cache_shape | |
| value_cache_shape = ssm_cache_shape | |
| else: | |
| key_cache_shape = value_cache_shape = sliding_cache_shape | |
| new_layer_key_cache = torch.zeros(key_cache_shape, dtype=dtype, device=layer_device) | |
| new_layer_value_cache = torch.zeros(value_cache_shape, dtype=dtype, device=layer_device) | |
| torch._dynamo.mark_static_address(new_layer_key_cache) | |
| torch._dynamo.mark_static_address(new_layer_value_cache) | |
| self.key_cache.append(new_layer_key_cache) | |
| self.value_cache.append(new_layer_value_cache) | |
| def _sliding_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len): | |
| if cache_position.shape[0] > max_cache_len: | |
| k_out = key_states[:, :, -max_cache_len:, :] | |
| v_out = value_states[:, :, -max_cache_len:, :] | |
| # Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly | |
| self.key_cache[layer_idx] += k_out | |
| self.value_cache[layer_idx] += v_out | |
| # we should return the whole states instead of k_out, v_out to take the whole prompt | |
| # into consideration when building kv cache instead of just throwing away tokens outside of the window | |
| return key_states, value_states | |
| slicing = torch.ones(max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0) | |
| cache_position = cache_position.clamp(0, max_cache_len - 1) | |
| to_shift = cache_position >= max_cache_len - 1 | |
| indices = (slicing + to_shift[-1].int() - 1) % max_cache_len | |
| k_out = k_out[:, :, indices] | |
| v_out = v_out[:, :, indices] | |
| k_out[:, :, cache_position] = key_states | |
| v_out[:, :, cache_position] = value_states | |
| # `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment) | |
| self.key_cache[layer_idx].zero_() | |
| self.value_cache[layer_idx].zero_() | |
| self.key_cache[layer_idx] += k_out | |
| self.value_cache[layer_idx] += v_out | |
| return k_out, v_out | |
| def _static_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len): | |
| k_out[:, :, cache_position] = key_states | |
| v_out[:, :, cache_position] = value_states | |
| self.key_cache[layer_idx] = k_out | |
| self.value_cache[layer_idx] = v_out | |
| return k_out, v_out | |
| def update( | |
| self, | |
| key_states: torch.Tensor, | |
| value_states: torch.Tensor, | |
| layer_idx: int, | |
| cache_kwargs: Optional[Dict[str, Any]] = None, | |
| ) -> Tuple[torch.Tensor]: | |
| cache_position = cache_kwargs.get("cache_position") | |
| k_out = self.key_cache[layer_idx] | |
| v_out = self.value_cache[layer_idx] | |
| if layer_idx == self.global_attn_idx: | |
| update_fn = self._static_update | |
| elif layer_idx % 2 == 1: | |
| update_fn = self._sliding_update | |
| return update_fn( | |
| cache_position, | |
| layer_idx, | |
| key_states, | |
| value_states, | |
| k_out, | |
| v_out, | |
| k_out.shape[2], | |
| ) | |
| def get_max_cache_shape(self) -> Optional[int]: | |
| return self.max_cache_len | |
| def get_seq_length(self, layer_idx: Optional[int] = 0): | |
| # Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's | |
| # limit the check to the first batch member and head dimension. | |
| # TODO: deprecate this function in favor of `cache_position` | |
| return (self.key_cache[self.global_attn_idx][0, 0].any(dim=-1)).sum() | |
| def reset(self): | |
| """Resets the cache values while preserving the objects""" | |
| for layer_idx in range(len(self.key_cache)): | |
| # In-place ops prevent breaking the static address | |
| self.key_cache[layer_idx].zero_() | |
| self.value_cache[layer_idx].zero_() | |
| def batch_size(self): | |
| logger.warning_once( | |
| f"The 'batch_size' attribute of {self.__class__.__name__} is deprecated and will be removed in " | |
| "v4.49. Use the more precisely named 'self.max_batch_size' attribute instead." | |
| ) | |
| return self.max_batch_size | |
| swiglu_fwd_codestring = """ | |
| template <typename T> T swiglu_fwd(T x, T y) { | |
| return float(x) * float(y) / (1.0f + ::exp(-float(x))); | |
| } | |
| """ | |
| swiglu_bwd_codestring = """ | |
| template <typename T> T swiglu_bwd(T x, T y, T g, T& dx, T& dy) { | |
| float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x))); | |
| dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y); | |
| dy = float(x) * x_sigmoid * float(g); | |
| } | |
| """ | |
| swiglu_fwd = torch.cuda.jiterator._create_jit_fn(swiglu_fwd_codestring) | |
| swiglu_bwd = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_codestring, num_outputs=2) | |
| class SwiGLUFunction(torch.autograd.Function): | |
| def forward(ctx, x, y): | |
| ctx.save_for_backward(x, y) | |
| return swiglu_fwd(x, y) | |
| def backward(ctx, dout): | |
| x, y = ctx.saved_tensors | |
| return swiglu_bwd(x, y, dout) | |
| swiglu = SwiGLUFunction.apply | |
| # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->SambaY | |
| class SambaYRMSNorm(nn.Module): | |
| def __init__(self, hidden_size, eps=1e-5): | |
| """ | |
| SambaYRMSNorm is equivalent to T5LayerNorm | |
| """ | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, hidden_states): | |
| input_dtype = hidden_states.dtype | |
| hidden_states = hidden_states.to(torch.float32) | |
| variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
| return self.weight * hidden_states.to(input_dtype) | |
| PHI_NORM_CLASS = nn.LayerNorm | |
| # Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
| def _get_unpad_data(attention_mask): | |
| seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
| indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
| max_seqlen_in_batch = seqlens_in_batch.max().item() | |
| cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
| return ( | |
| indices, | |
| cu_seqlens, | |
| max_seqlen_in_batch, | |
| ) | |
| class SambaYMLP(nn.Module): | |
| """Gated Linear Unit. | |
| Reference: | |
| Language Modeling with Gated Convolutional Networks. | |
| https://arxiv.org/pdf/1612.08083v3.pdf. | |
| """ | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.fc1 = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) | |
| self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | |
| self.activation_fn = ACT2FN[config.hidden_act] | |
| def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
| y = self.fc1(hidden_states) | |
| # Special case for SwiGLU | |
| if self.config.hidden_act == "silu" and swiglu is not None: | |
| gate, y = y.chunk(2, dim=-1) | |
| y = swiglu(gate, y) | |
| else: | |
| gate, y = y.chunk(2, dim=-1) | |
| y = y * self.activation_fn(gate) | |
| return self.fc2(y) | |
| class SambaYAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__(self, config: Phi4FlashConfig, layer_idx: Optional[int] = None, yoco_cross: bool = False): | |
| super().__init__() | |
| self.config = config | |
| self.layer_idx = layer_idx | |
