Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- stanfordnlp/imdb
|
| 4 |
+
metrics:
|
| 5 |
+
- perplexity
|
| 6 |
+
base_model:
|
| 7 |
+
- EuroBERT/EuroBERT-210m
|
| 8 |
+
pipeline_tag: fill-mask
|
| 9 |
+
tags:
|
| 10 |
+
- art
|
| 11 |
+
---
|
| 12 |
+
# Data Card for EuroBERT-210m-finetuned-imdb
|
| 13 |
+
|
| 14 |
+
## Model Overview
|
| 15 |
+
|
| 16 |
+
- **Model Name**: EuroBERT-210m-finetuned-imdb
|
| 17 |
+
- **Base Model**: EuroBERT-210m
|
| 18 |
+
- **Fine-tuned On**: IMDb dataset
|
| 19 |
+
- **Task**: Masked Language Modeling (MLM)
|
| 20 |
+
- **Training Objective**: Minimize Perplexity
|
| 21 |
+
|
| 22 |
+
## Dataset Details
|
| 23 |
+
|
| 24 |
+
- **Dataset Used**: IMDb
|
| 25 |
+
- **Dataset Version**: Default version from `datasets` library
|
| 26 |
+
- **Dataset Source**: Hugging Face `datasets`
|
| 27 |
+
- **Training Split**: `train`
|
| 28 |
+
- **Evaluation Split**: `test`
|
| 29 |
+
|
| 30 |
+
## Training & Evaluation
|
| 31 |
+
|
| 32 |
+
### Training Process
|
| 33 |
+
- The model was fine-tuned for three epochs using PyTorch and Hugging Face's `transformers` library.
|
| 34 |
+
- The optimizer and learning rate scheduler were set up within the `accelerate` framework.
|
| 35 |
+
|
| 36 |
+
### Evaluation Metrics
|
| 37 |
+
- The model was evaluated using **Perplexity (PPL)** on the test set.
|
| 38 |
+
- Results:
|
| 39 |
+
- **Epoch 0**: PPL = 12.63
|
| 40 |
+
- **Epoch 1**: PPL = 9.35
|
| 41 |
+
- **Epoch 2**: PPL = 8.12
|
| 42 |
+
|
| 43 |
+
## Model Usage
|
| 44 |
+
|
| 45 |
+
### Inference
|
| 46 |
+
The model can be used for masked token prediction using the following script:
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
import torch
|
| 50 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
| 51 |
+
|
| 52 |
+
def predict_masked_sentence(sentence, mask_token="<|mask|>"):
|
| 53 |
+
"""
|
| 54 |
+
Predicts top-1 tokens for all mask tokens in a sentence and returns the reconstructed text.
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
sentence (str): Input sentence with mask tokens (e.g., "The movie was [MASK]!").
|
| 58 |
+
mask_token (str, optional): Token used as mask in the input sentence. Defaults to "<|mask|>".
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
str: Sentence with all mask tokens replaced by top-1 predictions.
|
| 62 |
+
"""
|
| 63 |
+
model_checkpoint = "milanvelinovski/EuroBERT-210m-finetuned-imdb"
|
| 64 |
+
model = AutoModelForMaskedLM.from_pretrained(model_checkpoint, trust_remote_code=True)
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, trust_remote_code=True)
|
| 66 |
+
|
| 67 |
+
sentence_with_model_mask = sentence.replace(mask_token, "<|mask|>")
|
| 68 |
+
inputs = tokenizer(sentence_with_model_mask, return_tensors="pt")
|
| 69 |
+
token_logits = model(**inputs).logits
|
| 70 |
+
|
| 71 |
+
mask_token_indices = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
|
| 72 |
+
top_tokens = [torch.topk(token_logits[0, idx, :], 1).indices.item() for idx in mask_token_indices]
|
| 73 |
+
|
| 74 |
+
text_parts = sentence.split(mask_token)
|
| 75 |
+
final_text = text_parts[0] + ''.join(tokenizer.decode([token]) + text_parts[i+1] for i, token in enumerate(top_tokens))
|
| 76 |
+
|
| 77 |
+
return final_text
|
| 78 |
+
|
| 79 |
+
text = "The protagonist's journey was <|mask|>, filled with <|mask|> obstacles that made the ending feel <|mask|>."
|
| 80 |
+
final_text = predict_masked_sentence(text)
|
| 81 |
+
print(final_text)
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
## Libraries Used
|
| 85 |
+
|
| 86 |
+
| Library | Version |
|
| 87 |
+
|-------------|----------|
|
| 88 |
+
| datasets | 3.3.1 |
|
| 89 |
+
| transformers| 4.49.0 |
|
| 90 |
+
| evaluate | 0.4.3 |
|
| 91 |
+
| accelerate | 1.2.1 |
|
| 92 |
+
| torch | 2.5.1+cu121 |
|
| 93 |
+
|
| 94 |
+
## Model Limitations
|
| 95 |
+
- The model is primarily trained for masked language modeling and may not generalize well to other NLP tasks.
|
| 96 |
+
- The perplexity scores indicate that further fine-tuning or hyperparameter optimization might improve performance.
|
| 97 |
+
- Model predictions are constrained by the IMDb dataset and may not generalize well to other domains.
|
| 98 |
+
|
| 99 |
+
## Citation
|
| 100 |
+
If you use this model, please cite:
|
| 101 |
+
```
|
| 102 |
+
@misc{EuroBERT-210m-finetuned-imdb,
|
| 103 |
+
author = {Milan Velinovski},
|
| 104 |
+
title = {EuroBERT-210m-finetuned-imdb},
|
| 105 |
+
year = {2025},
|
| 106 |
+
publisher = {Hugging Face},
|
| 107 |
+
url = {https://huggingface.co/milanvelinovski/EuroBERT-210m-finetuned-imdb}
|
| 108 |
+
}
|
| 109 |
+
```
|