diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..495a7175bb7b0b48bd0ac67d86f3e0c900127a71 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +model.safetensors.index.json filter=lfs diff=lfs merge=lfs -text diff --git a/chat_template.jinja b/chat_template.jinja new file mode 100644 index 0000000000000000000000000000000000000000..bc2867858b843a9de74c2649bf4b1dfd74039df3 --- /dev/null +++ b/chat_template.jinja @@ -0,0 +1,112 @@ +{%- macro render_content(msg) -%} + {%- set c = msg.get('content') -%} + {%- if c is string -%} + {{ c }} + {%- elif c is not none -%} + {% for content in c -%} + {% if content['type'] == 'image' or content['type'] == 'image_url' -%} + <|media_start|>image<|media_content|><|media_pad|><|media_end|> + {% elif content['type'] == 'video' or content['type']== 'video_url'-%} + <|kimi_k25_video_placeholder|> + {% else -%} + {{ content['text'] }} + {%- endif -%} + {%- endfor -%} + {%- endif -%} +{%- endmacro -%} + +{% macro set_roles(message) -%} + {%- set role_name = message.get('name') or message['role'] -%} + {%- if message['role'] == 'user' -%} + <|im_user|>{{role_name}}<|im_middle|> + {%- elif message['role'] == 'assistant' -%} + <|im_assistant|>{{role_name}}<|im_middle|> + {%- else -%} + <|im_system|>{{role_name}}<|im_middle|> + {%- endif -%} +{%- endmacro -%} + + +{%- macro render_toolcalls(message) -%} + <|tool_calls_section_begin|> + {%- for tool_call in message['tool_calls'] -%} + {%- set formatted_id = tool_call['id'] -%} + <|tool_call_begin|>{{ formatted_id }}<|tool_call_argument_begin|>{% if tool_call['function']['arguments'] is string %}{{ tool_call['function']['arguments'] }}{% else %}{{ tool_call['function']['arguments'] | tojson }}{% endif %}<|tool_call_end|> + {%- endfor -%} + <|tool_calls_section_end|> +{%- endmacro -%} + + +{# Find last non-tool-call assisitant message #} +{%- set ns = namespace(last_non_tool_call_assistant_msg=-1) -%} +{%- for idx in range(messages|length-1, -1, -1) -%} + {%- if messages[idx]['role'] == 'assistant' and not messages[idx].get('tool_calls') -%} + {%- set ns.last_non_tool_call_assistant_msg = idx -%} + {%- break -%} + {%- endif -%} +{%- endfor -%} + +{# split all messages into history & suffix, reasoning_content in suffix should be reserved.#} +{%- set hist_msgs = messages[:ns.last_non_tool_call_assistant_msg+1] -%} +{%- set suffix_msgs = messages[ns.last_non_tool_call_assistant_msg+1:] -%} + +{%- if tools -%} + {%- if tools_ts_str -%} + <|im_system|>tool_declare<|im_middle|>{{ tools_ts_str }}<|im_end|> + {%- else -%} + <|im_system|>tool_declare<|im_middle|>{{ tools | tojson(separators=(',', ':')) }}<|im_end|> + {%- endif -%} +{%- endif -%} + +{%- if messages|length == 0 or messages[0]['role'] != 'system' -%} + <|im_system|>system<|im_middle|>You are Kimi, an AI assistant created by Moonshot AI.<|im_end|> +{%- endif -%} + +{%- for message in hist_msgs -%} + {{set_roles(message)}} + {%- if message['role'] == 'assistant' -%} + {{render_content(message)}} + {%- if message.get('tool_calls') -%} + {{render_toolcalls(message)}} + {%- endif -%} + {%- elif message['role'] == 'tool' -%} + {%- set tool_call_id = message.tool_call_id -%} + ## Return of {{ tool_call_id }} +{{render_content(message)}} + {%- elif message['content'] is not none -%} + {{render_content(message)}} + {%- endif -%} + <|im_end|> +{%- endfor -%} + +{%- for message in suffix_msgs -%} + {{set_roles(message)}} + {%- if message['role'] == 'assistant' -%} + {%- if thinking is defined and thinking is false -%} + {{render_content(message)}} + {%- else -%} + {%- set rc = message.get('reasoning_content', '') -%} + {{rc}}{{render_content(message)}} + {%- endif -%} + {%- if message.get('tool_calls') -%} + {{render_toolcalls(message)}} + {%- endif -%} + {%- elif message['role'] == 'tool' -%} + {%- set tool_call_id = message.tool_call_id -%} + ## Return of {{ tool_call_id }} +{{render_content(message)}} + {%- elif message['content'] is not none -%} + {{render_content(message)}} + {%- endif -%} + <|im_end|> +{%- endfor -%} + + +{%- if add_generation_prompt -%} + <|im_assistant|>assistant<|im_middle|> + {%- if thinking is defined and thinking is false -%} + + {%- else -%} + + {%- endif -%} +{%- endif -%} \ No newline at end of file diff --git a/config.json b/config.json new file mode 100644 index 0000000000000000000000000000000000000000..7085aad41c39bd0b977727bc1ee5389789e517a6 --- /dev/null +++ b/config.json @@ -0,0 +1,257 @@ +{ + "architectures": [ + "KimiK25ForConditionalGeneration" + ], + "auto_map": { + "AutoConfig": "configuration_kimi_k25.KimiK25Config", + "AutoModel": "modeling_kimi_k25.KimiK25ForConditionalGeneration", + "AutoModelForCausalLM": "modeling_kimi_k25.KimiK25ForConditionalGeneration" + }, + "bos_token_id": 163584, + "dtype": "bfloat16", + "eos_token_id": 163585, + "ignore_index": -100, + "media_placeholder_token_id": 163605, + "model_type": "kimi_k25", + "pad_token_id": 163839, + "quantization_config": { + "config_groups": { + "group_0": { + "input_activations": { + "dynamic": false, + "num_bits": 4, + "type": "float", + "group_size": 16 + }, + "weights": { + "dynamic": false, + "num_bits": 4, + "type": "float", + "group_size": 16 + }, + "targets": [ + "Linear" + ] + } + }, + "ignore": [ + "language_model.lm_head", + "language_model.layers.0.self_attn*", + "language_model.layers.1.self_attn*", + "language_model.layers.10.self_attn*", + "language_model.layers.11.self_attn*", + "language_model.layers.12.self_attn*", + "language_model.layers.13.self_attn*", + "language_model.layers.14.self_attn*", + "language_model.layers.15.self_attn*", + "language_model.layers.16.self_attn*", + "language_model.layers.17.self_attn*", + "language_model.layers.18.self_attn*", + "language_model.layers.19.self_attn*", + "language_model.layers.2.self_attn*", + "language_model.layers.20.self_attn*", + "language_model.layers.21.self_attn*", + "language_model.layers.22.self_attn*", + "language_model.layers.23.self_attn*", + "language_model.layers.24.self_attn*", + "language_model.layers.25.self_attn*", + "language_model.layers.26.self_attn*", + "language_model.layers.27.self_attn*", + "language_model.layers.28.self_attn*", + "language_model.layers.29.self_attn*", + "language_model.layers.3.self_attn*", + "language_model.layers.30.self_attn*", + "language_model.layers.31.self_attn*", + "language_model.layers.32.self_attn*", + "language_model.layers.33.self_attn*", + "language_model.layers.34.self_attn*", + "language_model.layers.35.self_attn*", + "language_model.layers.36.self_attn*", + "language_model.layers.37.self_attn*", + "language_model.layers.38.self_attn*", + "language_model.layers.39.self_attn*", + "language_model.layers.4.self_attn*", + "language_model.layers.40.self_attn*", + "language_model.layers.41.self_attn*", + "language_model.layers.42.self_attn*", + "language_model.layers.43.self_attn*", + "language_model.layers.44.self_attn*", + "language_model.layers.45.self_attn*", + "language_model.layers.46.self_attn*", + "language_model.layers.47.self_attn*", + "language_model.layers.48.self_attn*", + "language_model.layers.49.self_attn*", + "language_model.layers.5.self_attn*", + "language_model.layers.50.self_attn*", + "language_model.layers.51.self_attn*", + "language_model.layers.52.self_attn*", + "language_model.layers.53.self_attn*", + "language_model.layers.54.self_attn*", + "language_model.layers.55.self_attn*", + "language_model.layers.56.self_attn*", + "language_model.layers.57.self_attn*", + "language_model.layers.58.self_attn*", + "language_model.layers.59.self_attn*", + "language_model.layers.6.self_attn*", + "language_model.layers.60.self_attn*", + "language_model.layers.7.self_attn*", + "language_model.layers.8.self_attn*", + "language_model.layers.9.self_attn*", + "mm_projector*", + "vision_tower*" + ], + "quant_algo": "NVFP4", + "kv_cache_scheme": { + "dynamic": false, + "num_bits": 8, + "type": "float" + }, + "producer": { + "name": "modelopt", + "version": "0.41.0" + }, + "quant_method": "modelopt" + }, + "text_config": { + "_name_or_path": "", + "add_cross_attention": false, + "architectures": [ + "DeepseekV3ForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "auto_map": { + "AutoConfig": "configuration_deepseek.DeepseekV3Config", + "AutoModel": "modeling_deepseek.DeepseekV3Model", + "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM" + }, + "aux_loss_alpha": 0.001, + "bad_words_ids": null, + "begin_suppress_tokens": null, + "bos_token_id": 163584, + "chunk_size_feed_forward": 0, + "cross_attention_hidden_size": null, + "decoder_start_token_id": null, + "diversity_penalty": 0.0, + "do_sample": false, + "dtype": "bfloat16", + "early_stopping": false, + "encoder_no_repeat_ngram_size": 0, + "eos_token_id": 163585, + "ep_size": 1, + "exponential_decay_length_penalty": null, + "finetuning_task": null, + "first_k_dense_replace": 1, + "forced_bos_token_id": null, + "forced_eos_token_id": null, + "hidden_act": "silu", + "hidden_size": 7168, + "id2label": { + "0": "LABEL_0", + "1": "LABEL_1" + }, + "initializer_range": 0.02, + "intermediate_size": 18432, + "is_decoder": false, + "is_encoder_decoder": false, + "kv_lora_rank": 512, + "label2id": { + "LABEL_0": 0, + "LABEL_1": 1 + }, + "length_penalty": 1.0, + "max_length": 20, + "max_position_embeddings": 262144, + "min_length": 0, + "model_type": "deepseek_v3", + "moe_intermediate_size": 2048, + "moe_layer_freq": 1, + "n_group": 1, + "n_routed_experts": 384, + "n_shared_experts": 1, + "no_repeat_ngram_size": 0, + "norm_topk_prob": true, + "num_attention_heads": 64, + "num_beam_groups": 1, + "num_beams": 1, + "num_experts_per_tok": 8, + "num_hidden_layers": 61, + "num_key_value_heads": 64, + "num_nextn_predict_layers": 0, + "num_return_sequences": 1, + "output_attentions": false, + "output_hidden_states": false, + "output_scores": false, + "pad_token_id": 163839, + "prefix": null, + "pretraining_tp": 1, + "problem_type": null, + "pruned_heads": {}, + "q_lora_rank": 1536, + "qk_nope_head_dim": 128, + "qk_rope_head_dim": 64, + "remove_invalid_values": false, + "repetition_penalty": 1.0, + "return_dict": true, + "return_dict_in_generate": false, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "beta_fast": 32.0, + "beta_slow": 1.0, + "factor": 64.0, + "mscale": 1.0, + "mscale_all_dim": 1.0, + "original_max_position_embeddings": 4096, + "type": "yarn" + }, + "rope_theta": 50000.0, + "routed_scaling_factor": 2.827, + "scoring_func": "sigmoid", + "sep_token_id": null, + "seq_aux": true, + "suppress_tokens": null, + "task_specific_params": null, + "temperature": 1.0, + "tf_legacy_loss": false, + "tie_encoder_decoder": false, + "tie_word_embeddings": false, + "tokenizer_class": null, + "top_k": 50, + "top_p": 1.0, + "topk_group": 1, + "topk_method": "noaux_tc", + "torchscript": false, + "typical_p": 1.0, + "use_bfloat16": false, + "use_cache": true, + "v_head_dim": 128, + "vocab_size": 163840 + }, + "tie_word_embeddings": false, + "transformers_version": "4.57.1", + "use_unified_vision_chunk": true, + "video_placeholder": "<|kimi_k25_video_placeholder|>", + "vision_config": { + "init_pos_emb_height": 64, + "init_pos_emb_time": 4, + "init_pos_emb_width": 64, + "merge_kernel_size": [ + 2, + 2 + ], + "merge_type": "sd2_tpool", + "mm_hidden_size": 1152, + "mm_projector_type": "patchmerger", + "model_type": "", + "patch_size": 14, + "pos_emb_type": "divided_fixed", + "projector_hidden_act": "gelu", + "projector_ln_eps": 1e-05, + "text_hidden_size": 7168, + "video_attn_type": "spatial_temporal", + "vt_hidden_size": 1152, + "vt_intermediate_size": 4304, + "vt_num_attention_heads": 16, + "vt_num_hidden_layers": 27 + } +} \ No newline at end of file diff --git a/configuration_deepseek.py b/configuration_deepseek.py new file mode 100644 index 0000000000000000000000000000000000000000..b3152dd7c3e53d223d561848dc967f487daf32ef --- /dev/null +++ b/configuration_deepseek.py @@ -0,0 +1,214 @@ +# Copy from https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/configuration_deepseek.py + +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import logging + +logger = logging.get_logger(__name__) + +DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {} + + +class DeepseekV3Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the DeepSeek-V3. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 129280): + Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`DeepseekV3Model`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + moe_intermediate_size (`int`, *optional*, defaults to 1407): + Dimension of the MoE representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer decoder. + num_nextn_predict_layers (`int`, *optional*, defaults to 1): + Number of nextn predict layers in the DeepSeekV3 Model. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer decoder. + n_shared_experts (`int`, *optional*, defaults to None): + Number of shared experts, None means dense model. + n_routed_experts (`int`, *optional*, defaults to None): + Number of routed experts, None means dense model. + routed_scaling_factor (`float`, *optional*, defaults to 1.0): + Scaling factor or routed experts. + topk_method (`str`, *optional*, defaults to `gready`): + Topk method used in routed gate. + n_group (`int`, *optional*, defaults to None): + Number of groups for routed experts. + topk_group (`int`, *optional*, defaults to None): + Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups). + num_experts_per_tok (`int`, *optional*, defaults to None): + Number of selected experts, None means dense model. + moe_layer_freq (`int`, *optional*, defaults to 1): + The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers. + first_k_dense_replace (`int`, *optional*, defaults to 0): + Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head). + \--k dense layers--/ + norm_topk_prob (`bool`, *optional*, defaults to False): + Whether to normalize the weights of the routed experts. + scoring_func (`str`, *optional*, defaults to 'softmax'): + Method of computing expert weights. + aux_loss_alpha (`float`, *optional*, defaults to 0.001): + Auxiliary loss weight coefficient. + seq_aux = (`bool`, *optional*, defaults to True): + Whether to compute the auxiliary loss for each individual sample. + num_key_value_heads (`int`, *optional*): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to + `num_attention_heads`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 1): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 2): + End of stream token id. + pretraining_tp (`int`, *optional*, defaults to 1): + Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this + document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is + necessary to ensure exact reproducibility of the pretraining results. Please refer to [this + issue](https://github.com/pytorch/pytorch/issues/76232). + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is + `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. + attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): + Whether to use a bias in the query, key, value and output projection layers during self-attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + + ```python + >>> from transformers import DeepseekV3Model, DeepseekV3Config + + >>> # Initializing a Deepseek-V3 style configuration + >>> configuration = DeepseekV3Config() + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "deepseek_v3" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=129280, + hidden_size=7168, + intermediate_size=18432, + moe_intermediate_size=2048, + num_hidden_layers=61, + num_nextn_predict_layers=1, + num_attention_heads=128, + num_key_value_heads=128, + n_shared_experts=1, + n_routed_experts=256, + ep_size=1, + routed_scaling_factor=2.5, + kv_lora_rank=512, + q_lora_rank=1536, + qk_rope_head_dim=64, + v_head_dim=128, + qk_nope_head_dim=128, + topk_method='noaux_tc', + n_group=8, + topk_group=4, + num_experts_per_tok=8, + moe_layer_freq=1, + first_k_dense_replace=3, + norm_topk_prob=True, + scoring_func='sigmoid', + aux_loss_alpha=0.001, + seq_aux=True, + hidden_act="silu", + max_position_embeddings=4096, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=None, + bos_token_id=0, + eos_token_id=1, + pretraining_tp=1, + tie_word_embeddings=False, + rope_theta=10000.0, + rope_scaling=None, + attention_bias=False, + attention_dropout=0.0, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.moe_intermediate_size = moe_intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_nextn_predict_layers = num_nextn_predict_layers + self.num_attention_heads = num_attention_heads + self.n_shared_experts = n_shared_experts + self.n_routed_experts = n_routed_experts + self.ep_size = ep_size + self.routed_scaling_factor = routed_scaling_factor + self.kv_lora_rank = kv_lora_rank + self.q_lora_rank = q_lora_rank + self.qk_rope_head_dim = qk_rope_head_dim + self.v_head_dim = v_head_dim + self.qk_nope_head_dim = qk_nope_head_dim + self.topk_method = topk_method + self.n_group = n_group + self.topk_group = topk_group + self.num_experts_per_tok = num_experts_per_tok + self.moe_layer_freq = moe_layer_freq + self.first_k_dense_replace = first_k_dense_replace + self.norm_topk_prob = norm_topk_prob + self.scoring_func = scoring_func + self.aux_loss_alpha = aux_loss_alpha + self.seq_aux = seq_aux + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.pretraining_tp = pretraining_tp + self.use_cache = use_cache + self.rope_theta = rope_theta + self.rope_scaling = rope_scaling + self.attention_bias = attention_bias + self.attention_dropout = attention_dropout + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) diff --git a/configuration_kimi_k25.py b/configuration_kimi_k25.py new file mode 100644 index 0000000000000000000000000000000000000000..5858b3290a32509480affd58abc01482d5976550 --- /dev/null +++ b/configuration_kimi_k25.py @@ -0,0 +1,123 @@ +from transformers.configuration_utils import PretrainedConfig + +try: + from configuration_deepseek import DeepseekV3Config +except ImportError: + from .configuration_deepseek import DeepseekV3Config + + +class KimiK25VisionConfig(PretrainedConfig): + + def __init__( + self, + patch_size: int = 14, + init_pos_emb_height: int = 64, + init_pos_emb_width: int = 64, + init_pos_emb_time: int = 4, + pos_emb_type: str = 'divided_fixed', + vt_num_attention_heads: int = 16, + vt_num_hidden_layers: int = 27, + vt_hidden_size: int = 1152, + vt_intermediate_size: int = 4304, + merge_kernel_size: tuple = (2, 2), + video_attn_type: str = 'spatial_temporal', + merge_type: str = 'sd2_tpool', + _attn_implementation: str = 'flash_attention_2', + # MM Projector parameters + mm_projector_type: str = 'patchmerger', + mm_hidden_size: int | None = None, + projector_hidden_act: str = "gelu", + projector_ln_eps: float = 1e-5, + # Other parameters + ignore_index: int = -100, + media_placeholder_token_id: int = 163605, + pad_token_id: int = 0, + use_unified_vision_chunk: bool = True, + video_placeholder="<|kimi_k25_video_placeholder|>", + text_hidden_size=7168, + **vision_config_kwargs): + + self.patch_size = patch_size + self.init_pos_emb_height = init_pos_emb_height + self.init_pos_emb_width = init_pos_emb_width + self.init_pos_emb_time = init_pos_emb_time + self.pos_emb_type = pos_emb_type + self.vt_num_attention_heads = vt_num_attention_heads + self.vt_num_hidden_layers = vt_num_hidden_layers + self.vt_hidden_size = vt_hidden_size + self.vt_intermediate_size = vt_intermediate_size + self.merge_kernel_size = merge_kernel_size + self.video_attn_type = video_attn_type + self.merge_type = merge_type + self._attn_implementation = _attn_implementation + + # MM Projector config + self.mm_projector_type = mm_projector_type + self.mm_hidden_size = mm_hidden_size if mm_hidden_size is not None else vt_hidden_size + self.projector_hidden_act = projector_hidden_act + self.projector_ln_eps = projector_ln_eps + self.text_hidden_size = text_hidden_size + + +class KimiK25Config(PretrainedConfig): + """Kimi-K2.5 model configuration. + + Args: + text_config (dict | DeepseekV3Config): Configuration for the text model. + + Vision Tower Parameters (from MoonViT3dConfig): + patch_size (int): Patch size for vision tower. + init_pos_emb_height (int): Initial position embedding height. + init_pos_emb_width (int): Initial position embedding width. + init_pos_emb_time (int): Initial position embedding time dimension. + pos_emb_type (str): Type of position embedding. + vt_num_attention_heads (int): Number of attention heads in vision tower. + vt_num_hidden_layers (int): Number of hidden layers in vision tower. + vt_hidden_size (int): Hidden size of vision tower. + vt_intermediate_size (int): Intermediate size in vision tower FFN. + merge_kernel_size (tuple): Kernel size for patch merging. + video_attn_type (str): Type of video attention. + merge_type (str): Type of merge operation. + _attn_implementation (str): Attention implementation type. + + MM Projector Parameters (from MultiModalProjectorConfig): + mm_projector_type (str): Type of multimodal projector. + mm_hidden_size (int): Hidden size from vision tower (should match vt_hidden_size). + projector_hidden_act (str): Activation function for projector. + projector_ln_eps (float): Layer norm epsilon for projector. + + Other Parameters: + ignore_index (int): The ignore index for the loss function. + media_placeholder_token_id (int): The token ID to use for media placeholders. + pad_token_id (int): The token ID to use for padding. + """ + + model_type = "kimi_k25" + + def __init__( + self, + text_config: dict | DeepseekV3Config = None, + vision_config: dict | KimiK25VisionConfig = None, + # Other parameters + ignore_index: int = -100, + media_placeholder_token_id: int = 163605, + pad_token_id: int = 0, + use_unified_vision_chunk: bool = True, + video_placeholder="<|kimi_k25_video_placeholder|>", + **kwargs, + ): + if isinstance(text_config, dict): + text_config = DeepseekV3Config(**text_config) + if isinstance(vision_config, dict): + vision_config = KimiK25VisionConfig(**vision_config) + self.text_config = text_config + self.vision_config = vision_config + # Other config + self.ignore_index = ignore_index + self.media_placeholder_token_id = media_placeholder_token_id + self.use_unified_vision_chunk = use_unified_vision_chunk + self.video_placeholder = video_placeholder + if getattr(self.text_config, "quantization_config", None) is not None: + self.quantization_config = self.text_config.quantization_config + + super().__init__(pad_token_id=pad_token_id, **kwargs) diff --git a/generation_config.json b/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..4bb3f8ec4a1d604598b7ffb4621b955e995bda92 --- /dev/null +++ b/generation_config.json @@ -0,0 +1,4 @@ +{ + "max_length": 262144, + "eos_token_id": 163586 +} \ No newline at end of file diff --git a/hf_quant_config.json b/hf_quant_config.json new file mode 100644 index 0000000000000000000000000000000000000000..f652bde76e080622d3b8b307f57446332a9a9142 --- /dev/null +++ b/hf_quant_config.json @@ -0,0 +1,77 @@ +{ + "producer": { + "name": "modelopt", + "version": "0.41.0" + }, + "quantization": { + "quant_algo": "NVFP4", + "kv_cache_quant_algo": "FP8", + "group_size": 16, + "exclude_modules": [ + "language_model.lm_head", + "language_model.layers.0.self_attn*", + "language_model.layers.1.self_attn*", + "language_model.layers.10.self_attn*", + "language_model.layers.11.self_attn*", + "language_model.layers.12.self_attn*", + "language_model.layers.13.self_attn*", + "language_model.layers.14.self_attn*", + "language_model.layers.15.self_attn*", + "language_model.layers.16.self_attn*", + "language_model.layers.17.self_attn*", + "language_model.layers.18.self_attn*", + "language_model.layers.19.self_attn*", + "language_model.layers.2.self_attn*", + "language_model.layers.20.self_attn*", + "language_model.layers.21.self_attn*", + "language_model.layers.22.self_attn*", + "language_model.layers.23.self_attn*", + "language_model.layers.24.self_attn*", + "language_model.layers.25.self_attn*", + "language_model.layers.26.self_attn*", + "language_model.layers.27.self_attn*", + "language_model.layers.28.self_attn*", + "language_model.layers.29.self_attn*", + "language_model.layers.3.self_attn*", + "language_model.layers.30.self_attn*", + "language_model.layers.31.self_attn*", + "language_model.layers.32.self_attn*", + "language_model.layers.33.self_attn*", + "language_model.layers.34.self_attn*", + "language_model.layers.35.self_attn*", + "language_model.layers.36.self_attn*", + "language_model.layers.37.self_attn*", + "language_model.layers.38.self_attn*", + "language_model.layers.39.self_attn*", + "language_model.layers.4.self_attn*", + "language_model.layers.40.self_attn*", + "language_model.layers.41.self_attn*", + "language_model.layers.42.self_attn*", + "language_model.layers.43.self_attn*", + "language_model.layers.44.self_attn*", + "language_model.layers.45.self_attn*", + "language_model.layers.46.self_attn*", + "language_model.layers.47.self_attn*", + "language_model.layers.48.self_attn*", + "language_model.layers.49.self_attn*", + "language_model.layers.5.self_attn*", + "language_model.layers.50.self_attn*", + "language_model.layers.51.self_attn*", + "language_model.layers.52.self_attn*", + "language_model.layers.53.self_attn*", + "language_model.layers.54.self_attn*", + "language_model.layers.55.self_attn*", + "language_model.layers.56.self_attn*", + "language_model.layers.57.self_attn*", + "language_model.layers.58.self_attn*", + "language_model.layers.59.self_attn*", + "language_model.layers.6.self_attn*", + "language_model.layers.60.self_attn*", + "language_model.layers.7.self_attn*", + "language_model.layers.8.self_attn*", + "language_model.layers.9.self_attn*", + "mm_projector*", + "vision_tower*" + ] + } +} \ No newline at end of file diff --git a/kimi_k25_processor.py b/kimi_k25_processor.py new file mode 100644 index 0000000000000000000000000000000000000000..d526032f91036de5f3d226b866acf449553b986d --- /dev/null +++ b/kimi_k25_processor.py @@ -0,0 +1,165 @@ +from transformers.feature_extraction_utils import BatchFeature +from transformers.processing_utils import ProcessorMixin +from transformers.utils import logging + +logger = logging.get_logger(__name__) + + +class KimiK25Processor(ProcessorMixin): + r""" + Constructs a KimiK25 processor which wraps a KimiK25 image processor and a tokenizer into a single processor. + + [`KimiK25Processor`] offers all the functionalities of [`KimiK25ImageProcessor`] and [`TikTokenTokenizer`]. See the + [`~KimiK25Processor.__call__`] and [`~KimiK25Processor.decode`] for more information. + + Args: + image_processor ([`KimiK25ImageProcessor`], *optional*): + The image processor is a required input. + tokenizer ([`TikTokenTokenizer`], *optional*): + The tokenizer is a required input. + chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages + in a chat into a tokenizable string. + """ + + attributes = ["image_processor", "tokenizer"] + valid_kwargs = ["chat_template"] + image_processor_class = "AutoImageProcessor" + tokenizer_class = "AutoTokenizer" + + def __init__( + self, + image_processor=None, + tokenizer=None, + chat_template=None, + **kwargs, + ): + super().__init__(image_processor, + tokenizer, + chat_template=chat_template) + self.media_processor = image_processor + # A special temporal placeholder to be replaced by actual video placeholders + self.video_placeholder = "<|kimi_k25_video_placeholder|>" + + def update_raw_text(self, text: str, video_prompts: list[str]) -> str: + # replace video prompt in text with video chunk prompts + video_count = text.count(self.video_placeholder) + if video_count == 0: + return text + assert video_count == len(video_prompts) + text_parts = text.split(self.video_placeholder) + assert len(text_parts) == len(video_prompts) + 1 + text = "".join([ + text_parts[i] + video_prompts[i] for i in range(len(video_prompts)) + ]) + text += text_parts[-1] + return text + + def preprocess_medias(self, medias: list[dict]) -> list[dict]: + updated_medias = [] + video_prompts = [] + for media in medias: + if media['type'] == 'image': + updated_medias.append(media) + elif media['type'] == 'video': + video_chunks = self.media_processor.split_video_chunks( + media['video']) + updated_medias.extend(video_chunks) + video_prompts.append("".join( + [vc['prompt'] for vc in video_chunks])) + else: + raise ValueError(f"unsupported media type: {media['type']}") + return updated_medias, video_prompts + + def __call__(self, + messages: list[dict] = None, + medias: list[dict] = None, + text: str = None, + return_tensors: str = "pt", + **kwargs) -> BatchFeature: + """ + Process multimodal inputs for Kimi-K2.5 model. + + This processor accepts ordered messages and extracts both media and text in a single pass. + text will be automatically updated if video input detected in messages + + Args: + messages: List of message dicts with 'role' and 'content' fields. + If provided, medias and text will be extracted automatically. + medias: Pre-extracted list of media dicts. If None, extracted from messages. + text: Pre-formatted text string. If None, generated via apply_chat_template. + return_tensors: Format of returned tensors ('pt', 'np', 'tf'). Default: 'pt'. + **kwargs: Additional arguments passed to tokenizer.apply_chat_template. + + Returns: + BatchFeature with fields: input_ids, attention_mask, pixel_values, grid_thws. + """ + if messages is None and (medias is None or text is None): + raise ValueError( + "Provide either 'messages' or both 'medias' and 'text'") + + if medias is not None and text is not None: + updated_medias, video_prompts = self.preprocess_medias(medias) + preprocessed = self.media_processor.preprocess( + updated_medias, return_tensors=return_tensors) + text = self.update_raw_text(text, video_prompts) + text_inputs = self.tokenizer(text, return_tensors=return_tensors) + return BatchFeature(data={**text_inputs, **preprocessed.data}) + + if medias is None: + medias = self._extract_medias_from_messages(messages) + updated_medias, video_prompts = self.preprocess_medias(medias) + preprocessed = self.media_processor.preprocess( + updated_medias, return_tensors=return_tensors) + + # Generate text if not provided + if text is None: + text = self.tokenizer.apply_chat_template(messages, **kwargs) + + text = self.update_raw_text(text, video_prompts) + + text_inputs = self.tokenizer(text, return_tensors=return_tensors) + return BatchFeature(data={**text_inputs, **preprocessed.data}) + + @staticmethod + def _extract_medias_from_messages(messages: list[dict]) -> list[dict]: + """ + Extract media items from messages in a single pass. + + This is an optimized version that processes messages only once. + Kept as internal method since external callers should use __call__. + """ + medias = [] + for msg in messages: + if msg['role'] != 'user' or not msg.get('content'): + continue + + for content_part in msg['content']: + if not isinstance(content_part, dict): + continue + + content_type = content_part.get('type') + if content_type in ['video_url', 'video']: + medias.append({ + 'type': 'video', + 'video': content_part['video_url']['url'], + 'first_frame_timestamp': 0.0 + }) + elif content_type in ['image_url', 'image']: + medias.append({ + 'type': 'image', + 'image': content_part['image_url'], + }) + return medias + + def apply_chat_template(self, messages, **kwargs): + return self.tokenizer.apply_chat_template(messages, **kwargs) + + def batch_decode(self, *args, **kwargs): + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + return self.tokenizer.decode(*args, **kwargs) + + @property + def model_input_names(self): + return ['input_ids', 'attention_mask', 'pixel_values', 'grid_thws'] diff --git a/kimi_k25_vision_processing.py b/kimi_k25_vision_processing.py new file mode 100644 index 0000000000000000000000000000000000000000..fdf3ab2f100f7c28a1f1e7295297e54b515d0b53 --- /dev/null +++ b/kimi_k25_vision_processing.py @@ -0,0 +1,251 @@ +"""Image processor class for Kimi-K2.5. +""" + +import json +from typing import Any, Dict, Optional, Union + +import numpy as np +import torch +from PIL import Image +from transformers.image_processing_utils import (BaseImageProcessor, + BatchFeature) +from transformers.utils import TensorType + +from .media_utils import (MediaInput, VideoChunkInput, _to_tensor, + ensure_media_type, get_video_meta, image_to_np, + navit_patchify, navit_resize_image, + navit_resize_video, normalize, + real_sample_fps_and_max_num_frames, timestamp_as_str) + +try: + from mecord import VideoReader +except ImportError: + VideoReader = None + + +def resampling(video_bytes: bytes, + sample_indices: list[int], + key_indices=None, + frame_time_info=None, + num_threads=4) -> str: + video = VideoReader(video_bytes, + num_threads=num_threads, + frame_time_info=frame_time_info, + key_indices=key_indices) + # extract target frames + frames = video[sample_indices] + frames = [Image.fromarray(frame) for frame in frames] + return frames + + +class KimiK25VisionProcessor(BaseImageProcessor): + model_type = "kimi_k25" + + def __init__( + self, + media_proc_cfg: dict, + **kwargs, + ): + super().