| if layer_idx is None: | |
| logger.warning_once( | |
| f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | |
| "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | |
| "when creating this class." | |
| ) | |
| self.attention_dropout = config.attention_dropout | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.hidden_size // self.num_heads | |
| self.num_key_value_heads = config.num_key_value_heads | |
| self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
| self.max_position_embeddings = config.max_position_embeddings | |
| self.is_causal = True | |
| self.yoco_cross = yoco_cross | |
| if (self.head_dim * self.num_heads) != self.hidden_size: | |
| raise ValueError( | |
| f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
| f" and `num_heads`: {self.num_heads})." | |
| ) | |
| op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim) | |
| self.out_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True) | |
| if yoco_cross: | |
| self.Wqkv = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) | |
| else: | |
| self.Wqkv = nn.Linear(self.hidden_size, op_size, bias=True) | |
| self.inner_cross_attn = FlashDiffCustomAttention(self.head_dim, self.layer_idx,) | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| raise NotImplementedError("SambaYAttention only support flash attention") | |
| class SambaYFlashAttention2(SambaYAttention): | |
| """ | |
| SambaY flash attention module. This module inherits from `SambaYAttention` as the weights of the module stays | |
| untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
| flash attention and deal with padding tokens in case the input contains any of them. | |
| """ | |
| # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
| # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
| # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
| self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| yoco_key_values: Optional[torch.Tensor] = None, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| # SambaYFlashAttention2 attention does not support output_attentions | |
| output_attentions = False | |
| if "padding_mask" in kwargs: | |
| warnings.warn( | |
| "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | |
| ) | |
| # overwrite attention_mask with padding_mask | |
| attention_mask = kwargs.pop("padding_mask") | |
| bsz, q_len, _ = hidden_states.size() | |
| if self.yoco_cross: | |
| q = self.Wqkv(hidden_states) | |
| q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim).transpose(1,2) | |
| key_states, value_states = yoco_key_values | |
| query_states = q | |
| use_sliding_windows = False | |
| else: | |
| qkv = self.Wqkv(hidden_states) | |
| query_pos = self.num_heads * self.head_dim | |
| query_states = qkv[..., :query_pos] | |
| key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | |
| value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | |
| # Flash attention requires the input to have the shape | |
| # batch_size x seq_length x head_dim x hidden_dim | |
| # therefore we just need to keep the original shape | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| use_sliding_windows = self.config.sliding_window is not None and self.config.sliding_window[self.layer_idx] is not None | |
| if past_key_value is not None: | |
| cache_kwargs = {"cache_position": cache_position}# Specific to RoPE models | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| yoco_key_values = key_states, value_states | |
| attn_dropout = self.attention_dropout if self.training else 0.0 | |
| # In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
| # therefore the input hidden states gets silently casted in float32. Hence, we need | |
| # cast them back in the correct dtype just to be sure everything works as expected. | |
| # This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
| # in fp32. | |
| if query_states.dtype == torch.float32: | |
| if torch.is_autocast_enabled(): | |
| target_dtype = torch.get_autocast_gpu_dtype() | |
| # Handle the case where the model is quantized | |
| elif hasattr(self.config, "_pre_quantization_dtype"): | |
| target_dtype = self.config._pre_quantization_dtype | |
| else: | |
| target_dtype = self.Wqkv.weight.dtype | |
| logger.warning_once( | |
| f"The input hidden states seems to be silently casted in float32, this might be related to" | |
| f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
| f" {target_dtype}." | |
| ) | |
| query_states = query_states.to(target_dtype) | |
| key_states = key_states.to(target_dtype) | |
| value_states = value_states.to(target_dtype) | |
| # Reashape to the expected shape for Flash Attention | |
| # -> b,q,h,d | |
| query_states = query_states.transpose(1, 2) | |
| key_states = key_states.transpose(1, 2) | |
| value_states = value_states.transpose(1, 2) | |
| if attention_mask is not None: | |
| key_states = key_states[:, :attention_mask.shape[-1]] | |
| value_states = value_states[:, :attention_mask.shape[-1]] | |
| attn_output = self._flash_attention_forward( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attention_mask, | |
| q_len, | |
| dropout=attn_dropout, | |
| use_sliding_windows=use_sliding_windows, | |
| ) | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
| attn_output = self.out_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, yoco_key_values | |
| def _flash_attention_forward( | |
| self, | |
| query_states, | |
| key_states, | |
| value_states, | |
| attention_mask, | |
| query_length, | |
| dropout=0.0, | |
| softmax_scale=None, | |
| use_sliding_windows=False, | |
| ): | |
| """ | |
| Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
| first unpad the input, then computes the attention scores and pad the final attention scores. | |
| Args: | |
| query_states (`torch.Tensor`): | |
| Input query states to be passed to Flash Attention API | |
| key_states (`torch.Tensor`): | |
| Input key states to be passed to Flash Attention API | |
| value_states (`torch.Tensor`): | |
| Input value states to be passed to Flash Attention API | |
| attention_mask (`torch.Tensor`): | |
| The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
| position of padding tokens and 1 for the position of non-padding tokens. | |
| dropout (`float`): | |
| Attention dropout | |
| softmax_scale (`float`, *optional*): | |
| The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
| use_sliding_windows (`bool`, *optional*): | |
| Whether to activate sliding window attention. | |
| """ | |
| causal = self.is_causal | |
| # Contains at least one padding token in the sequence | |
| if attention_mask is not None: | |
| batch_size = query_states.shape[0] | |
| ( | |
| query_states, | |
| key_states, | |
| value_states, | |
| indices_q, | |
| cu_seq_lens, | |
