| import torch | |
| import torch.nn as nn | |
| from torchvision import transforms | |
| class Generator(nn.Module): | |
| def __init__(self, nz=128, ngf=64, nc=3): | |
| super(Generator, self).__init__() | |
| self.main = nn.Sequential( | |
| nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), | |
| nn.BatchNorm2d(ngf * 8), | |
| nn.LeakyReLU(0.2, inplace=True), | |
| nn.Dropout(0.2), | |
| nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), | |
| nn.BatchNorm2d(ngf * 4), | |
| nn.LeakyReLU(0.2, inplace=True), | |
| nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), | |
| nn.BatchNorm2d(ngf * 2), | |
| nn.LeakyReLU(0.2, inplace=True), | |
| nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), | |
| nn.BatchNorm2d(ngf), | |
| nn.LeakyReLU(0.2, inplace=True), | |
| nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), | |
| nn.Tanh() | |
| ) | |
| def forward(self, input): | |
| output = self.main(input) | |
| return output | |
| class PreTrainedPipeline(): | |
| def __init__(self, path=""): | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.model = Generator().to(self.device) | |
| self.model.load_state_dict(torch.load("pytorch_model.bin", map_location=self.device)) | |
| def __call__(self, inputs: str): | |
| """ | |
| Args: | |
| inputs (:obj:`str`): | |
| a string containing some text | |
| Return: | |
| A :obj:`PIL.Image` with the raw image representation as PIL. | |
| """ | |
| noise = torch.randn(1, 128, 1, 1, device=self.device) | |
| with torch.no_grad(): | |
| output = self.model(noise).cpu() | |
| img = output[0] | |
| img = (img + 1) / 2 | |
| img = transforms.ToPILImage()(img) | |
| return img |