__init__(**kwargs) + self.media_proc_cfg = media_proc_cfg + self.num_frames_per_chunk = media_proc_cfg[ + 'temporal_merge_kernel_size'] + + def media_tokens_calculator(self, media: MediaInput): + media = ensure_media_type(media) + ret = self.get_resize_config(media) + return ret['num_tokens'] + + @classmethod + def make_chunk_prompt(cls, timestamp_text: str) -> str: + return f"{timestamp_text}<|media_begin|>video<|media_content|><|media_pad|><|media_end|>" + + def split_video_chunks(self, + video_url: str | bytes) -> list[list[Image.Image]]: + # video_url should be base64 str or bytes + video_spec = get_video_meta(video_url) + sample_fps = min(self.media_proc_cfg['sample_fps'], video_spec.fps) + sampled_nframes = max( + round(video_spec.num_frames * sample_fps / video_spec.fps), 1) + frame_inds = np.linspace(0, video_spec.num_frames - 1, + sampled_nframes).round().astype(int) + frame_inds = frame_inds.tolist() + sampled_frame_ids = [] + temporal_merge_kernel_size = self.media_proc_cfg[ + "temporal_merge_kernel_size"] + num_chunks = 0 + chunk_timestamp = [] + for i in range(0, len(frame_inds), temporal_merge_kernel_size): + sampled_frame_ids.extend(frame_inds[i:i + + temporal_merge_kernel_size]) + start_time = frame_inds[i] / float(video_spec.fps) + timestamp_text = timestamp_as_str( + start_time, self.media_proc_cfg["timestamp_mode"]) + chunk_timestamp.append(timestamp_text) + num_chunks += 1 + + sampled_frames = resampling(video_url, sampled_frame_ids) + chunks = [] + for chunk_id in range(num_chunks): + chunk = sampled_frames[chunk_id * + temporal_merge_kernel_size:(chunk_id + 1) * + temporal_merge_kernel_size] + chunks.append( + VideoChunkInput(type="video_chunk", + video_chunk=chunk, + prompt=self.make_chunk_prompt( + chunk_timestamp[chunk_id]))) + return chunks + + def get_resize_config(self, media_input: MediaInput) -> dict: + if media_input['type'] == 'image': + w, h = media_input['image'].size + ret = navit_resize_image( + w, h, self.media_proc_cfg['patch_size'], + self.media_proc_cfg['merge_kernel_size'], + self.media_proc_cfg['in_patch_limit'], + self.media_proc_cfg['patch_limit_on_one_side'], + self.media_proc_cfg['fixed_output_tokens']) + return ret + elif media_input['type'] == 'video_chunk': + frame = media_input['video_chunk'][0] + width, height = frame.size + num_frames = len(media_input["video_chunk"]) + fps = 1.0 + + sample_fps, max_num_frames_each_video = real_sample_fps_and_max_num_frames( + media_input["type"], + self.media_proc_cfg['sample_fps'], + self.media_proc_cfg['max_num_frames_each_video'], + ) + + in_patch_limit_each_frame = self.media_proc_cfg[ + 'in_patch_limit_each_frame'] + if in_patch_limit_each_frame is None: + in_patch_limit_each_frame = self.media_proc_cfg[ + 'in_patch_limit'] + + ret = navit_resize_video( + width, + height, + num_frames, + fps, + sample_fps, + self.media_proc_cfg['patch_size'], + self.media_proc_cfg['merge_kernel_size'], + in_patch_limit_each_frame, + self.media_proc_cfg['patch_limit_on_one_side'], + self.media_proc_cfg['in_patch_limit_video'], + max_num_frames_each_video, + self.media_proc_cfg['fixed_output_tokens'], + ) + return ret + else: + raise ValueError("Unsupported type: {}".format( + media_input['type'])) + + def resize_image(self, image: Image.Image, new_width: int, new_height: int, + pad_width: int, pad_height: int) -> np.ndarray: + image_np = image_to_np(image, (new_width, new_height), "resize") + image_np = np.pad( + image_np, + ((0, pad_height), (0, pad_width), (0, 0)), + mode="constant", + constant_values=0, + ) + return image_np + + def preprocess( + self, + medias: list[MediaInput], + return_tensors: Optional[Union[str, TensorType]] = None, + ) -> BatchFeature: + """ + Preprocess a atom vision input (images/video_chunk) into model-ready tensors. + + Args: + medias: List of MediaInput. + return_tensors: Desired output format ('pt', 'np', 'tf', or None). + + Returns: + BatchFeature containing 'pixel_values' and 'grid_thws' tensors. + """ + if not isinstance(medias, list): + medias = [medias] + if medias: + pixel_values = [] + for item in medias: + item = ensure_media_type(item) + resize_config = self.get_resize_config(item) + new_width, new_height, pad_width, pad_height = resize_config[ + 'new_width'], resize_config['new_height'], resize_config[ + 'pad_width'], resize_config['pad_height'] + if item['type'] == 'image': + image = item['image'] + image_np = self.resize_image(image, new_width, new_height, + pad_width, pad_height) + pixel_values.append(np.expand_dims(image_np, axis=0)) + elif item['type'] == 'video_chunk': + pixels = [] + for frame in item['video_chunk']: + frame_np = self.resize_image(frame, new_width, + new_height, pad_width, + pad_height) + pixels.append(frame_np) + pixel_values.append(np.stack(pixels, axis=0)) + else: + raise ValueError("Unsupported type: {}".format( + item['type'])) + normalized_pixel_values = [] + image_std_inv = 1.0 / np.array(self.media_proc_cfg['image_std']) + image_mean = np.array(self.media_proc_cfg['image_mean']) + for pixels in pixel_values: + pixels = normalize(pixels, image_mean, image_std_inv) + pixels_and_thw = navit_patchify( + pixels, + self.media_proc_cfg['patch_size'], + ) + normalized_pixel_values.append(pixels_and_thw) + + pixel_values = torch.cat([ + _to_tensor(pixel_value['pixel_values']) + for pixel_value in normalized_pixel_values + ]) + grid_thws = torch.cat([ + _to_tensor(pixel_value['grid_thw'], + dtype=torch.int64).unsqueeze(0) + for pixel_value in normalized_pixel_values + ]) + + data = { + 'pixel_values': pixel_values, + 'grid_thws': grid_thws, + } + + else: + data = {} + + return BatchFeature(data=data, tensor_type=return_tensors) + + def __repr__(self): + return f"KimiK25VisionProcessor(media_proc_cfg={self.media_proc_cfg})" + + def to_dict(self) -> Dict[str, Any]: + output = super().to_dict() + output["media_proc_cfg"] = self.media_proc_cfg + if "media_processor" in output: + del output["media_processor"] + return output + + @classmethod + def from_dict(cls, config_dict: Dict[str, Any], **kwargs): + config = config_dict.copy() + media_proc_cfg = config.pop("media_proc_cfg", {}) + return cls(media_proc_cfg=media_proc_cfg, **config, **kwargs) + + def to_json_string(self): + dictionary = self.to_dict() + for key, value in dictionary.items(): + if hasattr(value, 'tolist'): + dictionary[key] = value.tolist() + return json.dumps(dictionary, indent=2, sort_keys=True) + "\n" diff --git a/media_utils.py b/media_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..8795e06f381700d6420798f82174e3f9647e9f89 --- /dev/null +++ b/media_utils.py @@ -0,0 +1,368 @@ +import base64 +import io +import math +import os +from datetime import datetime, timezone +from typing import List, Literal, Optional, TypedDict + +import numpy as np +from PIL import Image +from pydantic import BaseModel, Field + +try: + from mecord import VideoReader +except ImportError: + VideoReader = None + + +class VideoSpec(BaseModel): + media_type: str = Literal['video'] + height: int = Field(..., gt=0, description="video frame height") + width: int = Field(..., gt=0, description="video frame width") + num_frames: int = Field(..., gt=0, description="num frames") + fps: float = Field(..., gt=0, description="average fps") + + # optional, help to accelerate video reading + key_indices: list[int] = Field(None, description="key indices") + frame_time_info: dict = Field(None, description="frame time info") + + +class ImageInput(TypedDict): + type: Literal['image'] + image: Image.Image + + +class VideoChunkInput(TypedDict): + type: Literal['video_chunk'] + video_chunk: List[Image.Image] + prompt: Optional[str] = None + + +MediaInput = ImageInput | VideoChunkInput + + +def get_video_meta(video_src: bytes | str | os.PathLike, + accurate: bool = True) -> dict: + """Get the dimensions of a video.""" + if isinstance(video_src, os.PathLike): + video_src = str(video_src) + # if b64 string, decode to bytes + if isinstance(video_src, + str) and video_src.startswith('data:video/mp4;base64,'): + video_src = base64.b64decode(video_src.split(',')[1]) + video = VideoReader(video_src, auto_init=accurate, num_threads=1) + assert video.num_frames > 0, "Invalid video format." + assert video.original_width > 0 and video.original_height > 0, ( + "Invalid video format.") + assert video.avg_fps > 0, "Invalid video format." + return VideoSpec(media_type='video', + height=video.original_height, + width=video.original_width, + num_frames=video.num_frames, + fps=video.avg_fps, + key_indices=video.key_indices, + frame_time_info=video.frame_time_info) + + +def timestamp_as_str(timestamp: float, + timestamp_mode: str = "hh:mm:ss.fff") -> str: + """Convert a timestamp to a string in the format of HH:MM:SS.mmm.""" + if timestamp_mode == "hh:mm:ss.fff": + return (datetime.fromtimestamp(timestamp, + tz=timezone.utc).strftime("%H:%M:%S") + + f".{int((timestamp % 1) * 1000):03d}") + elif timestamp_mode == "mm:ss.fff": + return (datetime.fromtimestamp(timestamp, + tz=timezone.utc).strftime("%M:%S") + + f".{int((timestamp % 1) * 1000):03d}") + elif timestamp_mode == "mm:ss": + return datetime.fromtimestamp(timestamp, + tz=timezone.utc).strftime("%M:%S") + else: + raise ValueError(f"Invalid timestamp mode: {timestamp_mode}") + + +def navit_resize_image( + width: int, + height: int, + patch_size: int, + merge_kernel_size: int, + in_patch_limit: int, + patch_limit_on_one_side: int, + fixed_output_tokens: int | None, +): + # Apply the patch limits. + s1 = math.sqrt( + in_patch_limit / + (max(1.0, width // patch_size) * max(1.0, height // patch_size))) + s2 = patch_limit_on_one_side * patch_size / width + s3 = patch_limit_on_one_side * patch_size / height + scale = min(1.0, s1, s2, s3) + new_w, new_h = max(1, int(width * scale)), max(1, int(height * scale)) + new_w = min(new_w, patch_limit_on_one_side * patch_size) + new_h = min(new_h, patch_limit_on_one_side * patch_size) + + # Calculate the padding to make the height and width divisible by the merge kernel size and patch size. + factor = merge_kernel_size * patch_size + + pad_height = (factor - new_h % factor) % factor + pad_width = (factor - new_w % factor) % factor + + if fixed_output_tokens is not None: + num_tokens = fixed_output_tokens + else: + # Calculate new dimensions after padding and patching + token_height = (new_h + pad_height) // factor + token_width = (new_w + pad_width) // factor + + assert token_height * merge_kernel_size <= patch_limit_on_one_side, ( + f"token_height {token_height} * merge_kernel_size {merge_kernel_size} > patch_limit_on_one_side {patch_limit_on_one_side}" + ) + assert token_width * merge_kernel_size <= patch_limit_on_one_side, ( + f"token_width {token_width} * merge_kernel_size {merge_kernel_size} > patch_limit_on_one_side {patch_limit_on_one_side}" + ) + + num_tokens = token_height * token_width + return { + "num_tokens": num_tokens, + "new_width": new_w, + "new_height": new_h, + "pad_width": pad_width, + "pad_height": pad_height, + "sampled_nframes": 1, + } + + +def navit_resize_video( + width: int, + height: int, + nframes: int, + avg_fps: float, + sample_fps: float, + patch_size: int, + merge_kernel_size: int, + in_patch_limit_each_frame: int, + patch_limit_on_one_side: int, + in_patch_limit_total: int | None, + max_num_frames_each_video: int | None, + fixed_output_tokens_each_frame: int | None, +): + sample_fps = min(sample_fps, avg_fps) + # Calculate the number of frames to sample based on target FPS + sampled_nframes = max(round(nframes * sample_fps / avg_fps), 1) + if max_num_frames_each_video is not None: + sampled_nframes = min(sampled_nframes, max_num_frames_each_video) + + if in_patch_limit_total is not None: + in_patch_limit_each_frame = min( + round(in_patch_limit_total / sampled_nframes), + in_patch_limit_each_frame) + + ret = navit_resize_image( + width, + height, + patch_size, + merge_kernel_size, + in_patch_limit_each_frame, + patch_limit_on_one_side, + fixed_output_tokens_each_frame, + ) + ret["sampled_nframes"] = sampled_nframes + return ret + + +def real_sample_fps_and_max_num_frames( + type_name: Literal["video", "video_chunk"], + sample_fps: float, + max_num_frames_each_video: int | None, +) -> tuple[int, int | None]: + if type_name == "video": + return sample_fps, max_num_frames_each_video + elif type_name == "video_chunk": + max_num_frames_each_video = None + sample_fps = math.inf + return sample_fps, max_num_frames_each_video + else: + return math.inf, None + + +def _to_pil(data: str | bytes): + if isinstance(data, Image.Image): + + return data.convert("RGB") + elif isinstance(data, str): + if data.startswith("data:"): + raw_base64 = data.split(",")[1] + return Image.open(io.BytesIO( + base64.b64decode(raw_base64))).convert("RGB") + else: + return Image.open(data).convert("RGB") + elif isinstance(data, bytes): + return Image.open(io.BytesIO(data)).convert("RGB") + else: + raise ValueError(f"Unsupported data type: {type(data)}") + + +def ensure_media_type(media: MediaInput) -> MediaInput: + if media['type'] == 'image': + media['image'] = _to_pil(media['image']) + return media + elif media['type'] == 'video_chunk': + media['video_chunk'] = [ + _to_pil(frame) for frame in media['video_chunk'] + ] + return media + else: + raise ValueError(f"Unsupported media type: {media['type']}") + + +def image_to_np( + image: Image.Image, + resize_to: tuple[int, int] | None = None, + mode: str = "resize", + raise_error_for_ill_resize: bool = True, +) -> np.ndarray: + """Convert an image to a numpy array. + + Args: + content: The image to convert. + resize_to: The size to resize the image to. + mode: The mode to resize the image to. + raise_error_for_ill_resize: Whether to raise an error for ill-sized resize. + + Returns: + A numpy array. + """ + assert isinstance(image, Image.Image), "image must be a PIL Image" + if resize_to is not None: + if mode == "resize": + image = image.resize(resize_to, resample=Image.Resampling.BICUBIC) + + elif mode == "rescale_and_pad_to_center": + scale = min(resize_to[0] / image.width, + resize_to[1] / image.height, 1.0) + new_width = round(image.width * scale) + new_height = round(image.height * scale) + if new_width == 0 or new_height == 0: + if raise_error_for_ill_resize: + raise ValueError( + f"Invalid resize to: {resize_to}, from image size: {image.size}" + ) + else: + return np.zeros((resize_to[1], resize_to[0], 3), + dtype=np.uint8) + + image = image.resize((new_width, new_height), + resample=Image.Resampling.BICUBIC) + padding_left = (resize_to[0] - new_width) // 2 + padding_right = resize_to[0] - new_width - padding_left + padding_top = (resize_to[1] - new_height) // 2 + padding_bottom = resize_to[1] - new_height - padding_top + image = np.asarray(image) + image = np.pad( + image, + ((padding_top, padding_bottom), (padding_left, padding_right), + (0, 0)), + mode="constant", + constant_values=0, + ) + assert image.shape == (resize_to[1], resize_to[0], 3) + + elif mode == "rescale_and_pad_to_rightbottom": + scale = min(resize_to[0] / image.width, + resize_to[1] / image.height, 1.0) + new_width = round(image.width * scale) + new_height = round(image.height * scale) + if new_width == 0 or new_height == 0: + if raise_error_for_ill_resize: + raise ValueError( + f"Invalid resize to: {resize_to}, from image size: {image.size}" + ) + else: + return np.zeros((resize_to[1], resize_to[0], 3), + dtype=np.uint8) + + image = image.resize((new_width, new_height), + resample=Image.Resampling.BICUBIC) + padding_right = resize_to[0] - new_width + padding_bottom = resize_to[1] - new_height + image = np.asarray(image) + image = np.pad( + image, + ((0, padding_bottom), (0, padding_right), (0, 0)), + mode="constant", + constant_values=0, + ) + assert image.shape == (resize_to[1], resize_to[0], 3) + + else: + raise ValueError(f"Invalid mode: {mode}") + + if isinstance(image, Image.Image): + return np.asarray(image) + else: + return image + + +def navit_patchify(pixel_values: np.ndarray, + patch_size: int) -> dict[str, np.ndarray]: + """Reshape the pixel values to a navit shape. + + Args: + pixel_values: np.ndarray, shape (t, h, w, c) + patch_size: int + + Returns: + dict[str, np.ndarray] + - patches: np.ndarray, shape (t * h//patch_size * w//patch_size, c, patch_size, patch_size) + - grid_thw: np.ndarray, (t, h//patch_size, w//patch_size) + """ + T, H, W, C = pixel_values.shape + assert C == 3, "pixel_values must have 3 channels" + + patches = pixel_values.reshape(T, H // patch_size, patch_size, + W // patch_size, patch_size, C) + # (T, H//patch_size, W//patch_size, C, patch_size, patch_size) + patches = patches.transpose(0, 1, 3, 5, 2, 4) + patches = patches.reshape(-1, C, patch_size, patch_size) + grid_thw = np.array([T, H // patch_size, W // patch_size]) + return {"pixel_values": patches, "grid_thw": grid_thw} + + +def normalize(x: np.ndarray, + mean, + std_inv, + pixels_dtype: np.dtype = np.float32) -> np.ndarray: + """Normalize the image. + + Args: + x: The image to normalize. The shape is (..., 3). The dtype is uint8. The range is [0, 255]. + mean: The mean of the image. + std_inv: The inverse of the std of the image. + pixels_dtype: The dtype of the image. + Returns: + The normalized image. The shape is (..., 3). The dtype is determined by the pixels_dtype. + """ + x = (x / 255.0).astype(pixels_dtype) + x -= mean + x *= std_inv + return x + + +def _to_tensor(data, **kwargs): + import torch + + if isinstance(data, np.ndarray): + return torch.from_numpy(data).to(**kwargs) + elif isinstance(data, torch.Tensor): + return data.to(**kwargs) + elif isinstance(data, list): + return [_to_tensor(item, **kwargs) for item in data] + elif