| max_seq_lens, | |
| ) = self._upad_input(query_states, key_states, value_states, attention_mask, query_length) | |
| cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
| max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
| if not use_sliding_windows: | |
| attn_output_unpad = self.inner_cross_attn( | |
| query_states, | |
| key_states, | |
| value_states, | |
| cu_seqlens_q=cu_seqlens_q, | |
| cu_seqlens_k=cu_seqlens_k, | |
| max_seqlen_q=max_seqlen_in_batch_q, | |
| max_seqlen_k=max_seqlen_in_batch_k, | |
| dropout_p=dropout, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| ) | |
| else: | |
| attn_output_unpad = self.inner_cross_attn( | |
| query_states, | |
| key_states, | |
| value_states, | |
| cu_seqlens_q=cu_seqlens_q, | |
| cu_seqlens_k=cu_seqlens_k, | |
| max_seqlen_q=max_seqlen_in_batch_q, | |
| max_seqlen_k=max_seqlen_in_batch_k, | |
| dropout_p=dropout, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| window_size=( | |
| self.config.sliding_window[self.layer_idx] -1, | |
| self.config.sliding_window[self.layer_idx] -1, | |
| ), | |
| ) | |
| attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
| else: | |
| if not use_sliding_windows: | |
| attn_output = self.inner_cross_attn( | |
| query_states, | |
| key_states, | |
| value_states, | |
| dropout_p=dropout, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| ) | |
| else: | |
| attn_output = self.inner_cross_attn( | |
| query_states, | |
| key_states, | |
| value_states, | |
| dropout_p=dropout, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| window_size=( | |
| self.config.sliding_window[self.layer_idx] -1, | |
| self.config.sliding_window[self.layer_idx] -1, | |
| ), | |
| ) | |
| return attn_output | |
| def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
| batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape | |
| indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
| key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | |
| value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | |
| if query_length == kv_seq_len: | |
| query_layer = index_first_axis( | |
| query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), | |
| indices_k, | |
| ) | |
| cu_seqlens_q = cu_seqlens_k | |
| max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
| indices_q = indices_k | |
| elif query_length == 1: | |
| max_seqlen_in_batch_q = 1 | |
| cu_seqlens_q = torch.arange( | |
| batch_size + 1, dtype=torch.int32, device=query_layer.device | |
| ) # There is a memcpy here, that is very bad. | |
| indices_q = cu_seqlens_q[:-1] | |
| query_layer = query_layer.squeeze(1) | |
| else: | |
| # The -q_len: slice assumes left padding. | |
| attention_mask = attention_mask[:, -query_length:] | |
| query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
| return ( | |
| query_layer, | |
| key_layer, | |
| value_layer, | |
| indices_q, | |
| (cu_seqlens_q, cu_seqlens_k), | |
| (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
| ) | |
| class Phi3Mamba(nn.Module): | |
| def __init__( | |
| self, | |
| d_model, | |
| d_state=16, | |
| d_conv=4, | |
| expand=2, | |
| dt_rank="auto", | |
| conv_bias=True, | |
| bias=False, | |
| use_fast_path=True, # Fused kernel options | |
| layer_idx=None, | |
| yoco_cross=False, | |
| yoco_kv=False, | |
| dtype=None, | |
| ): | |
| factory_kwargs = {"dtype": dtype} | |
| super().__init__() | |
| self.d_model = d_model | |
| self.d_state = d_state | |
| self.d_conv = d_conv | |
| self.expand = expand | |
| self.d_inner = int(self.expand * self.d_model) | |
| self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank | |
| self.use_fast_path = use_fast_path | |
| self.layer_idx = layer_idx | |
| self.yoco_cross = yoco_cross | |
| self.yoco_kv = yoco_kv | |
| if self.yoco_cross: | |
| self.in_proj = nn.Linear(self.d_model, self.d_inner, bias=bias, **factory_kwargs) | |
| self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs) | |
| else: | |
| self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs) | |
| self.conv1d = nn.Conv1d( | |
| in_channels=self.d_inner, | |
| out_channels=self.d_inner, | |
| bias=conv_bias, | |
| kernel_size=d_conv, | |
| groups=self.d_inner, | |
| padding=d_conv - 1, | |
| **factory_kwargs, | |
| ) | |
| self.activation = "silu" | |
| self.act = nn.SiLU() | |
| self.x_proj = nn.Linear( | |
| self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs | |
| ) | |
| self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs) | |
| # S4D real initialization | |
| A = repeat( | |
| torch.arange(1, self.d_state + 1, dtype=torch.float32), | |
| "n -> d n", | |
| d=self.d_inner, | |
| ).contiguous() | |
| A_log = torch.log(A) # Keep A_log in fp32 | |
| self.A_log = nn.Parameter(A_log) | |
| # D "skip" parameter | |
| self.D = nn.Parameter(torch.ones(self.d_inner)) # Keep in fp32 | |
| self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs) | |
| def forward(self, hidden_states, inference_params=None, mask= None, yoco_key_values = None, cache_position = None): | |
| """ | |
| hidden_states: (B, L, D) | |
| Returns: same shape as hidden_states | |
| """ | |
| if self.yoco_cross: | |
| out = self.in_proj(hidden_states) | |
| out = swiglu(out, yoco_key_values) | |
| out = self.out_proj(out) | |
| return out, yoco_key_values | |
| batch, seqlen, _ = hidden_states.shape | |
| conv_state, ssm_state = None, None | |
| if inference_params is not None: | |
| conv_state, ssm_state = self._get_states_from_cache(inference_params) | |
| if cache_position[0] > 0: #inference_params.get_seq_length(self.layer_idx) > 0: | |
| # The states are updated inplace | |
| out, _, _, yoco_key_values = self.step(hidden_states, conv_state, ssm_state, yoco_key_values) | |
| return out, yoco_key_values | |
| # We do matmul and transpose BLH -> HBL at the same time | |
| xz = rearrange( | |
| self.in_proj.weight @ rearrange(hidden_states.to(dtype = self.in_proj.weight.dtype), "b l d -> d (b l)"), | |
| "d (b l) -> b d l", | |
| l=seqlen, | |
| ) | |
| if self.in_proj.bias is not None: | |
| xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1") | |
| A = -torch.exp(self.A_log.float()) # (d_inner, d_state) | |
| # In the backward pass we write dx and dz next to each other to avoid torch.cat | |
| if (not self.yoco_kv) and self.use_fast_path and inference_params is None: # Doesn't support outputting the states | |
| out = mamba_inner_fn( | |
| xz, | |
| self.conv1d.weight, | |
| self.conv1d.bias, | |
| self.x_proj.weight, | |
| self.dt_proj.weight, | |
| self.out_proj.weight, | |
| self.out_proj.bias, | |
| A, | |
| None, # input-dependent B | |
| None, # input-dependent C | |
| self.D.float(), | |
| delta_bias=self.dt_proj.bias.float(), | |
| mask=mask, | |
