--- base_model: zai-org/GLM-5 library_name: mlx license: mit tags: - mlx - safetensors - glm_moe_dsa - conversational - text-generation - mxfp4 - quantized language: - en - zh --- # mlx-community/GLM-5-MXFP4-Q8 This model was converted to MLX format from [`zai-org/GLM-5`](https://huggingface.co/zai-org/GLM-5) using a custom MXFP4-Q8 quantization scheme. GLM-5 is a 744B parameter (40B active) Mixture-of-Experts model developed by Z.ai, targeting complex systems engineering and long-horizon agentic tasks. It uses Multi-Head Latent Attention (MLA) with 47 transformer layers, 64 routed experts (4 active per token), and 1 shared expert. ## Quantization This model uses a mixed-precision quantization. | Component | Mode | Bits | Group Size | |---|---|---|---| | Expert weights (switch_mlp) | MXFP4 | 4 | 32 | | Attention, embeddings, shared expert, dense MLP, lm_head | Affine | 8 | 64 | ## Use with mlx-lm ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/GLM-5-MXFP4-Q8") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```