isinstance(data, tuple): + return tuple(_to_tensor(item, **kwargs) for item in data) + elif isinstance(data, dict): + return {k: _to_tensor(v, **kwargs) for k, v in data.items()} + elif data is None: + return None + else: + raise ValueError(f"Unsupported data type: {type(data)}") diff --git a/model-00001-of-00119.safetensors b/model-00001-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..bec82e2ba15d3ea4af6668efc276b08d2b32ee26 --- /dev/null +++ b/model-00001-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:325735cf2e626961db2d19b9aaf9ac6228e9f21f18e9c3d584e0ff9ba4b222c8 +size 4999509488 diff --git a/model-00002-of-00119.safetensors b/model-00002-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..9b902b7ab73057fd1a152e2e12c31b469a0d7ad4 --- /dev/null +++ b/model-00002-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1823f86fd14504910f563a89c0b62f2df7d45c4252d8024a7c740464aa6f44f8 +size 4997053752 diff --git a/model-00003-of-00119.safetensors b/model-00003-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..dfd4a0f8dfb612ace59fbff62ffdf869fca78661 --- /dev/null +++ b/model-00003-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ba9a500cab8e2df3639863f0c8b3fd4fbf8375d5e53576e624ebb8fef63a22a5 +size 4997468416 diff --git a/model-00004-of-00119.safetensors b/model-00004-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..cc31b53595d1767beafdbead41163da6e19ddd29 --- /dev/null +++ b/model-00004-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2e41df680614ad1cc82225761f94ba31c14d4a63ceb26696437107dd768e3d2e +size 4996135968 diff --git a/model-00005-of-00119.safetensors b/model-00005-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..39a3ce8409f219a71cf3f07255b49cc063482c41 --- /dev/null +++ b/model-00005-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4453e8f15b246883bf72bd92d46ecc51e14986b8d0f1c62fbaf1d3a7c3b1d365 +size 4997468296 diff --git a/model-00006-of-00119.safetensors b/model-00006-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..fd4712d8b35f27e00c3087e0a43a0fe6f7373ed6 --- /dev/null +++ b/model-00006-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:29c17f0419661491d71da404c0266542baa67914129154dfc6e5621f567e2724 +size 4996136088 diff --git a/model-00007-of-00119.safetensors b/model-00007-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..ca942dec707c6595eb3863ed4e5ff45df0ca9db2 --- /dev/null +++ b/model-00007-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ce99e6abe45df10cf0f7a4fcdd16ec556601f70392ceba9012bad92e150aebe8 +size 4997468176 diff --git a/model-00008-of-00119.safetensors b/model-00008-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..cf629d095bfbcfb0ae9170644200266657cc64d1 --- /dev/null +++ b/model-00008-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a604a4d701f1d8c841f8c886a97d1d1277d5812f2751e578325e04afa31d367c +size 4996136208 diff --git a/model-00009-of-00119.safetensors b/model-00009-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..40bcfc8b7a4efedaf40b835933be2128a98df8c3 --- /dev/null +++ b/model-00009-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7dcd182ed69eaaec99b0ab5791b0188239fc743fb37f05b2b607f00cf8dac9f6 +size 4997468056 diff --git a/model-00010-of-00119.safetensors b/model-00010-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..300abd2e9e35c5b1bcd4fa933482f64706ac3f14 --- /dev/null +++ b/model-00010-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0ce8ec0545bafd73f4f9d2a105907847e876e595c61aa0a6ce848dad936db1e5 +size 4996136328 diff --git a/model-00011-of-00119.safetensors b/model-00011-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c1304a819850266a71ff1caf24f44d05b3754d8e --- /dev/null +++ b/model-00011-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:28d5443961fdc6c5e09b10488567606b14ea13c8dbb2b29d33b121fa59454e87 +size 4997467936 diff --git a/model-00012-of-00119.safetensors b/model-00012-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..9232044e3315bade3c8e8fcb2f424f51e04baf97 --- /dev/null +++ b/model-00012-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5fa062a966e2f35ecc67dc7effbb04eaaaf3f3a78ceb0f6c4ec35ef6ce50e02c +size 4996136448 diff --git a/model-00013-of-00119.safetensors b/model-00013-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..180942bccd44a0a373a1914578999383cb45cb67 --- /dev/null +++ b/model-00013-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e596730f17df46ce04020e4c321055b2d805f464deea6618c8d94b80faf9c8d2 +size 4997467856 diff --git a/model-00014-of-00119.safetensors b/model-00014-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b98cfc09ea7ed2df4712c3441908ea27bb7a7288 --- /dev/null +++ b/model-00014-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:62ba23c5fe2438002591080407abaeb6d76b6b9f9e58f44ca0c2eaaaad5a9d8d +size 4996136520 diff --git a/model-00015-of-00119.safetensors b/model-00015-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..145db4af3e2c1d7282360f668a1674ff1de8144e --- /dev/null +++ b/model-00015-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:75315289ec29c9b9643a22e4b5110c4d6a9872fa5b7657af93581d054dc9ebb9 +size 4997467856 diff --git a/model-00016-of-00119.safetensors b/model-00016-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..959a3600d70e41b0c4ff791017ee26cd7c68cc84 --- /dev/null +++ b/model-00016-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:04de3342dfe26f71a76ba9e9a5c0f73ddd550635205662652166798886c15ef9 +size 4996136520 diff --git a/model-00017-of-00119.safetensors b/model-00017-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..536971637c637a1d4e2b8e69ba40d397dc20516b --- /dev/null +++ b/model-00017-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f6c98aaac921144121c645bb83aadd64917ba9380b936c9fda2cbbe8cab7483e +size 4997467856 diff --git a/model-00018-of-00119.safetensors b/model-00018-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..47e80da81166814a8a9215177c32ee17ca768234 --- /dev/null +++ b/model-00018-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d984a8f018a03f56a8ee3c81b07917ba08699299ece95e1187947a7e770d88c6 +size 4996136520 diff --git a/model-00019-of-00119.safetensors b/model-00019-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b88251592c4f57389573968bd342d79feb03d603 --- /dev/null +++ b/model-00019-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6bd9f16fa108f67e5688af6b702ba48398662f5c8b3e1f245fca56c6649da307 +size 4997469488 diff --git a/model-00020-of-00119.safetensors b/model-00020-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b8d406b34727bcae8ad6425ecb1f6f322293cfb1 --- /dev/null +++ b/model-00020-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:42409f25109190b4e38a2780caf03b03a0efbca82fded0d1925c69c526f7747e +size 4996138944 diff --git a/model-00021-of-00119.safetensors b/model-00021-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c2ae663ab4a3bddd8375f637b6f60c17f79506ad --- /dev/null +++ b/model-00021-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:51600f2000dd4e501a019f0ce99d97b8ff08aa515bb70bca63e1ae87365500dd +size 4997470192 diff --git a/model-00022-of-00119.safetensors b/model-00022-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..3b998a609c90d97ffbaac3cb9bf905117c3f2af9 --- /dev/null +++ b/model-00022-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:12a291e0b399902e390dcda469a8258e4ea89a94c7a4b5f4ef34d329901fda42 +size 4996138944 diff --git a/model-00023-of-00119.safetensors b/model-00023-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..0db1e26710cfb00ef10f99e3dcf9fb9a086ffa88 --- /dev/null +++ b/model-00023-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b18f4fdfaa026643868ac01aee02e62591fd6eccbf103c398aeed09c2a1a870a +size 4997470192 diff --git a/model-00024-of-00119.safetensors b/model-00024-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d000388dab700c7bf92cc7834a02efc1b8598f28 --- /dev/null +++ b/model-00024-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f05cb511236e4ecf9b00307852dfeabe6319490040d58bd38979ed0030acafcc +size 4996138944 diff --git a/model-00025-of-00119.safetensors b/model-00025-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d17dad2c0dd697f225ad7e6600a310e98ab94b37 --- /dev/null +++ b/model-00025-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e8230eb4851eb806db02acb9ce0751ea7c3ff7d0f6ec0e14c388b1c3bb109bb3 +size 4997470192 diff --git a/model-00026-of-00119.safetensors b/model-00026-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..835cd7802341483d846f5f98cec609a1dc99b82a --- /dev/null +++ b/model-00026-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:85fb7e9fad86b41c92ac3c5b540314885f5b0d39f03ac257cf81a877dfc180da +size 4996138944 diff --git a/model-00027-of-00119.safetensors b/model-00027-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..cb8106742b2fd32ab27d843308017ed10896ad37 --- /dev/null +++ b/model-00027-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:08f9640026ef5dace37a0b129c5cf89b224d2855cf1d3c3e9eaa59929acdaaf2 +size 4997470192 diff --git a/model-00028-of-00119.safetensors b/model-00028-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..2bea420cef51687c7c493b9fac3e7ac037940911 --- /dev/null +++ b/model-00028-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7f6081202c1306b79b0ee235219055b12aa2edd4a689ca3685876e72103bf859 +size 4996138944 diff --git a/model-00029-of-00119.safetensors b/model-00029-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..cfed973cceb3fff67349919a0f94f44ce66cd4da --- /dev/null +++ b/model-00029-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3c3e08b35da0df63fc7fdfbc253f9d5815d00aa8b5e31c4ec6e03c7ecadc2fec +size 4997470192 diff --git a/model-00030-of-00119.safetensors b/model-00030-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..578fc90f8b772810d6e14bc52cba8f9d11d9d1cd --- /dev/null +++ b/model-00030-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:522151bc532e84976f2834b5f3746a34dbb6f60ef1e6db04f90e1eaa9c21dbdf +size 4993415880 diff --git a/model-00031-of-00119.safetensors b/model-00031-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..af07d80ad6265f7715fa8e99a824825580e56471 --- /dev/null +++ b/model-00031-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f5c04ec607c6e6e32c8f03e14568e48f8de3720509f3a13fd0fae8ba213f6966 +size 5000193272 diff --git a/model-00032-of-00119.safetensors b/model-00032-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..cb193f2792b95b76f23b7bd5f4763a985c8aedfd --- /dev/null +++ b/model-00032-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:62cd98ce1772e178b3d494999324fbe9f2e09a511745b3c6a48ab2d69e7f0b91 +size 4997471472 diff --git a/model-00033-of-00119.safetensors b/model-00033-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..322878e6ef660a7ca8f1b1eac599a706387a8237 --- /dev/null +++ b/model-00033-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4602f289947783978585885a096bcc6be0453f9c37b108457f418692c99fe47a +size 4996137664 diff --git a/model-00034-of-00119.safetensors b/model-00034-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..474d3796eb42dfc84c50c57754611ff11ca469b6 --- /dev/null +++ b/model-00034-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ae48e15defabdbc464a8409adf5c9637813cd9e960db88fb0643ba2ddb383511 +size 4997471256 diff --git a/model-00035-of-00119.safetensors b/model-00035-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..65784188f7dd8b810c9d8e75a022845a1ae6010d --- /dev/null +++ b/model-00035-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:13a9424e834309a65793d58934913b89b1f1e1a47432a385650ad630cc10a25c +size 4996137880 diff --git a/model-00036-of-00119.safetensors b/model-00036-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..5f69076f3abc9b47bf881d63d6ac1572aeb3ba0c --- /dev/null +++ b/model-00036-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e6865f57c5874eb3d76fd1af8fd4652439c7fb8433a3afa301a3a0c383ec3b48 +size 4997471136 diff --git a/model-00037-of-00119.safetensors b/model-00037-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..1ad103f0d732e3d849e6876dbcee962832d95f11 --- /dev/null +++ b/model-00037-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:46e236163dae245d197f2cf9a9b6d3f5eebf8c954ec4e94ad201476fc0947b93 +size 4996138000 diff --git a/model-00038-of-00119.safetensors b/model-00038-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..eabd48e6078f9928a78cf468b38d716ef2dc413b --- /dev/null +++ b/model-00038-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:40347d6862f1ba42113f4945543293b54f07383ae803501e23ff06ed233c85f7 +size 4997471016 diff --git a/model-00039-of-00119.safetensors b/model-00039-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..8dc2a866cce23939f53b32df5e9a142819b6d6a9 --- /dev/null +++ b/model-00039-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:746da5a0ed4bb74f337ee7de4b6cafb8ff9b5b35412b3d7bd0d4f0c83041c771 +size 4996138120 diff --git a/model-00040-of-00119.safetensors b/model-00040-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..8760c02c58113a8598f6a967e7542114d8f56bba --- /dev/null +++ b/model-00040-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:eeb834e37a8dc059f72fbb3cd3984d0b9c670d64eb118265b9a3ae575ce32855 +size 4997470896 diff --git a/model-00041-of-00119.safetensors b/model-00041-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..8ea6396c50389e5822527cdbd4c84ea9dfc46a65 --- /dev/null +++ b/model-00041-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8c76e3df356724461b8d81f5dde20f1f3b64423749537b6c340cc7cb245d5fa6 +size 4996138240 diff --git a/model-00042-of-00119.safetensors b/model-00042-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c7603b84f356cf17d53aea5048770bb74f9d34f7 --- /dev/null +++ b/model-00042-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6d11227cd2a92cefeaf0f5798b9d806689dde40c78ae7dfe0dd5a28af33345ee +size 4997470776 diff --git a/model-00043-of-00119.safetensors b/model-00043-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d6aadd089a2c078947d87b9ff471d21e5fb0f15f --- /dev/null +++ b/model-00043-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0c1c181dd0731624c186f5146195bd589b1bdf10e4b6f516bade6f4664302911 +size 4996138360 diff --git a/model-00044-of-00119.safetensors b/model-00044-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d1096c1b1bef158e5c70abd8004787acd18a203f --- /dev/null +++ b/model-00044-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:09b857be543ca4da13bd4dd3dac8a4c68a93c00e3eb3f3a013a000a1c6ebb748 +size 4997470656 diff --git a/model-00045-of-00119.safetensors b/model-00045-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d7e0b97b6467988c1bfa72622c136e40fb2337cd --- /dev/null +++ b/model-00045-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:97bd24d8ceb933dda972df0463fe343b6e22090e6300929f4fd306c2700bdae1 +size 4996138480 diff --git a/model-00046-of-00119.safetensors b/model-00046-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..5fca6d61949a0a8df3d9f506d28af9474d3481be --- /dev/null +++ b/model-00046-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1ea8064e51cdeb8f08010da01470280ab31b27f0d1a01cfc99c86e920cc1e1c6 +size 4997470536 diff --git a/model-00047-of-00119.safetensors b/model-00047-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..3124e0bc54af44b89b41a37905e9f9368af2da0c --- /dev/null +++ b/model-00047-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:87c603cbda78c02bd0257a357d66fe173727b4562b40062b79be06adc8843c19 +size 4996138600 diff --git a/model-00048-of-00119.safetensors b/model-00048-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..5891a0f844be779281ab1a18afd945e937a9fc2a --- /dev/null +++ b/model-00048-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6c5a8dc76a26ac0b95e72e4472b4cfa8c8da18c873169137e30c4e245ad3b2f1 +size 4997470416 diff --git a/model-00049-of-00119.safetensors b/model-00049-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..972bd0fa9694245d36a9397c9ed7cabe40c9d30a --- /dev/null +++ b/model-00049-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9b574e590b797dc8ff7cbc7b809ed24b9b7e89bd8e6ec5adcadafe61cdca2b8d +size 4996138720 diff --git a/model-00050-of-00119.safetensors b/model-00050-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d6c1cb8730efdc038113801193389088e436c1c9 --- /dev/null +++ b/model-00050-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8791f049ddb63af246ca2d15978e5b4462042043862c0e7e2e1ea356e6f4a2b7 +size 4997470296 diff --git a/model-00051-of-00119.safetensors b/model-00051-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d3d51059b7f9fb51f2528bd1df4b1b34c6542338 --- /dev/null +++ b/model-00051-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9c81d13fc30498cbc4bad196b88b448a1a737c77ea9dad62e48095d453e553ef +size 4996138840 diff --git a/model-00052-of-00119.safetensors b/model-00052-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..3d87b081d06b2983ff4f69652bde665cbaccca89 --- /dev/null +++ b/model-00052-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:04e9c6812be47bb4cae5e6b3023916a7b52e2774b92c1d24659144bca732bb8d +size 4997470200 diff --git a/model-00053-of-00119.safetensors b/model-00053-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..edd86dccbb3cd07cec314d17e60d7e74044e209b --- /dev/null +++ b/model-00053-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:be2738d76c67f6ffe1920a60dde2b7a256d8e16555a0022b2702ae9701d2fd8a +size 4996138936 diff --git a/model-00054-of-00119.safetensors b/model-00054-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..2676a2ac604e28956ba102970440badd41d3cf3e --- /dev/null +++ b/model-00054-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d5308ec24d5165a49b2f1d25f9e3ebd6a79b27d03a82ac435aed2c18319f6a67 +size 4997470200 diff --git a/model-00055-of-00119.safetensors b/model-00055-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..4e410390799c9940c2133da17ed197b74033b236 --- /dev/null +++ b/model-00055-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:07768bd60fc52508959aec08cad00994ce77f61cb3f1bc64af0b3ce1729c57ba +size 4996138936 diff --git a/model-00056-of-00119.safetensors b/model-00056-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c2c25ac0432095bc65ce3c5c52e8c888f4929297 --- /dev/null +++ b/model-00056-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7b30acbb89f7a4b68e599a7b1f0f76d6ce64acd8aa1980892a2e62d5fa8e6342 +size 4997470200 diff --git a/model-00057-of-00119.safetensors b/model-00057-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d907d042a4a0a38d435f85fc030f5a0f4a5e37c4 --- /dev/null +++ b/model-00057-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:85f95efc7e18cf03424dd2a2c67df668505be2144eda137a7c8a3737507f4001 +size 4996138936 diff --git a/model-00058-of-00119.safetensors b/model-00058-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..e6845d3ded3d9b503c7c370cf1eaeb91b79c155b --- /dev/null +++ b/model-00058-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6a9e78eabc6ea95abdb11cba942eace4844f896852801f8b22c3dadf5ffd3b98 +size 4997470200 diff --git a/model-00059-of-00119.safetensors b/model-00059-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c56b9cab18efb47b4074470094e7f11eb9f83875 --- /dev/null +++ b/model-00059-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c0fdff66e14458c4512ebfe618a6e6f5ac98e644a539d076f47f20d3b12a0931 +size 4996138936 diff --git a/model-00060-of-00119.safetensors b/model-00060-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..f0cbceb385e4061772ee2f918dee304a025386d0 --- /dev/null +++ b/model-00060-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a7df78bfde7612eb054707e79037a1fa3864155912c6c3fa308cf9940be3fcfe +size 4997470200 diff --git a/model-00061-of-00119.safetensors b/model-00061-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b1d6e70f66886cd327f0c4bf3608e0cf360f015b --- /dev/null +++ b/model-00061-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0aa7450e7b82297c6d12b0ee3b34efea349d2f7d2780909774360825c5923662 +size 4996138936 diff --git a/model-00062-of-00119.safetensors b/model-00062-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..15b540b6fbaa28471450fbd314949d5fd8786411 --- /dev/null +++ b/model-00062-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2cb5058f7fe8206faa02c497972c07579f7ad6914ac431e366a04c2a64a105ca +size 4997470200 diff --git a/model-00063-of-00119.safetensors b/model-00063-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..3ec6e7123f16851cf8a960036dec219b3020ca0e --- /dev/null +++ b/model-00063-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:390852c9b09623db3fb849d98797c5eb4ced059d1202a88b3d4502c5edcf39bf +size 4996138936 diff --git a/model-00064-of-00119.safetensors b/model-00064-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..ac9dffa09044ed593a5ba866513535582e49df00 --- /dev/null +++ b/model-00064-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:97b524b24c11026264481c91544111f4b9f8a57e3ed3debbaf3058c6b86553b3 +size 4997470200 diff --git a/model-00065-of-00119.safetensors b/model-00065-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..67b5bfac67259f3fcc3d62cce8fb6d9be357e3ba --- /dev/null +++ b/model-00065-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7bb3d62e7308401c536cb73c3e5660714d19ae4d85ea31f48906789ae7e9cfaa +size 4996138936 diff --git a/model-00066-of-00119.safetensors b/model-00066-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..11fbd99cf32597e64615750a0ea68322367f4e3e --- /dev/null +++ b/model-00066-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5ff6cc94f5b0c69754382bc2b708fa86812181e31af658a2abb7c99ccbd467f2 +size 4997470200 diff --git a/model-00067-of-00119.safetensors b/model-00067-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c27b3487a80868b7a5414d1d7f5d3c441ca3d328 --- /dev/null +++ b/model-00067-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6205cb4b74ab4b39f453d8f2ce9644027f8b977785e9b4df4933b2d0846d8eb0 +size 4996138936 diff --git a/model-00068-of-00119.safetensors b/model-00068-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b857f7ae075115612911fe7c9442693463aeee5a --- /dev/null +++ b/model-00068-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6a6fe742fc37fdf418dfc93858a55d32f365dadde5739705c74417ddd0771257 +size 4997470200 diff --git a/model-00069-of-00119.safetensors b/model-00069-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b25ab7b13d540bceaa6541bfefa8bad7e8a973f3 --- /dev/null +++ b/model-00069-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6b345c3c15d8be49563f9876ce7b4a01c88ee4bd43f65a3d71ef1fc67cf47a99 +size 4996138936 diff --git a/model-00070-of-00119.safetensors b/model-00070-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..688b379f61f2860f9281ab1e214add9e5b86a9ac --- /dev/null +++ b/model-00070-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f6e90a8025c81757c4d36cd28ec50ab2c85e00302c35e5972aa389fd2ca86913 +size 4997470200 diff --git a/model-00071-of-00119.safetensors b/model-00071-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..2258b83a82d5deff839138bfdfe7ce92067de68e --- /dev/null +++ b/model-00071-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:938789f0eaf714cba49eb213b7e360ba0dda735575de07d06a3c67684dceb774 +size 4997471512 diff --git a/model-00072-of-00119.safetensors b/model-00072-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b83e6bacd2298bd3e1f53818aa457430d3a352c9 --- /dev/null +++ b/model-00072-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c5fcf835ab39c6dd30e67248e56c9cc9823b7464a0fb33cad8bf798facb36efd +size 4996137624 diff --git a/model-00073-of-00119.safetensors b/model-00073-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..2cc2ffd17d649323b7575a8a64f1a66fd99497fe --- /dev/null +++ b/model-00073-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f36d8e63a8c163064e5a48e43c6aa876ef4c47d14efa6f0f587aad967fe34eac +size 4997471272 diff --git a/model-00074-of-00119.safetensors b/model-00074-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..2a3865beb08fb7da09b7a0df2fc786e992d35a8a --- /dev/null +++ b/model-00074-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:faf36d0c62e9ede1f6526f790dc79e3ecaceb97d22c2922c2e67e3204ad761d5 +size 4996137856 diff --git a/model-00075-of-00119.safetensors b/model-00075-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..892c94933f41ba337db27035cc7d59d183776ceb --- /dev/null +++ b/model-00075-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:67fa1abed65cbdc0a70c71d40821055f7a43e85efeadee4b2914a2918709984d +size 4997471152 diff --git a/model-00076-of-00119.safetensors b/model-00076-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c8f57ab94ec1d7d3a7ae5b7943ef25893109d8a1 --- /dev/null +++ b/model-00076-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5498f01feef0647148b177402d3e437d43c92f50603f83ccd511c096c3f22dcf +size 4996137976 diff --git a/model-00077-of-00119.safetensors b/model-00077-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..68f9879c098abdaf9c3ec4da3e31748bbab21ca8 --- /dev/null +++ b/model-00077-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:01610017a11bd88f49c57f59641036077b96487c69cb9388246a465a7ae745b7 +size 4997471032 diff --git a/model-00078-of-00119.safetensors b/model-00078-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..dffe9dcadff5c66e14d18db8d21ca180a6246cfd --- /dev/null +++ b/model-00078-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ff96e46755334a80d32adb3550dc1659e3fcfb7c5ef4c7978e3413a69fa99bde +size 4996138096 diff --git a/model-00079-of-00119.safetensors b/model-00079-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..85bf7805599def1a5dec9cf0ee1ca943fc00d895 --- /dev/null +++ b/model-00079-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:00803134e2f17f9d8d60b3b1614690164220c6c49b9d693aa1c12e8c4518b589 +size 4997470912 diff --git a/model-00080-of-00119.safetensors b/model-00080-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..63712e22f42422e2e888ee77de63e2c4fd36cc2e --- /dev/null +++ b/model-00080-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:103889e2ab35b5a5773408676ef5403c46794d04d80a66438998633f3bd357dd +size 4996138216 diff --git a/model-00081-of-00119.safetensors b/model-00081-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..7ccf19b68e22c9a404f7ff4551554ec51139f273 --- /dev/null +++ b/model-00081-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9485072fefc93652680ee81b8192c16fa05acab940961c97316e2b4c481af83a +size 4997470792 diff --git a/model-00082-of-00119.safetensors b/model-00082-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..7a9eb3a8c0ca211cd40947f10fb05f0e07440129 --- /dev/null +++ b/model-00082-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b653e86a819f0e8f02041c6921e854797fd2930565689eedd3da1e371709703a +size 4996138336 diff --git a/model-00083-of-00119.safetensors b/model-00083-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..5ec2bd55f1698dec25c70cc0d453ec2c4b30524c --- /dev/null +++ b/model-00083-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:21212d1075a51c095103b58c70801879d55678473a41bf6f7ac449ff5d68721f +size 4997470672 diff --git a/model-00084-of-00119.safetensors b/model-00084-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..622fb9ee297f9e865e0c33ddbea32f3e33b371bf --- /dev/null +++ b/model-00084-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:07cac476a0cf8d6e49fb83050c7d3773a7c20fb2b48c962cc7aefeb8eee98b9c +size 4996138456 diff --git a/model-00085-of-00119.safetensors b/model-00085-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..1e2cdc2ff6b03e3a055f7d09d79cb997d7a65600 --- /dev/null +++ b/model-00085-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4ed5e051983453abc5f3c36aff92ecfa6dc418af457ffb7c7307753b7550b1b5 +size 4997470552 diff --git a/model-00086-of-00119.safetensors b/model-00086-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..3bee8d1a6826893e78cb2fb5955cfc5de504ea5d --- /dev/null +++ b/model-00086-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2800f8cc073e1af33a62bf52d76aabf85928453d5aea0ee734d29b40fc3bf5f2 +size 4996138576 diff --git a/model-00087-of-00119.safetensors b/model-00087-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d25b5d971456b834c5fccfd09b5d2514d8ac3cb6 --- /dev/null +++ b/model-00087-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a12d98e933bc868088000c2636e72efcb4a97d3bc0724e1fd9e436e8bb2f34df +size 4997470432 diff --git a/model-00088-of-00119.safetensors b/model-00088-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..a8d42aeb61c99d8e8f51c6193612f4e09f48174b --- /dev/null +++ b/model-00088-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:958215e41271ef632349bd8ca3b44987e0e23df3e8e6c680fdd115bc1e0b2436 +size 4996138696 diff --git a/model-00089-of-00119.safetensors b/model-00089-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..5b435b0361c9a7363b343235efd0ead203225760 --- /dev/null +++ b/model-00089-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bc88f6a891dd42cd8836cec03cb84f0bc19f39cea15a898d3ab87350248f6d17 +size 4997470312 diff --git a/model-00090-of-00119.safetensors b/model-00090-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b333abadbd1a111c4fc1f5f9dd85b8eb73e8ebf9 --- /dev/null +++ b/model-00090-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1fc6cb3f66bac781b927d28b6d339f699c27217a7e3e1f28747128ffcba117f8 +size 4996138816 diff --git a/model-00091-of-00119.safetensors b/model-00091-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..dabef6ff423b3c11f95cc23be5cefbeffbec120f --- /dev/null +++ b/model-00091-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dd0a91df5e32dbd728e2d15a2448652c5a5979bf72a6abe821475b745908e824 +size 4997470200 diff --git a/model-00092-of-00119.safetensors b/model-00092-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..69c79fccb7388ea23517360cfbff12ef9efd7b9b --- /dev/null +++ b/model-00092-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1d395a0a814cff109096da0d74514962d8aff75f54090b961b367e9101c26f32 +size 4996138936 diff --git a/model-00093-of-00119.safetensors b/model-00093-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..53991b31443b552cbc10d5e646681f8cb8f231e6 --- /dev/null +++ b/model-00093-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:62985d59998c1288f36e5ea1c4302060b96baa529c76920484fc88eacb907073 +size 4997470200 diff --git a/model-00094-of-00119.safetensors b/model-00094-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..fe1fcff1685e3fac0ce3df9e11954b696cd3a7d1 --- /dev/null +++ b/model-00094-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f22684cb46d4a3c794e8232db0fa494302c1629aa46b8461b05277c000f5258a +size 4996138936 diff --git a/model-00095-of-00119.safetensors b/model-00095-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..bbf457c0943480943c16f4ed2a09b9bc5d43028d --- /dev/null +++ b/model-00095-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bd0b2535b2f75ee096f8c02c6a627cd2fca861fc6e872bfe04ae2d653ab53374 +size 4997470200 diff --git a/model-00096-of-00119.safetensors b/model-00096-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..f57392ef728b5d3db5c8db02b995d865d1a89f54 --- /dev/null +++ b/model-00096-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f7ea78611b22f7571e88ae71b7bbc9e12c660a1bf28fca5cf630b372dbc2830 +size 4996138936 diff --git a/model-00097-of-00119.safetensors b/model-00097-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b99943e92607c66443c311417fa623cf06531bda --- /dev/null +++ b/model-00097-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8b3f4f483bcbb2bb025db624a060c7e56090c9db3bdf21ee104fd9e28d43d439 +size 4997470200 diff --git a/model-00098-of-00119.safetensors b/model-00098-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..68d17624a505d501fe51667ca4a0a0230eab1e4f --- /dev/null +++ b/model-00098-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7ad5165eef70e373b4025acaf98892763302978d260eb76b64b5202e14c7c703 +size 4996138936 diff --git a/model-00099-of-00119.safetensors b/model-00099-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c35625e08c7ad0619e71327a0d724af43d74b768 --- /dev/null +++ b/model-00099-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:db9a7d0d31c5e55a63bc64170f15cd594cc3f85cff16bde8763a4d6cfcecfb23 +size 4997470200 diff --git a/model-00100-of-00119.safetensors b/model-00100-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..7a6618761fb44c8284abffc48f4896de577c2208 --- /dev/null +++ b/model-00100-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dec20613f31a9a249d2a0299a75a533f6e121402f0747178347725c6ae2a6c98 +size 4996138936 diff --git a/model-00101-of-00119.safetensors b/model-00101-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..8bd30a4bf022069c3cb111a9ee468a06ff58d259 --- /dev/null +++ b/model-00101-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:753053b650986ff154e210e56289645428f9da5f90aae18cb7f584f41a8b4eb9 +size 4997470200 diff --git a/model-00102-of-00119.safetensors b/model-00102-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d988915bd568e274814a06b1877ab9fb1ff92d75 --- /dev/null +++ b/model-00102-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:122ad83ebde781897522862950e4bcc74e80e0dfa49cff36cacb37fa74dda263 +size 4996138936 diff --git a/model-00103-of-00119.safetensors b/model-00103-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c0dcdc62142abaf3e7b1496f37b9b926c2d88eb3 --- /dev/null +++ b/model-00103-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:08552915ce5f546e86b36a1e3afdc3df3a39e72a6719ae88c11eb69b41219337 +size 4997470200 diff --git a/model-00104-of-00119.safetensors b/model-00104-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..16def46043ca0a4b40404480082ca7b0a6a4021b --- /dev/null +++ b/model-00104-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:92395c738ee8c59b14b0ced0e4a33e7949dadec842704e024a964ee041545cb6 +size 4996138936 diff --git a/model-00105-of-00119.safetensors b/model-00105-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..2a8b41ee7899a01e909127e7edc4fcdab74d2c26 --- /dev/null +++ b/model-00105-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:857f4a3e53773f26430d7edc3da812fd7e535fbd0e2f6eb4674e324ef5900e10 +size 4997470200 diff --git a/model-00106-of-00119.safetensors b/model-00106-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..f98253ea2a11a0920fa791bd6b3c0631873cffb3 --- /dev/null +++ b/model-00106-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2647290922402f4df3b6016221e67143a37a5ad98ce6d62223d1154e940ed4a0 +size 4996138936 diff --git a/model-00107-of-00119.safetensors b/model-00107-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..0c1ab78f23073816923b87b290cb00a2343e29e7 --- /dev/null +++ b/model-00107-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d375edd624a38537e942b42eb20d5b895b58fbce2578c76f576d7d4ce52621da +size 4997470200 diff --git a/model-00108-of-00119.safetensors b/model-00108-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..2030e50d0c5b08ccec27513e449ffa1035536e29 --- /dev/null +++ b/model-00108-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4b14f35510e4be932d79c60a9c5431e631382b7dfbd6102475721f279c15ef7a +size 4996138936 diff --git a/model-00109-of-00119.safetensors b/model-00109-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..41090f86a200cb12e2afc727165ca2ec2ab410b7 --- /dev/null +++ b/model-00109-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c750e5aad078a00901b5e34110e6aa7fafd41273752c22342697b00f160d23a9 +size 4997470200 diff --git a/model-00110-of-00119.safetensors b/model-00110-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b172102b2a2eb8ce0e8bcc1591fc53ffa7b164fd --- /dev/null +++ b/model-00110-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:eb2c88c490f885ec929091fb23602c52e58d5db7bbcd7e06b42726eb9d1622bf +size 4913062912 diff --git a/model-00111-of-00119.safetensors b/model-00111-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..08f53fe2d91c9113ed98dfd5ef6c9616d9d66892 --- /dev/null +++ b/model-00111-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:00a62e657c23e493c60f03d331e675ea1b42f94d47fcedb73ed7a5b9f93be340 +size 4997965608 diff --git a/model-00112-of-00119.safetensors b/model-00112-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..2b6955b4cc6004d324f03f44063904603ebebcc8 --- /dev/null +++ b/model-00112-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:46bbf06ae512fb2d7ba47f650444820365027707ff6501c1c480d24cc28d0a9c +size 4997471392 diff --git a/model-00113-of-00119.safetensors b/model-00113-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..69bd1d9fa96b84d309c7ee3993aec260a5bff928 --- /dev/null +++ b/model-00113-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1a0a8f53d94f00aa86593483602da8823d2a6f5f2d5efec4b98e6acd27ca1ed9 +size 4996137744 diff --git a/model-00114-of-00119.safetensors b/model-00114-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..4a76c9dd0306adeef5197a950f1dabfb783690d7 --- /dev/null +++ b/model-00114-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8f4babbdcc9d966da08409bf415c43a30ff95afb17dc01f05e63d98c1da3cb3b +size 4997471216 diff --git a/model-00115-of-00119.safetensors b/model-00115-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..ee5e53386d5641fc937aa3373c5302b76ae6d1ff --- /dev/null +++ b/model-00115-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:706554789de9cee8418b8abcb209174003623c783708e4694e006ee57b690f05 +size 4996137920 diff --git a/model-00116-of-00119.safetensors b/model-00116-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..9afe537b93e6a96fa84579c4182fae3d4602d79a --- /dev/null +++ b/model-00116-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a3de0f4f170fb95cf49d6714147592cfd858f4f99e4bcbb7c6c8d1f39b222342 +size 4997471096 diff --git a/model-00117-of-00119.safetensors b/model-00117-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..acbe9fcfc12d7cab61b5241c647a7c4406f5aaca --- /dev/null +++ b/model-00117-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:103ef306798c3201d7c39dda2f45e8d75590e1bc9a7b6f2f0b190a314d1dcb0b +size 4996138040 diff --git a/model-00118-of-00119.safetensors b/model-00118-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..a6661b025b9ab8bd3374967ae23adcd7ddd64578 --- /dev/null +++ b/model-00118-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:874e706179dadd3f530ba932dca28e7fdc9e53c76c48f9b4649eec3ba58cf0e5 +size 3919879576 diff --git a/model-00119-of-00119.safetensors b/model-00119-of-00119.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..19c2b42e79d6c7329cdf8a3833b3d2a3d3aff685 --- /dev/null +++ b/model-00119-of-00119.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f608d1f0a9b8468d5f6d420246b7342e331ea20e03aeb3e5d41ad24d74a626fb +size 2348810384 diff --git a/model.safetensors.index.json b/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..6885d612448d229c0dc00db117f0f13356b000f0 --- /dev/null +++ b/model.safetensors.index.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7e8723756225d00dea4ea2b89b4d59bc262f94118a7d8d2e2f5d9e04071fd265 +size 30783853 diff --git a/modeling_deepseek.py b/modeling_deepseek.py new file mode 100644 index 0000000000000000000000000000000000000000..707925a7f440d22c1fde9ea13676b7ee924d6e21 --- /dev/null +++ b/modeling_deepseek.py @@ -0,0 +1,1808 @@ +# coding=utf-8 +# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch DeepSeek model.""" +import math +import warnings +from typing import List, Optional, Tuple, Union + +import numpy as np +import torch +import torch.distributed as dist +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss +from transformers.activations import ACT2FN +from transformers.cache_utils import Cache, DynamicCache +from transformers.modeling_attn_mask_utils import \ + _prepare_4d_causal_attention_mask +from transformers.modeling_outputs import (BaseModelOutputWithPast, + CausalLMOutputWithPast, + SequenceClassifierOutputWithPast) +from transformers.modeling_utils import PreTrainedModel +from transformers.pytorch_utils import (ALL_LAYERNORM_LAYERS, + is_torch_greater_or_equal_than_1_13) +from transformers.utils import (add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, logging, + replace_return_docstrings) +from transformers.utils.import_utils import is_torch_fx_available + +from .configuration_deepseek import DeepseekV3Config + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import pad_input # noqa + from flash_attn.bert_padding import index_first_axis, unpad_input + +# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. +# It means that the function will not be traced through and simply appear as a node in the graph. +if is_torch_fx_available(): + if not is_torch_greater_or_equal_than_1_13: + import torch.fx + + _prepare_4d_causal_attention_mask = torch.fx.wrap( + _prepare_4d_causal_attention_mask) + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "DeepseekV3Config" + + +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad( + torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +# code modified from transformers 4.48.3 to amend breaks in newer transformers versions +def get_usable_length(past_key_value, + new_seq_length: int, + layer_idx: Optional[int] = 0) -> int: + max_length = past_key_value.get_max_cache_shape() + previous_seq_length = past_key_value.get_seq_length(layer_idx) + if max_length is not None and max_length > 0 and previous_seq_length + new_seq_length > max_length: + return max_length - new_seq_length + return previous_seq_length + + +class DeepseekV3RMSNorm(nn.Module): + + def __init__(self, hidden_size, eps=1e-6): + """ + DeepseekV3RMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm) + + +class DeepseekV3RotaryEmbedding(nn.Module): + + def __init__(self, + dim, + max_position_embeddings=2048, + base=10000, + device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base**( + torch.arange(0, self.dim, 2).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, + device=self.inv_freq.device, + dtype=torch.get_default_dtype(), + ) + self.max_seq_len_cached = None + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, + device=device, + dtype=self.inv_freq.dtype) + + freqs = torch.outer(t, self.inv_freq.to(t.device)) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", + emb.cos().to(dtype), + persistent=False) + self.register_buffer("sin_cached", + emb.sin().to(dtype), + persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, + device=x.device, + dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3 +class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding): + """DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, + device=device, + dtype=self.inv_freq.dtype) + t = t / self.scaling_factor + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", + emb.cos().to(dtype), + persistent=False) + self.register_buffer("sin_cached", + emb.sin().to(dtype), + persistent=False) + + +# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3 +class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding): + """DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + + if seq_len > self.max_position_embeddings: + base = self.base * ((self.scaling_factor * seq_len / + self.max_position_embeddings) - + (self.scaling_factor - 1))**(self.dim / + (self.dim - 2)) + inv_freq = 1.0 / (base**( + torch.arange(0, self.dim, 2).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(self.max_seq_len_cached, + device=device, + dtype=self.inv_freq.dtype) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", + emb.cos().to(dtype), + persistent=False) + self.register_buffer("sin_cached", + emb.sin().to(dtype), + persistent=False) + + +# Inverse dim formula to find dim based on number of rotations +def yarn_find_correction_dim(num_rotations, + dim, + base=10000, + max_position_embeddings=2048): + return (dim * math.log(max_position_embeddings / + (num_rotations * 2 * math.pi))) / (2 * + math.log(base)) + + +# Find dim range bounds based on rotations +def yarn_find_correction_range(low_rot, + high_rot, + dim, + base=10000, + max_position_embeddings=2048): + low = math.floor( + yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)) + high = math.ceil( + yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)) + return max(low, 0), min(high, dim - 1) # Clamp values just in case + + +def yarn_get_mscale(scale=1, mscale=1): + if scale <= 1: + return 1.0 + return 0.1 * mscale * math.log(scale) + 1.0 + + +def yarn_linear_ramp_mask(min, max, dim): + if min == max: + max += 0.001 # Prevent singularity + + linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) + ramp_func = torch.clamp(linear_func, 0, 1) + return ramp_func + + +class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding): + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + original_max_position_embeddings=4096, + beta_fast=32, + beta_slow=1, + mscale=1, + mscale_all_dim=0, + ): + self.scaling_factor = scaling_factor + self.original_max_position_embeddings = original_max_position_embeddings + self.beta_fast = beta_fast + self.beta_slow = beta_slow + self.mscale = mscale + self.mscale_all_dim = mscale_all_dim + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + dim = self.dim + + freq_extra = 1.0 / (self.base**( + torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)) + freq_inter = 1.0 / (self.scaling_factor * self.base**( + torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)) + + low, high = yarn_find_correction_range( + self.beta_fast, + self.beta_slow, + dim, + self.base, + self.original_max_position_embeddings, + ) + inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to( + device=device, dtype=torch.float32) + inv_freq = freq_inter * (1 - + inv_freq_mask) + freq_extra * inv_freq_mask + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(seq_len, device=device, dtype=torch.float32) + + freqs = torch.outer(t, inv_freq) + + _mscale = float( + yarn_get_mscale(self.scaling_factor, self.mscale) / + yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)) + + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", (emb.cos() * _mscale).to(dtype), + persistent=False) + self.register_buffer("sin_cached", (emb.sin() * _mscale).to(dtype), + persistent=False) + + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., :x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2:] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + + b, h, s, d = q.shape + q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + b, h, s, d = k.shape + k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +class DeepseekV3MLP(nn.Module): + + def __init__(self, config, hidden_size=None, intermediate_size=None): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size if hidden_size is None else hidden_size + self.intermediate_size = (config.intermediate_size if intermediate_size + is None else intermediate_size) + + self.gate_proj = nn.Linear(self.hidden_size, + self.intermediate_size, + bias=False) + self.up_proj = nn.Linear(self.hidden_size, + self.intermediate_size, + bias=False) + self.down_proj = nn.Linear(self.intermediate_size, + self.hidden_size, + bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + down_proj = self.down_proj( + self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + + +class MoEGate(nn.Module): + + def __init__(self, config): + super().__init__() + self.config = config + self.top_k = config.num_experts_per_tok + self.n_routed_experts = config.n_routed_experts + self.routed_scaling_factor = config.routed_scaling_factor + self.scoring_func = config.scoring_func + self.seq_aux = config.seq_aux + self.topk_method = config.topk_method + self.n_group = config.n_group + self.topk_group = config.topk_group + + # topk selection algorithm + self.norm_topk_prob = config.norm_topk_prob + self.gating_dim = config.hidden_size + self.weight = nn.Parameter( + torch.empty((self.n_routed_experts, self.gating_dim))) + if self.topk_method == "noaux_tc": + self.e_score_correction_bias = nn.Parameter( + torch.empty((self.n_routed_experts))) + self.reset_parameters() + + def reset_parameters(self) -> None: + import torch.nn.init as init + + init.kaiming_uniform_(self.weight, a=math.sqrt(5)) + + def forward(self, hidden_states): + bsz, seq_len, h = hidden_states.shape + ### compute gating score + hidden_states = hidden_states.view(-1, h) + logits = F.linear(hidden_states.type(torch.float32), + self.weight.type(torch.float32), None) + if self.scoring_func == "sigmoid": + scores = logits.sigmoid() + else: + raise NotImplementedError( + f"insupportable scoring function for MoE gating: {self.scoring_func}" + ) + + ### select top-k experts + if self.topk_method == "noaux_tc": + assert not self.training + scores_for_choice = scores.view( + bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0) + group_scores = (scores_for_choice.view( + bsz * seq_len, self.n_group, + -1).topk(2, dim=-1)[0].sum(dim=-1)) # [n, n_group] + group_idx = torch.topk(group_scores, + k=self.topk_group, + dim=-1, + sorted=False)[1] # [n, top_k_group] + group_mask = torch.zeros_like(group_scores) # [n, n_group] + group_mask.scatter_(1, group_idx, 1) # [n, n_group] + score_mask = (group_mask.unsqueeze(-1).expand( + bsz * seq_len, self.n_group, + self.n_routed_experts // self.n_group).reshape( + bsz * seq_len, -1)) # [n, e] + tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), + 0.0) # [n, e] + _, topk_idx = torch.topk(tmp_scores, + k=self.top_k, + dim=-1, + sorted=False) + topk_weight = scores.gather(1, topk_idx) + else: + raise NotImplementedError( + f"insupportable TopK function for MoE gating: {self.topk_method}" + ) + + ### norm gate to sum 1 + if self.top_k > 1 and self.norm_topk_prob: + denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 + topk_weight = topk_weight / denominator + topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor + + return topk_idx, topk_weight + + +class DeepseekV3MoE(nn.Module): + """ + A mixed expert module containing shared experts. + """ + + def __init__(self, config): + super().