| delta_softplus=True, | |
| ) | |
| else: | |
| x, z = xz.chunk(2, dim=1) | |
| if self.yoco_kv: | |
| z = z.transpose(-1,-2).contiguous() | |
| if mask is not None: | |
| x = x * mask.unsqueeze(1) | |
| # Compute short convolution | |
| if conv_state is not None: | |
| # If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv | |
| # Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise. | |
| conv_state.copy_(F.pad(x, (self.d_conv - x.shape[-1], 0))) # Update state (B D W) | |
| if causal_conv1d_fn is None: | |
| x = self.act(self.conv1d(x)[..., :seqlen]) | |
| else: | |
| assert self.activation in ["silu", "swish"] | |
| x = causal_conv1d_fn( | |
| x=x, | |
| weight=rearrange(self.conv1d.weight, "d 1 w -> d w"), | |
| bias=self.conv1d.bias, | |
| activation=self.activation, | |
| ) | |
| if mask is not None: | |
| x = x * mask.unsqueeze(1) | |
| # We're careful here about the layout, to avoid extra transposes. | |
| # We want dt to have d as the slowest moving dimension | |
| # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects. | |
| x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d) | |
| dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1) | |
| dt = self.dt_proj.weight @ dt.t() | |
| dt = rearrange(dt, "d (b l) -> b d l", l=seqlen) | |
| B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous() | |
| C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous() | |
| assert self.activation in ["silu", "swish"] | |
| y = selective_scan_fn( | |
| x, | |
| dt, | |
| A, | |
| B, | |
| C, | |
| self.D.float(), | |
| z= None if self.yoco_kv else z, | |
| delta_bias=self.dt_proj.bias.float(), | |
| delta_softplus=True, | |
| return_last_state=ssm_state is not None, | |
| ) | |
| if ssm_state is not None: | |
| y, last_state = y | |
| ssm_state.copy_(last_state) | |
| y = rearrange(y, "b d l -> b l d") | |
| if self.yoco_kv: | |
| yoco_key_values = y | |
| y = swiglu(z, y) | |
| out = self.out_proj(y) | |
| return out, yoco_key_values | |
| def step(self, hidden_states, conv_state, ssm_state, yoco_key_values): | |
| dtype = hidden_states.dtype | |
| assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now" | |
| xz = self.in_proj(hidden_states.to(dtype = self.in_proj.weight.dtype).squeeze(1)) # (B 2D) | |
| x, z = xz.chunk(2, dim=-1) # (B D) | |
| # Conv step | |
| if causal_conv1d_update is None: | |
| conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W) | |
| conv_state[:, :, -1] = x | |
| x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D) | |
| if self.conv1d.bias is not None: | |
| x = x + self.conv1d.bias | |
| x = self.act(x).to(dtype=dtype) | |
| else: | |
| x = causal_conv1d_update( | |
| x, | |
| conv_state, | |
| rearrange(self.conv1d.weight, "d 1 w -> d w"), | |
| self.conv1d.bias, | |
| self.activation, | |
| ) | |
| x_db = self.x_proj(x) # (B dt_rank+2*d_state) | |
| dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1) | |
| # Don't add dt_bias here | |
| dt = F.linear(dt, self.dt_proj.weight) # (B d_inner) | |
| A = -torch.exp(self.A_log.float()) # (d_inner, d_state) | |
| # SSM step | |
| if selective_state_update is None: | |
| # Discretize A and B | |
| dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype)) | |
| dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A)) | |
| dB = torch.einsum("bd,bn->bdn", dt, B) | |
| ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB) | |
| y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C) | |
| y = y + self.D.to(dtype) * x | |
| y = y * self.act(z) # (B D) | |
| else: | |
| y = selective_state_update( | |
| ssm_state, x, dt, A, B, C, self.D, z= None if self.yoco_kv else z, dt_bias=self.dt_proj.bias, dt_softplus=True | |
| ) | |
| if self.yoco_kv: | |
| yoco_key_values = y.unsqueeze(1) | |
| y = swiglu(z, y) | |
| out = self.out_proj(y) | |
| return out.unsqueeze(1), conv_state, ssm_state, yoco_key_values | |
| def _get_states_from_cache(self, inference_params): | |
| conv_state, ssm_state = inference_params.key_cache[self.layer_idx], inference_params.value_cache[self.layer_idx] | |
| return conv_state, ssm_state | |
| class SambaYDecoderLayer(nn.Module): | |
| def __init__(self, config: Phi4FlashConfig, layer_idx: int): | |
| super().__init__() | |
| self.mlp = SambaYMLP(config) | |
| self.input_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps) | |
| self.yoco_kv = False | |
| self.yoco_cross = False | |
| self.yoco_mb = False | |
| self.layer_idx = layer_idx | |
| assert config.num_hidden_layers % 4 == 0, 'n_layer should be divisible by 4 for SambaY ' | |
| if layer_idx >= config.num_hidden_layers//2: | |
| self.yoco_mb = True | |
| self.yoco_kv = (layer_idx >= (config.num_hidden_layers//2 +1)) | |
| self.yoco_cross = (layer_idx >= (config.num_hidden_layers//2 +2)) | |
| if (layer_idx >= (config.num_hidden_layers//2 +1)): | |
| config = copy.deepcopy(config) | |
| config.sliding_window = None | |
| self.config= config | |
| self.use_mamba = config.mb_per_layer > 0 and layer_idx % config.mb_per_layer == 0 | |
| if self.use_mamba: | |
| factory_kwargs = {"d_conv": config.mamba_d_conv, "d_state": config.mamba_d_state, "expand": config.mamba_expand , "dtype": None} | |
| self.attn = Phi3Mamba(config.hidden_size, layer_idx=layer_idx, yoco_cross=self.yoco_cross, yoco_kv=self.yoco_mb, **factory_kwargs) | |
| else: | |
| self.attn = SambaYFlashAttention2(config, layer_idx=layer_idx, yoco_cross=self.yoco_cross) | |
| self.resid_attn_dropout = nn.Dropout(config.resid_pdrop) | |
| self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop) | |
| self.post_attention_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ssm_output: Optional[torch.Tensor] = None, | |
| yoco_key_values: Optional[torch.Tensor] = None, | |
| **kwargs, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): | |
| input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range | |
| `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
| (see `past_key_values`). | |
| past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states.to(dtype=self.input_layernorm.weight.dtype)) | |
| if self.use_mamba: | |
| attn_outputs, ssm_output = self.attn( | |
| hidden_states, inference_params=past_key_value, | |
| mask = attention_mask, yoco_key_values = ssm_output, | |
| cache_position=cache_position, | |
| ) | |
| residual = residual.to(torch.float32) | |
| self_attn_weights = None | |
| else: | |
| if self.config.sliding_window is not None and self.config.sliding_window[self.layer_idx] is not None and attention_mask is not None: # efficient SDPA and no padding | |
| if past_key_value is not None and cache_position[0] > 0: # when decoding | |
| attention_mask = attention_mask[:, -self.config.sliding_window[self.layer_idx]:] | |
