Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
pipeline_tag: image-to-image
|
| 6 |
+
tags:
|
| 7 |
+
- remote-sensing
|
| 8 |
+
- earth-observation
|
| 9 |
+
- vae
|
| 10 |
+
- tokenizer
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# EO-VAE: Towards A Multi-sensor Tokenizer for Earth Observation
|
| 14 |
+
|
| 15 |
+
EO-VAE is a multi-sensor variational autoencoder designed to serve as a foundational tokenizer for the Earth Observation (EO) domain. Unlike traditional approaches that require separate models for different sensors, EO-VAE utilizes a single model to encode and reconstruct flexible channel combinations through dynamic hypernetworks.
|
| 16 |
+
|
| 17 |
+
## Model Summary
|
| 18 |
+
- **Model Name:** EO-VAE
|
| 19 |
+
- **Paper:** [EO-VAE: Towards A Multi-sensor Tokenizer for Earth Observation Data](https://arxiv.org/abs/2602.12177)
|
| 20 |
+
- **License:** Apache-2.0
|
| 21 |
+
- **Task:** Image-to-Image / Tokenization (Remote Sensing)
|
| 22 |
+
|
| 23 |
+
## Usage
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
import torch
|
| 27 |
+
from eo_vae.models.new_autoencoder import EOFluxVAE
|
| 28 |
+
|
| 29 |
+
model = EOFluxVAE.from_pretrained(
|
| 30 |
+
repo_id="nilsleh/eo-vae",
|
| 31 |
+
ckpt_filename="eo-vae.ckpt",
|
| 32 |
+
config_filename="model_config.yaml",
|
| 33 |
+
device="cpu",
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Run reconstruction / latent extraction
|
| 37 |
+
x = torch.randn(1, 3, 256, 256)
|
| 38 |
+
# Example wavelengths for Sentinel-2 RGB
|
| 39 |
+
wvs = torch.tensor([0.665, 0.56, 0.49], dtype=torch.float32)
|
| 40 |
+
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
recon = model.reconstruct(x, wvs) # [B, 3, 256, 256]
|
| 43 |
+
z = model.encode_spatial_normalized(x, wvs) # [B, 32, 32, 32] for 256x256 input
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
These are the wavelengths used across modalities:
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
```python
|
| 51 |
+
WAVELENGTHS = {
|
| 52 |
+
'S2RGB': [0.665, 0.56, 0.49],
|
| 53 |
+
'S1RTC': [5.4, 5.6],
|
| 54 |
+
'S2L2A': [
|
| 55 |
+
0.443, 0.490, 0.560, 0.665, 0.705, 0.740,
|
| 56 |
+
0.783, 0.842, 0.865, 1.610, 2.190, 0.945,
|
| 57 |
+
],
|
| 58 |
+
'S2L1C': [
|
| 59 |
+
0.443, 0.490, 0.560, 0.665, 0.705, 0.740,
|
| 60 |
+
0.783, 0.842, 0.865, 0.945, 1.375, 1.610, 2.190,
|
| 61 |
+
],
|
| 62 |
+
}
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
If you use this model in your work, please cite:
|
| 66 |
+
|
| 67 |
+
[**EO-VAE: Towards A Multi-sensor Tokenizer for Earth Observation Data**](https://arxiv.org/abs/2602.12177)
|
| 68 |
+
|
| 69 |
+
```bibtex
|
| 70 |
+
@article{eo-vae,
|
| 71 |
+
title={EO-VAE: Towards A Multi-sensor Tokenizer for Earth Observation Data},
|
| 72 |
+
author={Lehmann, Nils and Wang, Yi and Xiong, Zhitong and Zhu, Xiaoxiang},
|
| 73 |
+
journal={arXiv preprint arXiv:2602.12177},
|
| 74 |
+
year={2026}
|
| 75 |
+
}
|
| 76 |
+
```
|