| #hidden_states = self.input_layernorm2(hidden_states.to(dtype=self.input_layernorm2.weight.dtype)) | |
| # Self Attention | |
| attn_outputs, self_attn_weights, yoco_key_values = self.attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| yoco_key_values = yoco_key_values, | |
| ) | |
| hidden_states = residual + self.resid_attn_dropout(attn_outputs) | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states.to(dtype=self.post_attention_layernorm.weight.dtype)) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + self.resid_mlp_dropout(hidden_states) | |
| outputs = (hidden_states,) | |
| outputs += (ssm_output,) | |
| outputs += (yoco_key_values,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| return outputs | |
| PHI_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`Phi4FlashConfig`]): | |
| Model configuration class with all the parameters of the model. Initializing with a config file does not | |
| load the weights associated with the model, only the configuration. Check out the | |
| [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| class Phi4FlashPreTrainedModel(PreTrainedModel): | |
| config_class = Phi4FlashConfig | |
| base_model_prefix = "model" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["SambaYDecoderLayer"] | |
| _skip_keys_device_placement = "past_key_values" | |
| _supports_flash_attn_2 = True | |
| _supports_sdpa = False | |
| _supports_cache_class = True | |
| def _init_weights(self, module): | |
| std = self.config.initializer_range | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| PHI_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | |
| `past_key_values`). | |
| If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
| and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
| information on the default strategy. | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.n_positions - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
| Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
| blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | |
| returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | |
| Two formats are allowed: | |
| - a [`~cache_utils.Cache`] instance; | |
| - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
| shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | |
| cache format. | |
| The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | |
| legacy cache format will be returned. | |
| If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | |
| have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | |
| of shape `(batch_size, sequence_length)`. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class Phi4FlashModel(Phi4FlashPreTrainedModel): | |
| """ | |
| Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SambaYDecoderLayer`] | |
| Args: | |
| config: Phi4FlashConfig | |
| """ | |
| def __init__(self, config: Phi4FlashConfig): | |
| super().__init__(config) | |
| self.padding_idx = config.pad_token_id | |
| self.vocab_size = config.vocab_size | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
| self.embed_dropout = nn.Dropout(config.embd_pdrop) | |
| self.layers = nn.ModuleList( | |
| [SambaYDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
| ) | |
| self.final_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps) | |
| self._attn_implementation = config._attn_implementation | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPast]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # retrieve input_ids and inputs_embeds | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| batch_size, seq_length = input_ids.shape[:2] | |
| elif inputs_embeds is not None: | |
| batch_size, seq_length = inputs_embeds.shape[:2] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| if use_cache and past_key_values is None and not self.training: | |
| batch_size, seq_len, _ = inputs_embeds.shape | |
| past_key_values = SambaYCache( | |
| self.config, | |
| max_batch_size=batch_size, | |
| max_cache_len=seq_len, | |
| device=self.device, | |
| dtype=inputs_embeds.dtype, | |
| ) | |
| if cache_position is None: | |
| past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
| cache_position = torch.arange( | |
| past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
| ) | |
| if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache and not self.training: | |
| is_padding_right = attention_mask[:, -1].sum().item() != batch_size | |
| if is_padding_right: | |
| raise ValueError( | |
| "You are attempting to perform batched generation with padding_side='right'" | |
| " this may lead to unexpected behaviour for Flash Attention version of Phi4Flash. Make sure to " | |
| " call `tokenizer.padding_side = 'left'` before tokenizing the input. " | |
| ) | |
| hidden_states = inputs_embeds | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| ssm_output = None | |
| yoco_key_values = None | |
| for decoder_layer in self.layers: # TODO: only need to inference the first half of the layers during pre-fill | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| decoder_layer.__call__, | |
| hidden_states, | |
| attention_mask, | |
| position_ids, | |
| past_key_values, | |
| output_attentions, | |
| use_cache, | |
| cache_position, | |
| ssm_output, | |
| yoco_key_values, | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_values, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position = cache_position, | |
| ssm_output = ssm_output, | |
| yoco_key_values = yoco_key_values, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| ssm_output = layer_outputs[1] | |
| yoco_key_values = layer_outputs[2] | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[3],) | |
| hidden_states = self.final_layernorm(hidden_states.to(dtype=self.final_layernorm.weight.dtype)) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| output = BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=past_key_values, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| ) | |
| return output if return_dict else output.to_tuple() | |
| class Phi4FlashForCausalLM(Phi4FlashPreTrainedModel, GenerationMixin): | |
| _tied_weights_keys = ["lm_head.weight"] | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi4Flash,bias=False->bias=True | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.model = Phi4FlashModel(config) | |
| self.vocab_size = config.vocab_size | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings | |
| def get_input_embeddings(self): | |
| return self.model.embed_tokens | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings | |
| def set_input_embeddings(self, value): | |
| self.model.embed_tokens = value | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder | |
| def set_decoder(self, decoder): | |
| self.model = decoder | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder | |
| def get_decoder(self): | |
| return self.model | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| num_logits_to_keep: int = 0, | |
| **loss_kwargs, | |
| ) -> Union[Tuple, CausalLMOutputWithPast]: | |
| r""" | |
| Args: | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
| config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
| (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
| Returns: | |
| Example: | |
| ```python | |
| >>> from transformers import AutoTokenizer, Phi4FlashForCausalLM | |
| >>> model = Phi4FlashForCausalLM.from_pretrained("microsoft/Phi4-mini-flash-reasoning") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi4-mini-flash-reasoning") | |
| >>> prompt = "This is an example script ." | |
| >>> inputs = tokenizer(prompt, return_tensors="pt") | |
| >>> # Generate | |
| >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
| >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| 'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str' | |
| ```""" | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
| outputs = self.model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| cache_position = cache_position, | |
| ) | |
| hidden_states = outputs[0] | |
| logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) | |
| loss = None | |
| if labels is not None: | |
| loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->PHI,Llama->Phi4Flash with self.transformer->self.model, transformer_outputs->model_outputs | |
| class Phi4FlashForSequenceClassification(Phi4FlashPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.model = Phi4FlashModel(config) | |
| self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.model.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.embed_tokens = value | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| model_outputs = self.model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = model_outputs[0] | |
| logits = self.score(hidden_states) | |
| if input_ids is not None: | |
| batch_size = input_ids.shape[0] | |
| else: | |
| batch_size = inputs_embeds.shape[0] | |
| if self.config.pad_token_id is None and batch_size != 1: | |
| raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
| if self.config.pad_token_id is None: | |
| sequence_lengths = -1 | |
| else: | |
| if input_ids is not None: | |
| # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility | |
| sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | |
| sequence_lengths = sequence_lengths % input_ids.shape[-1] | |
| sequence_lengths = sequence_lengths.to(logits.device) | |
| else: | |
| sequence_lengths = -1 | |
| pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
| loss = None | |
| if labels is not None: | |
| labels = labels.to(logits.device) | |
| if self.config.problem_type is None: | |
| if self.num_labels == 1: | |
| self.config.problem_type = "regression" | |
| elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
| self.config.problem_type = "single_label_classification" | |
| else: | |
| self.config.problem_type = "multi_label_classification" | |
| if self.config.problem_type == "regression": | |
| loss_fct = MSELoss() | |
| if self.num_labels == 1: | |
| loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
| else: | |
| loss = loss_fct(pooled_logits, labels) | |
| elif self.config.problem_type == "single_label_classification": | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
| elif self.config.problem_type == "multi_label_classification": | |
| loss_fct = BCEWithLogitsLoss() | |
| loss = loss_fct(pooled_logits, labels) | |
| if not return_dict: | |
| output = (pooled_logits,) + model_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return SequenceClassifierOutputWithPast( | |
| loss=loss, | |
| logits=pooled_logits, | |
| past_key_values=model_outputs.past_key_values, | |
| hidden_states=model_outputs.hidden_states, | |
| attentions=model_outputs.attentions, | |
| ) | |
| # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with MPT->PHI,Mpt->Phi4Flash,self.transformer->self.model,transformer_outputs->model_outputs | |
| class Phi4FlashForTokenClassification(Phi4FlashPreTrainedModel): | |
| def __init__(self, config: Phi4FlashConfig): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.model = Phi4FlashModel(config) | |
| if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: | |
| classifier_dropout = config.classifier_dropout | |
| elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | |
| classifier_dropout = config.hidden_dropout | |
| else: | |
| classifier_dropout = 0.1 | |
| self.dropout = nn.Dropout(classifier_dropout) | |
| self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **deprecated_arguments, | |
| ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| model_outputs = self.model( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = model_outputs[0] | |
| hidden_states = self.dropout(hidden_states) | |
| logits = self.classifier(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| # move labels to correct device to enable model parallelism | |
| labels = labels.to(logits.device) | |
| batch_size, seq_length = labels.shape | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)) | |
| if not return_dict: | |
| output = (logits,) + model_outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return TokenClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=model_outputs.hidden_states, | |
| attentions=model_outputs.attentions, | |
| ) | |
| ## support batched generation | |
| class SelectiveScanFn(torch.autograd.Function): | |
| def forward(ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, | |
| return_last_state=False): | |
| if u.stride(-1) != 1: | |
| u = u.contiguous() | |
| if delta.stride(-1) != 1: | |
| delta = delta.contiguous() | |
| if D is not None: | |
| D = D.contiguous() | |
| if B.stride(-1) != 1: | |
| B = B.contiguous() | |
| if C.stride(-1) != 1: | |
| C = C.contiguous() | |
| if z is not None and z.stride(-1) != 1: | |
| z = z.contiguous() | |
| if B.dim() == 3: | |
| B = rearrange(B, "b dstate l -> b 1 dstate l") | |
| ctx.squeeze_B = True | |
| if C.dim() == 3: | |
| C = rearrange(C, "b dstate l -> b 1 dstate l") | |
| ctx.squeeze_C = True | |
| out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus) | |
| ctx.delta_softplus = delta_softplus | |
| ctx.has_z = z is not None | |
| last_state = x[:, :, -1, 1::2] # (batch, dim, dstate) | |
| if not ctx.has_z: | |
| ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x) | |
| return out if not return_last_state else (out, last_state) | |
| else: | |
| ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out) | |
| out_z = rest[0] | |
| return out_z if not return_last_state else (out_z, last_state) | |
| def backward(ctx, dout, *args): | |
| if not ctx.has_z: | |
| u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors | |
| z = None | |
| out = None | |
| else: | |
| u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors | |
| if dout.stride(-1) != 1: | |
| dout = dout.contiguous() | |
| # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the | |
| # backward of selective_scan_cuda with the backward of chunk). | |
| # Here we just pass in None and dz will be allocated in the C++ code. | |
| du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd( | |
| u, delta, A, B, C, D, z, delta_bias, dout, x, out, None, ctx.delta_softplus, | |
| False # option to recompute out_z, not used here | |
| ) | |
| dz = rest[0] if ctx.has_z else None | |
| dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB | |
| dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC | |
| return (du, ddelta, dA, dB, dC, | |
| dD if D is not None else None, | |
| dz, | |
| ddelta_bias if delta_bias is not None else None, | |
| None, | |
| None) | |
| def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, | |
| return_last_state=False): | |
| """if return_last_state is True, returns (out, last_state) | |
| last_state has shape (batch, dim, dstate). Note that the gradient of the last state is | |
| not considered in the backward pass. | |
| """ | |
| return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state) | |
| class MambaInnerFn(torch.autograd.Function): | |
| def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, | |
| out_proj_weight, out_proj_bias, | |
| A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, | |
| C_proj_bias=None, mask=None, delta_softplus=True, checkpoint_lvl=1,): | |
| """ | |
| xz: (batch, dim, seqlen) | |
| """ | |
| assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d." | |
| assert checkpoint_lvl in [0, 1] | |
| L = xz.shape[-1] | |
| delta_rank = delta_proj_weight.shape[1] | |
| d_state = A.shape[-1] * (1 if not A.is_complex() else 2) | |
| if torch.is_autocast_enabled(): | |
| x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) | |
| delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) | |
| out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) | |
| out_proj_bias = (out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype()) | |
| if out_proj_bias is not None else None) | |
| if xz.stride(-1) != 1: | |
| xz = xz.contiguous() | |
| conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w") | |
| x, z = xz.chunk(2, dim=1) | |
| if mask is not None: | |
| x = x * mask.unsqueeze(1) | |
| conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None | |
| conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd( | |
| x, conv1d_weight, conv1d_bias, None, None, None, True | |
| ) | |
| if mask is not None: | |
| conv1d_out = conv1d_out * mask.unsqueeze(1) | |
| # We're being very careful here about the layout, to avoid extra transposes. | |
| # We want delta to have d as the slowest moving dimension | |
| # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects. | |
| x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) # (bl d) | |
| delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L) | |
| ctx.is_variable_B = B is None | |
| ctx.is_variable_C = C is None | |
| ctx.B_proj_bias_is_None = B_proj_bias is None | |
| ctx.C_proj_bias_is_None = C_proj_bias is None | |
| if B is None: # variable B | |
| B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl dstate) | |
| if B_proj_bias is not None: | |
| B = B + B_proj_bias.to(dtype=B.dtype) | |
| if not A.is_complex(): | |
| # B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous() | |
| B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous() | |
| else: | |
| B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous() | |
| else: | |
| if B.stride(-1) != 1: | |
| B = B.contiguous() | |
| if C is None: # variable C | |
| C = x_dbl[:, -d_state:] # (bl dstate) | |
| if C_proj_bias is not None: | |
| C = C + C_proj_bias.to(dtype=C.dtype) | |
| if not A.is_complex(): | |
| # C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous() | |
| C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous() | |
| else: | |
| C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous() | |
| else: | |
| if C.stride(-1) != 1: | |
| C = C.contiguous() | |
| if D is not None: | |
| D = D.contiguous() | |
| out, scan_intermediates, out_z = selective_scan_cuda.fwd( | |
| conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus | |
| ) | |
| ctx.delta_softplus = delta_softplus | |
| ctx.out_proj_bias_is_None = out_proj_bias is None | |
| ctx.checkpoint_lvl = checkpoint_lvl | |
| if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass | |
| conv1d_out, delta = None, None | |
| ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, | |
| delta_proj_weight, out_proj_weight, conv1d_out, delta, | |
| A, B, C, D, delta_bias, scan_intermediates, out) | |
| return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias) | |
| def backward(ctx, dout): | |
| # dout: (batch, seqlen, dim) | |
| assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d." | |
| (xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight, | |
| conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, out) = ctx.saved_tensors | |
| L = xz.shape[-1] | |
| delta_rank = delta_proj_weight.shape[1] | |
| d_state = A.shape[-1] * (1 if not A.is_complex() else 2) | |
| x, z = xz.chunk(2, dim=1) | |
| if dout.stride(-1) != 1: | |
| dout = dout.contiguous() | |
| if ctx.checkpoint_lvl == 1: | |
| conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd( | |
| x, conv1d_weight, conv1d_bias, None, None, None, True | |
| ) | |
| delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), | |
| "d (b l) -> b d l", l = L) | |
| # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the | |
| # backward of selective_scan_cuda with the backward of chunk). | |
| dxz = torch.empty_like(xz) # (batch, dim, seqlen) | |
| dx, dz = dxz.chunk(2, dim=1) | |
| dout = rearrange(dout, "b l e -> e (b l)") | |
| dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L) | |
| dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd( | |
| conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates, out, dz, | |
| ctx.delta_softplus, | |
| True # option to recompute out_z | |
| ) | |
| dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)")) | |
| dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None | |
| dD = dD if D is not None else None | |
| dx_dbl = torch.empty_like(x_dbl) | |
| dB_proj_bias = None | |
| if ctx.is_variable_B: | |
| if not A.is_complex(): | |
| dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous() | |
| else: | |
| dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous() | |
| dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None | |
| dx_dbl[:, delta_rank:delta_rank + d_state] = dB # (bl d) | |
| dB = None | |
| dC_proj_bias = None | |
| if ctx.is_variable_C: | |
| if not A.is_complex(): | |
| dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous() | |
| else: | |
| dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous() | |
| dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None | |
| dx_dbl[:, -d_state:] = dC # (bl d) | |
| dC = None | |
| ddelta = rearrange(ddelta, "b d l -> d (b l)") | |
| ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank]) | |
| dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight) | |
| dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)") | |
| dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d")) | |
| dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out) | |
| dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1]) | |
| # The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the | |
| # backward of conv1d with the backward of chunk). | |
| dx, dconv1d_weight, dconv1d_bias, *_ = causal_conv1d_cuda.causal_conv1d_bwd( | |
| x, conv1d_weight, conv1d_bias, dconv1d_out, None, None, None, dx, False, True | |
| ) | |
| dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None | |
| dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w") | |
| return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight, | |
| dout_proj_weight, dout_proj_bias, | |
| dA, dB, dC, dD, | |
| ddelta_bias if delta_bias is not None else None, | |
| dB_proj_bias, dC_proj_bias, None, None) | |
| def mamba_inner_fn( | |
| xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, | |
| out_proj_weight, out_proj_bias, | |
| A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, | |
| C_proj_bias=None, mask=None, delta_softplus=True | |
| ): | |
| return MambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, | |
| out_proj_weight, out_proj_bias, | |
| A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, mask, delta_softplus) | |
| def lambda_init_fn(depth): | |
| return 0.8 - 0.6 * math.exp(-0.3 * depth) | |
| def split_heads(x): | |
| # split by num_heads, the stripe pattern is friendly to tensor parallel. | |
| x = rearrange(x, "... (H two) D -> ... H two D", two=2) | |
| x1 = x[..., 0, :] | |
| x2 = x[..., 1, :] | |
| return x1, x2 | |
| class FlashDiffCustomAttention(nn.Module): | |
| """Implement the scaled dot product attention with softmax. | |
| Arguments | |
| --------- | |
| head_dim: The dimension of the heads. | |
| depth: The layer id, starting from 0. | |
| """ | |
| def __init__( | |
| self, | |
| head_dim, | |
| depth, | |
| fa_og = True, | |
| ): | |
| super().__init__() | |
| assert flash_attn_varlen_func is not None, "FlashAttention is not installed" | |
| assert flash_attn_func is not None, "FlashAttention is not installed" | |
| self.head_dim = head_dim | |
| self.fa_og = fa_og # turning it to false needs customized flash attention https://github.com/xiayuqing0622/flex_head_fa | |
| self.lambda_init = lambda_init_fn(depth) | |
| self.lambda_q1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) | |
| self.lambda_k1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) | |
| self.lambda_q2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) | |
| self.lambda_k2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) | |
| self.subln = SambaYRMSNorm(2 * self.head_dim, eps=1e-5) | |
| def forward( | |
| self, | |
| q, | |
| k, | |
| v, | |
| dropout_p = 0.0, | |
| cu_seqlens_q=None, | |
| max_seqlen_q=None, | |
| cu_seqlens_k=None, | |
| max_seqlen_k=None, | |
| softmax_scale=None, | |
| window_size=(-1, -1), | |
| causal=None, | |
| ): | |
| """Implements the multihead softmax attention. | |
| Arguments | |
| --------- | |
| q, k, v: The tensors containing the query, key, and value. | |
| If cu_seqlens is None and max_seqlen is None, then each has shape (B, S, H, D). | |
| If cu_seqlens is not None and max_seqlen is not None, then each has shape | |
| (total, H, D), where total is the sum of the sequence lengths in the batch. | |
| causal: if passed, will override self.causal | |
| cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths | |
| of the sequences in the batch, used to index into qkv. | |
| max_seqlen: int. Maximum sequence length in the batch. | |
| Returns: | |
| -------- | |
| out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None, | |
| else (B, S, H, D). | |
| """ | |
| q = q.to(torch.bfloat16) | |
| k = k.to(torch.bfloat16) | |
| v = v.to(torch.bfloat16) | |
| assert q.dtype in [torch.float16, torch.bfloat16] | |
| assert q.is_cuda and k.is_cuda and v.is_cuda | |
| #causal = self.causal if causal is None else causal | |
| unpadded = cu_seqlens_q is not None | |
| q1, q2 = split_heads(q) | |
| k1, k2 = split_heads(k) | |
| if self.fa_og: | |
| v1, v2 = split_heads(v) | |
| else: | |
| v = rearrange(v, "... (H two) D -> ... H (two D)", two=2) | |
| kwargs = { | |
| "dropout_p": dropout_p, | |
| "softmax_scale": softmax_scale, | |
| "causal": causal, | |
| "window_size": window_size, | |
| } | |
| if unpadded: | |
| assert cu_seqlens_q.dtype == torch.int32 | |
| assert max_seqlen_q is not None | |
| assert isinstance(max_seqlen_q, int) | |
| assert cu_seqlens_k is not None | |
| assert cu_seqlens_k.dtype == torch.int32 | |
| assert max_seqlen_k is not None | |
| assert isinstance(max_seqlen_k, int) | |
| kwargs.update({ | |
| "cu_seqlens_q": cu_seqlens_q, | |
| "max_seqlen_q": max_seqlen_q, | |
| "cu_seqlens_k": cu_seqlens_k, | |
| "max_seqlen_k": max_seqlen_k, | |
| }) | |
| attn_func = flash_attn_varlen_func | |
| else: | |
| attn_func = flash_attn_func | |
| if self.fa_og: | |
| attn11 = attn_func(q1, k1, v1, **kwargs) | |
| attn12 = attn_func(q1, k1, v2, **kwargs) | |
| attn1 = torch.cat([attn11, attn12], dim=-1) | |
| attn21 = attn_func(q2, k2, v1, **kwargs) | |
| attn22 = attn_func(q2, k2, v2, **kwargs) | |
| attn2 = torch.cat([attn21, attn22], dim=-1) | |
| else: | |
| attn1 = attn_func(q1, k1, v, **kwargs) | |
| attn2 = attn_func(q2, k2, v, **kwargs) | |
| lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1).float()).type_as(q) | |
| lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1).float()).type_as(q) | |
| lambda_full = lambda_1 - lambda_2 + self.lambda_init | |
| attn = attn1 - lambda_full * attn2 | |
| attn = self.subln(attn) | |
| attn = attn * (1 - self.lambda_init) | |
| # reshape back to 2 * num_head | |
| attn = rearrange(attn, "... H (two D) -> ... (H two) D", two=2) | |
| return attn | |