__init__() + self.config = config + self.num_experts_per_tok = config.num_experts_per_tok + + if hasattr(config, "ep_size") and config.ep_size > 1: + assert config.ep_size == dist.get_world_size() + self.ep_size = config.ep_size + self.experts_per_rank = config.n_routed_experts // config.ep_size + self.ep_rank = dist.get_rank() + self.experts = nn.ModuleList([ + (DeepseekV3MLP(config, + intermediate_size=config.moe_intermediate_size) + if i >= self.ep_rank * self.experts_per_rank + and i < (self.ep_rank + 1) * self.experts_per_rank else None) + for i in range(config.n_routed_experts) + ]) + else: + self.ep_size = 1 + self.experts_per_rank = config.n_routed_experts + self.ep_rank = 0 + self.experts = nn.ModuleList([ + DeepseekV3MLP(config, + intermediate_size=config.moe_intermediate_size) + for i in range(config.n_routed_experts) + ]) + self.gate = MoEGate(config) + if config.n_shared_experts is not None: + intermediate_size = config.moe_intermediate_size * config.n_shared_experts + self.shared_experts = DeepseekV3MLP( + config=config, intermediate_size=intermediate_size) + + def forward(self, hidden_states): + identity = hidden_states + orig_shape = hidden_states.shape + topk_idx, topk_weight = self.gate(hidden_states) + hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) + flat_topk_idx = topk_idx.view(-1) + if not self.training: + y = self.moe_infer(hidden_states, topk_idx, + topk_weight).view(*orig_shape) + if self.config.n_shared_experts is not None: + y = y + self.shared_experts(identity) + return y + + @torch.no_grad() + def moe_infer(self, x, topk_ids, topk_weight): + cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) + cnts.scatter_(1, topk_ids, 1) + tokens_per_expert = cnts.sum(dim=0) + idxs = topk_ids.view(-1).argsort() + sorted_tokens = x[idxs // topk_ids.shape[1]] + sorted_tokens_shape = sorted_tokens.shape + if self.ep_size > 1: + tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, + -1).sum(dim=1) + tokens_per_expert_group = tokens_per_expert.new_empty( + tokens_per_expert.shape[0]) + dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert) + output_splits = (tokens_per_expert_group.view( + self.ep_size, -1).sum(1).cpu().numpy().tolist()) + gathered_tokens = sorted_tokens.new_empty( + tokens_per_expert_group.sum(dim=0).cpu().item(), + sorted_tokens.shape[1]) + input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist() + dist.all_to_all( + list(gathered_tokens.split(output_splits)), + list(sorted_tokens.split(input_split_sizes)), + ) + tokens_per_expert_post_gather = tokens_per_expert_group.view( + self.ep_size, self.experts_per_rank).sum(dim=0) + gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0], ), + dtype=np.int32) + s = 0 + for i, k in enumerate(tokens_per_expert_group.cpu().numpy()): + gatherd_idxs[s:s + k] = i % self.experts_per_rank + s += k + gatherd_idxs = gatherd_idxs.argsort() + sorted_tokens = gathered_tokens[gatherd_idxs] + tokens_per_expert = tokens_per_expert_post_gather + tokens_per_expert = tokens_per_expert.cpu().numpy() + + outputs = [] + start_idx = 0 + for i, num_tokens in enumerate(tokens_per_expert): + end_idx = start_idx + num_tokens + if num_tokens == 0: + continue + expert = self.experts[i + self.ep_rank * self.experts_per_rank] + tokens_for_this_expert = sorted_tokens[start_idx:end_idx] + expert_out = expert(tokens_for_this_expert) + outputs.append(expert_out) + start_idx = end_idx + + outs = torch.cat(outputs, + dim=0) if len(outputs) else sorted_tokens.new_empty(0) + if self.ep_size > 1: + new_x = torch.empty_like(outs) + new_x[gatherd_idxs] = outs + gathered_tokens = new_x.new_empty(*sorted_tokens_shape) + dist.all_to_all( + list(gathered_tokens.split(input_split_sizes)), + list(new_x.split(output_splits)), + ) + outs = gathered_tokens + + new_x = torch.empty_like(outs) + new_x[idxs] = outs + final_out = (new_x.view( + *topk_ids.shape, -1).type(topk_weight.dtype).mul_( + topk_weight.unsqueeze(dim=-1)).sum(dim=1).type(new_x.dtype)) + return final_out + + +# Copied from transformers.models.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, + None, :, :].expand(batch, + num_key_value_heads, + n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, + head_dim) + + +# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3 +class DeepseekV3Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, + config: DeepseekV3Config, + layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " + "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class.") + + self.attention_dropout = config.attention_dropout + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.q_lora_rank = config.q_lora_rank + self.qk_rope_head_dim = config.qk_rope_head_dim + self.kv_lora_rank = config.kv_lora_rank + self.v_head_dim = config.v_head_dim + self.qk_nope_head_dim = config.qk_nope_head_dim + self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim + + self.is_causal = True + + if self.q_lora_rank is None: + self.q_proj = nn.Linear(self.hidden_size, + self.num_heads * self.q_head_dim, + bias=False) + else: + self.q_a_proj = nn.Linear(self.hidden_size, + config.q_lora_rank, + bias=config.attention_bias) + self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank) + self.q_b_proj = nn.Linear(config.q_lora_rank, + self.num_heads * self.q_head_dim, + bias=False) + + self.kv_a_proj_with_mqa = nn.Linear( + self.hidden_size, + config.kv_lora_rank + config.qk_rope_head_dim, + bias=config.attention_bias, + ) + self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank) + self.kv_b_proj = nn.Linear( + config.kv_lora_rank, + self.num_heads * + (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim), + bias=False, + ) + + self.o_proj = nn.Linear( + self.num_heads * self.v_head_dim, + self.hidden_size, + bias=config.attention_bias, + ) + self._init_rope() + + self.softmax_scale = self.q_head_dim**(-0.5) + if self.config.rope_scaling is not None: + mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0) + scaling_factor = self.config.rope_scaling["factor"] + if mscale_all_dim: + mscale = yarn_get_mscale(scaling_factor, mscale_all_dim) + self.softmax_scale = self.softmax_scale * mscale * mscale + + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = DeepseekV3RotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "linear": + self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "dynamic": + self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "yarn": + kwargs = { + key: self.config.rope_scaling[key] + for key in [ + "original_max_position_embeddings", + "beta_fast", + "beta_slow", + "mscale", + "mscale_all_dim", + ] if key in self.config.rope_scaling + } + self.rotary_emb = DeepseekV3YarnRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + **kwargs, + ) + else: + raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return (tensor.view(bsz, seq_len, self.num_heads, + self.v_head_dim).transpose(1, 2).contiguous()) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], + Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + bsz, q_len, _ = hidden_states.size() + + if self.q_lora_rank is None: + q = self.q_proj(hidden_states) + else: + q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) + q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) + q_nope, q_pe = torch.split( + q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) + + compressed_kv = self.kv_a_proj_with_mqa(hidden_states) + compressed_kv, k_pe = torch.split( + compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) + k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) + kv = (self.kv_b_proj(self.kv_a_layernorm(compressed_kv)).view( + bsz, q_len, self.num_heads, + self.qk_nope_head_dim + self.v_head_dim).transpose(1, 2)) + + k_nope, value_states = torch.split( + kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) + kv_seq_len = value_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index.") + kv_seq_len += get_usable_length(past_key_value, kv_seq_len, + self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + + query_states = k_pe.new_empty(bsz, self.num_heads, q_len, + self.q_head_dim) + query_states[:, :, :, :self.qk_nope_head_dim] = q_nope + query_states[:, :, :, self.qk_nope_head_dim:] = q_pe + + key_states = k_pe.new_empty(bsz, self.num_heads, q_len, + self.q_head_dim) + key_states[:, :, :, :self.qk_nope_head_dim] = k_nope + key_states[:, :, :, self.qk_nope_head_dim:] = k_pe + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs) + + attn_weights = ( + torch.matmul(query_states, key_states.transpose(2, 3)) * + self.softmax_scale) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}") + assert attention_mask is not None + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, + dim=-1, + dtype=torch.float32).to( + query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, + p=self.attention_dropout, + training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is" + f" {attn_output.size()}") + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, + self.num_heads * self.v_head_dim) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV3 +class DeepseekV3FlashAttention2(DeepseekV3Attention): + """ + DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10( + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], + Optional[Tuple[torch.Tensor]]]: + # DeepseekV3FlashAttention2 attention does not support output_attentions + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + # overwrite attention_mask with padding_mask + attention_mask = kwargs.pop("padding_mask") + + output_attentions = False + + bsz, q_len, _ = hidden_states.size() + + if self.q_lora_rank is None: + q = self.q_proj(hidden_states) + else: + q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) + q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) + q_nope, q_pe = torch.split( + q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) + + # Flash attention requires the input to have the shape + # batch_size x seq_length x head_dim x hidden_dim + # therefore we just need to keep the original shape + compressed_kv = self.kv_a_proj_with_mqa(hidden_states) + compressed_kv, k_pe = torch.split( + compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) + k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) + kv = (self.kv_b_proj(self.kv_a_layernorm(compressed_kv)).view( + bsz, q_len, self.num_heads, + self.qk_nope_head_dim + self.v_head_dim).transpose(1, 2)) + + k_nope, value_states = torch.split( + kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) + kv_seq_len = value_states.shape[-2] + + kv_seq_len = value_states.shape[-2] + if past_key_value is not None: + kv_seq_len += get_usable_length(past_key_value, kv_seq_len, + self.layer_idx) + + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + + query_states = k_pe.new_empty(bsz, self.num_heads, q_len, + self.q_head_dim) + query_states[:, :, :, :self.qk_nope_head_dim] = q_nope + query_states[:, :, :, self.qk_nope_head_dim:] = q_pe + + key_states = k_pe.new_empty(bsz, self.num_heads, q_len, + self.q_head_dim) + key_states[:, :, :, :self.qk_nope_head_dim] = k_nope + key_states[:, :, :, self.qk_nope_head_dim:] = k_pe + + if self.q_head_dim != self.v_head_dim: + value_states = F.pad(value_states, + [0, self.q_head_dim - self.v_head_dim]) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs) + + # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache + # to be able to avoid many of these transpose/reshape/view. + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + dropout_rate = self.attention_dropout if self.training else 0.0 + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (DeepseekV3RMSNorm handles it correctly) + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + # Handle the case where the model is quantized + if hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + elif torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + else: + target_dtype = (self.q_proj.weight.dtype if self.q_lora_rank + is None else self.q_a_proj.weight.dtype) + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}.") + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = self._flash_attention_forward( + query_states, + key_states, + value_states, + attention_mask, + q_len, + dropout=dropout_rate, + softmax_scale=self.softmax_scale, + ) + if self.q_head_dim != self.v_head_dim: + attn_output = attn_output[:, :, :, :self.v_head_dim] + + attn_output = attn_output.reshape(bsz, q_len, self.num_heads * + self.v_head_dim).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, + query_states, + key_states, + value_states, + attention_mask, + query_length, + dropout=0.0, + softmax_scale=None, + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`int`, *optional*): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + ( + query_states, + key_states, + value_states, + indices_q, + cu_seq_lens, + max_seq_lens, + ) = self._upad_input(query_states, key_states, value_states, + attention_mask, query_length) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, + query_length) + else: + attn_output = flash_attn_func( + query_states, + key_states, + value_states, + dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + return attn_output + + def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, + query_length): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data( + attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, + head_dim), + indices_k, + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, + head_dim), + indices_k, + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, + head_dim), + indices_k, + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( + query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +ATTENTION_CLASSES = { + "eager": DeepseekV3Attention, + "flash_attention_2": DeepseekV3FlashAttention2, +} + + +class DeepseekV3DecoderLayer(nn.Module): + + def __init__(self, config: DeepseekV3Config, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = ATTENTION_CLASSES[config._attn_implementation]( + config=config, layer_idx=layer_idx) + + self.mlp = (DeepseekV3MoE(config) if + (config.n_routed_experts is not None + and layer_idx >= config.first_k_dense_replace + and layer_idx % config.moe_layer_freq == 0) else + DeepseekV3MLP(config)) + self.input_layernorm = DeepseekV3RMSNorm(config.hidden_size, + eps=config.rms_norm_eps) + self.post_attention_layernorm = DeepseekV3RMSNorm( + config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, + torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + **kwargs, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states, ) + + if output_attentions: + outputs += (self_attn_weights, ) + + if use_cache: + outputs += (present_key_value, ) + + return outputs + + +DeepseekV3_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`DeepseekV3Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.", + DeepseekV3_START_DOCSTRING, +) +class DeepseekV3PreTrainedModel(PreTrainedModel): + config_class = DeepseekV3Config + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["DeepseekV3DecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + _supports_cache_class = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +DeepseekV3_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.", + DeepseekV3_START_DOCSTRING, +) +class DeepseekV3Model(DeepseekV3PreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`] + + Args: + config: DeepseekV3Config + """ + + def __init__(self, config: DeepseekV3Config): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, + self.padding_idx) + self.layers = nn.ModuleList([ + DeepseekV3DecoderLayer(config, layer_idx) + for layer_idx in range(config.num_hidden_layers) + ]) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self.norm = DeepseekV3RMSNorm(config.hidden_size, + eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = (output_attentions if output_attentions is not None + else self.config.output_attentions) + output_hidden_states = (output_hidden_states + if output_hidden_states is not None else + self.config.output_hidden_states) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = (return_dict if return_dict is not None else + self.config.use_return_dict) + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time" + ) + elif input_ids is not None: + batch_size, seq_length = input_ids.shape[:2] + elif inputs_embeds is not None: + batch_size, seq_length = inputs_embeds.shape[:2] + else: + raise ValueError( + "You have to specify either input_ids or inputs_embeds") + + past_key_values_length = 0 + if use_cache: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache( + past_key_values) + past_key_values_length = get_usable_length(past_key_values, + seq_length) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, + seq_length + past_key_values_length, + dtype=torch.long, + device=device, + ) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if self._use_flash_attention_2: + # 2d mask is passed through the layers + attention_mask = (attention_mask if + (attention_mask is not None + and 0 in attention_mask) else None) + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + ) + + # embed positions + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states, ) + + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[ + 2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1], ) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states, ) + + next_cache = None + if use_cache: + next_cache = (next_decoder_cache.to_legacy_cache() + if use_legacy_cache else next_decoder_cache) + if not return_dict: + return tuple( + v for v in + [hidden_states, next_cache, all_hidden_states, all_self_attns] + if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = DeepseekV3Model(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, + config.vocab_size, + bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, + config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM + + >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + output_attentions = (output_attentions if output_attentions is not None + else self.config.output_attentions) + output_hidden_states = (output_hidden_states + if output_hidden_states is not None else + self.config.output_hidden_states) + return_dict = (return_dict if return_dict is not None else + self.config.use_return_dict) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits, ) + outputs[1:] + return (loss, ) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + inputs_embeds=None, + **kwargs, + ): + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + # seen_tokens 可能在某些 transformers 版本中不存在,使用 getattr 安全访问 + past_length = getattr(past_key_values, 'seen_tokens', + cache_length) + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as + # input) + if (attention_mask is not None + and attention_mask.shape[1] > input_ids.shape[1]): + input_ids = input_ids[:, -(attention_mask.shape[1] - + past_length):] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if (max_cache_length is not None and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1]:] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update({ + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + }) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += (tuple( + past_state.index_select(0, beam_idx.to(past_state.device)) + for past_state in layer_past), ) + return reordered_past + + +@add_start_docstrings( + """ + The DeepseekV3 Model transformer with a sequence classification head on top (linear layer). + + [`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + DeepseekV3_START_DOCSTRING, +) +class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel): + + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = DeepseekV3Model(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = (return_dict if return_dict is not None else + self.config.use_return_dict) + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError( + "Cannot handle batch sizes > 1 if no padding token is defined." + ) + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + sequence_lengths = (torch.eq( + input_ids, self.config.pad_token_id).int().argmax(-1) - + 1).to(logits.device) + else: + sequence_lengths = -1 + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), + sequence_lengths] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long + or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), + labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits, ) + transformer_outputs[1:] + return ((loss, ) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/modeling_kimi_k25.py b/modeling_kimi_k25.py new file mode 100644 index 0000000000000000000000000000000000000000..94e05cd560e33297ff1d9163b2f37c6065a2085a --- /dev/null +++ b/modeling_kimi_k25.py @@ -0,0 +1,1251 @@ +# coding=utf-8 +# Copyright 2025-2026 The Moonshot AI Team, DeepSeek-AI, and HuggingFace Inc. team. All rights reserved. +# +# The code is based on llava (llava/modeling_llava.py) and DeepSeek-V3 (DeepSeek-V3/modeling_deepseek.py), but modified for Kimi-K2.5. +# +# Licensing Information: +# - Code derived from llava (llava/modeling_llava.py) and DeepSeek-V3 (DeepSeek-V3/modeling_deepseek.py) is licensed under the Apache License, Version 2.0. +# - Other parts of the code are licensed under the MIT License. +# +# Apache License, Version 2.0: +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# MIT License: +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +import math +from collections.abc import Sequence +from copy import deepcopy +from typing import Optional + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from transformers import activations + +try: + from transformers.activations import PytorchGELUTanh +except ImportError: + from transformers.activations import GELUTanh + activations.PytorchGELUTanh = GELUTanh + PytorchGELUTanh = GELUTanh +from transformers.activations import PytorchGELUTanh +from transformers.cache_utils import Cache +from transformers.configuration_utils import PretrainedConfig +from transformers.modeling_utils import PreTrainedModel +from transformers.models.llava.modeling_llava import \ + LlavaCausalLMOutputWithPast +from transformers.utils import is_flash_attn_2_available + +from .configuration_kimi_k25 import KimiK25Config +from .modeling_deepseek import DeepseekV3ForCausalLM + +# Flash attention imports +if is_flash_attn_2_available(): + from flash_attn import flash_attn_varlen_func +else: + flash_attn_varlen_func = None + + +def multihead_attention( + q: torch.Tensor, + k: torch.Tensor, + v: torch.Tensor, + q_cu_seqlens: torch.Tensor | None = None, + k_cu_seqlens: torch.Tensor | None = None, + max_seqlen_q: int | None = None, + max_seqlen_k: int | None = None, + deterministic: bool = False, +): + """Multi-head attention using flash attention 2. + + Args: + q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim), + or (tot_seqlens, num_heads, head_dim) if packing. + q_cu_seqlens (torch.Tensor): cumulative sequence lengths of q. + The first element should be 0 and the last element should be q.shape[0]. + k_cu_seqlens (torch.Tensor): cumulative sequence lengths of k. + The first element should be 0 and the last element should be k.shape[0]. + + Returns: + output: shape (batch_size, seqlen, dim) or (tot_seqlens, dim) if packing, + where dim = num_heads * head_dim + """ + attn_out = flash_attn_varlen_func( + q, + k, + v, + q_cu_seqlens, + k_cu_seqlens, + max_seqlen_q, + max_seqlen_k, + causal=False, + deterministic=deterministic, + ) + if isinstance(attn_out, tuple): + attn_out = attn_out[0] + + attn_out = attn_out.flatten(start_dim=-2) + + return attn_out + + +def eager_attention( + q: torch.Tensor, + k: torch.Tensor, + v: torch.Tensor, + q_cu_seqlens: Optional[torch.Tensor] = None, + k_cu_seqlens: Optional[torch.Tensor] = None, + **kwargs, +) -> torch.Tensor: + seq_length = q.shape[0] + attention_mask = torch.zeros([1, seq_length, seq_length], + device=q.device, + dtype=torch.bool) + for i in range(1, len(q_cu_seqlens)): + attention_mask[ + ..., + q_cu_seqlens[i - 1]:q_cu_seqlens[i], + q_cu_seqlens[i - 1]:q_cu_seqlens[i], + ] = True + q = q.transpose(0, 1) + k = k.transpose(0, 1) + v = v.transpose(0, 1) + + attn_weight = q @ k.transpose(-2, -1) / math.sqrt(q.shape[-1]) + attn_weight += attention_mask + attn_weight = torch.softmax(attn_weight, dim=-1, + dtype=torch.float32).to(q.dtype) + + attn_output = attn_weight @ v + attn_output = attn_output.transpose(0, 1) + attn_output = attn_output.reshape(seq_length, -1) + return attn_output + + +VL_VISION_ATTENTION_FUNCTIONS = { + "flash_attention_2": multihead_attention, + "eager": eager_attention, +} + + +def _apply_rope_input_validation(x, freqs_cis): + assert x.ndim == freqs_cis.ndim + 1, (x.shape, freqs_cis.shape) + assert x.shape[:-2] == freqs_cis.shape[:-1], (x.shape, freqs_cis.shape) + assert x.shape[-1] == 2 * freqs_cis.shape[-1], (x.shape, freqs_cis.shape) + assert freqs_cis.dtype == torch.complex64, freqs_cis.dtype + + +def get_rope_shape_decorate(func): + _get_rope_shape_first_call_flag = set() + + def wrapper(org, interpolation_mode, shape): + key = (org.requires_grad, torch.is_grad_enabled(), interpolation_mode) + if key not in _get_rope_shape_first_call_flag: + _get_rope_shape_first_call_flag.add(key) + _ = func(org, interpolation_mode, shape=(64, 64)) + return func(org, interpolation_mode, shape) + + return wrapper + + +@get_rope_shape_decorate +@torch.compile(dynamic=True) +def get_rope_shape(org, interpolation_mode, shape): + return (F.interpolate( + org.permute((2, 0, 1)).unsqueeze(0), + size=shape, + mode=interpolation_mode, + ).squeeze(0).permute((1, 2, 0)).flatten(end_dim=1)) + + +def apply_rope(xq: torch.Tensor, xk: torch.Tensor, + freqs_cis: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: + """ + Args: (The leading dimensions of all inputs should be the same) + xq: query, tensor of shape (..., num_heads, head_dim) + xk: key, tensor of shape (..., num_heads, head_dim) + freqs_cis: tensor of shape (..., head_dim/2), dtype=torch.complex64. It contains the precomputed cis(freqs) for each position in the 2D grid. + Returns: + xq_out, xk_out: tensors of shape (..., num_heads, head_dim) + """ + _apply_rope_input_validation(xq, freqs_cis) + _apply_rope_input_validation(xk, freqs_cis) + + freqs_cis = freqs_cis.unsqueeze(-2) # ..., 1, head_dim/2 + # ..., num_heads, head_dim/2 + xq_ = torch.view_as_complex(xq.float().view(*xq.shape[:-1], -1, 2)) + xk_ = torch.view_as_complex(xk.float().view(*xq.shape[:-1], -1, 2)) + xq_out = torch.view_as_real(xq_ * freqs_cis).flatten( + -2) # ..., num_heads, head_dim + xk_out = torch.view_as_real(xk_ * freqs_cis).flatten( + -2) # ..., num_heads, head_dim + return xq_out.type_as(xq), xk_out.type_as(xk) + + +def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): + """ + From: + https://github.com/OpenGVLab/InternVideo/blob/421f6d2361fc8f61a3394244571f2601a4e99e29/InternVideo2/multi_modality/models/backbones/internvideo2/pos_embed.py#L86 + embed_dim: output dimension for each position + pos: a list of positions to be encoded: size (M,) + out: (M, D) + """ + assert embed_dim % 2 == 0 + omega = np.arange(embed_dim // 2, dtype=np.float32) + omega /= embed_dim / 2.0 + omega = 1.0 / 10000**omega # (D/2,) + + pos = pos.reshape(-1) # (M,) + out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product + + emb_sin = np.sin(out) # (M, D/2) + emb_cos = np.cos(out) # (M, D/2) + + emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) + return emb + + +def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False): + """ + t_size: int of the temporal size + return: + pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token) + """ + grid_t = np.arange(t_size, dtype=np.float32) + pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t) + if cls_token: + pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], + axis=0) + return pos_embed + + +class Learnable2DInterpPosEmbDivided_fixed(nn.Module): + + def __init__(self, + height: int, + width: int, + num_frames: int, + dim: int, + interpolation_mode: str = 'bicubic') -> None: + super().__init__() + self.height = height + self.width = width + self.num_frames = num_frames + self.dim = dim + self.interpolation_mode = interpolation_mode + self.weight = nn.Parameter(torch.empty(height, width, dim)) + self.register_buffer('time_weight', + torch.from_numpy( + get_1d_sincos_pos_embed( + self.dim, + self.num_frames)).float().unsqueeze(1), + persistent=False) + + self.reset_parameters() + + def reset_parameters(self): + nn.init.normal_(self.weight) + + def forward(self, x: torch.Tensor, + grid_thws: torch.Tensor) -> torch.Tensor: + pos_embs = [] + for t, h, w in grid_thws.tolist(): + assert t <= self.num_frames, f't:{t} > self.num_frames:{self.num_frames}' + if (h, w) == self.weight.shape[:-1]: + pos_emb_2d = self.weight.flatten(end_dim=1) + else: + pos_emb_2d = get_rope_shape( + self.weight, + interpolation_mode=self.interpolation_mode, + shape=(h, w), + ) + + if t == 1: + pos_emb_3d = pos_emb_2d + else: + pos_emb_3d = pos_emb_2d.unsqueeze(0).repeat( + t, 1, 1) + self.time_weight[0:t] + + pos_embs.append(pos_emb_3d.reshape(-1, pos_emb_3d.shape[-1])) + + out = x + torch.cat(pos_embs) + return out + + +class MoonVision3dPatchEmbed(nn.Module): + + def __init__(self, + out_dim: int, + in_dim: int = 3, + patch_size: int | tuple[int, int] = (14, 14), + pos_emb_height: int = 14, + pos_emb_width: int = 14, + pos_emb_time: int = 4, + pos_emb_type: str = 'divided_fixed'): + super().__init__() + assert isinstance( + patch_size, + int | Sequence), f'Invalid patch_size type: {type(patch_size)}' + if isinstance(patch_size, int): + patch_size = (patch_size, patch_size) + assert (len(patch_size) == 2 + ), f'Expected patch_size to be a tuple of 2, got {patch_size}' + self.patch_size = patch_size + + self.proj = nn.Conv2d(in_dim, + out_dim, + kernel_size=patch_size, + stride=patch_size) + + if pos_emb_type == 'divided_fixed': + self.pos_emb = Learnable2DInterpPosEmbDivided_fixed( + height=pos_emb_height, + width=pos_emb_width, + num_frames=pos_emb_time, + dim=out_dim) + else: + raise NotImplementedError( + f'Not support pos_emb_type: {pos_emb_type}') + + def forward(self, x: torch.Tensor, + grid_thws: torch.Tensor) -> torch.Tensor: + """ + Args: + x (L, Channels): input tensor + grid_hws (N, 3): temporal, height and width + + Returns: + (L, Cout) tensor + """ + x = self.proj(x).view(x.size(0), -1) + # apply positional embedding + x = self.pos_emb(x, grid_thws) + return x + + +class Rope2DPosEmbRepeated(nn.Module): + """2D rotary position embedding with multi-resolution support. + + This class is intended to be used in the following way: + 1. Before training, create an instance of Rope2DPosEmb. This instance will hold the precomputed cis. + 2. Before each forward pass, call `get_freqs_cis_by_*` to get the `freqs_cis` tensor for this iteration. + 3. During the forward pass, pass the `freqs_cis` tensor to each attention layer, and call `apply` just before each attention operation. + The rope is shared across all attention layers and all heads. + + Refs: + - RoFormer: https://arxiv.org/abs/2104.09864 + - VisionLLaMA: https://arxiv.org/abs/2403.00522 + - https://github.com/Meituan-AutoML/VisionLLaMA/blob/main/dit/models.py + + Args: + dim (int): usually the multi-head attention dimension, should be divisible by 4 (TODO: relax this constraint if needed) + max_height (int): the maximum height of the 2D grid + max_width (int): the maximum width of the 2D grid + theta_base (float): the base of the theta + device (str): the device to store the precomputed cis + """ + + def __init__(self, + dim: int, + max_height: int, + max_width: int, + theta_base=10000): + super().__init__() + self.dim = dim + assert self.dim % 4 == 0, 'dim must be divisible by 4' + self.max_height = max_height + self.max_width = max_width + self.theta_base = theta_base + + def extra_repr(self): + return f'dim={self.dim}, max_height={self.max_height}, max_width={self.max_width}, theta_base={self.theta_base}' + + def _precompute_freqs_cis(self, device: torch.device) -> torch.Tensor: + """Calculate the cis(freqs) for each position in the 2D grid. + + Return: complex tensor of shape (max_height, max_width, dim//2) and value: + height axis: ret[h, w, 2*i] = cis(h * theta_base**(-4*i/dim)) + weight axis: ret[h, w, 2*i+1] = cis(w * theta_base**(-4*i/dim)) with (i in [0, dim//4)) + note: `cis` is a mathematical notation defined by cis x = cos x + i sin x, + """ + N = self.max_height * self.max_width + flat_pos = torch.arange(0, N).float().to(device) + x_pos = flat_pos % self.max_width + y_pos = flat_pos // self.max_width + dim_range = (torch.arange(0, self.dim, + 4)[:(self.dim // 4)].float().to(device) + ) # C/4 + freqs = 1.0 / (self.theta_base**(dim_range / self.dim)) + x_freqs = torch.outer(x_pos, freqs).float() # N, C/4 + y_freqs = torch.outer(y_pos, freqs).float() # N, C/4 + x_cis = torch.polar(torch.ones_like(x_freqs), x_freqs) # N, C/4 + y_cis = torch.polar(torch.ones_like(y_freqs), y_freqs) # N, C/4 + # N, C/4, 2 + freqs_cis = torch.cat( + [x_cis.unsqueeze(dim=-1), + y_cis.unsqueeze(dim=-1)], dim=-1) + # max_height, max_width, C/2 + freqs_cis = freqs_cis.reshape(self.max_height, self.max_width, -1) + return freqs_cis + + def get_freqs_cis(self, grid_thws: torch.Tensor, + device: torch.device) -> torch.Tensor: + """ + Args: + grid_thws (torch.Tensor): grid time, height and width + + Returns: + freqs_cis: tensor of shape (sum(t * height * width), dim//2) + """ + if not hasattr(self, 'freqs_cis'): + self.register_buffer('freqs_cis', + self._precompute_freqs_cis(device), + persistent=False) + + shapes = grid_thws.tolist() + assert all(1 <= h <= self.max_height and 1 <= w <= self.max_width + for t, h, w in shapes), ( + shapes, + self.max_height, + self.max_width, + ) + freqs_cis = torch.cat( + [ + self.freqs_cis[:h, :w].reshape(-1, self.dim // 2).repeat(t, 1) + for t, h, w in shapes + ], + dim=0, + ) + return freqs_cis + + +class MLP2(nn.Module): + """ + Args: + dims: [in_dim, hidden_dim, out_dim] + bias: whether to use bias in linear layer. + """ + + def __init__(self, dims: list[int], activation, bias=True): + super().__init__() + assert len(dims) == 3 + self.fc0 = nn.Linear(dims[0], dims[1], bias=bias) + self.fc1 = nn.Linear(dims[1], dims[2], bias=bias) + self.activation = activation + for m in [self.fc0, self.fc1]: + nn.init.trunc_normal_(m.weight, std=math.sqrt(2 / m.in_features)) + if m.bias is not None: + nn.init.zeros_(m.bias) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.fc0(x) + x = self.activation(x) + return self.fc1(x) + + +class MoonViTEncoderLayer(nn.Module): + + def __init__( + self, + num_heads: int, + hidden_dim: int, + mlp_dim: int, + *, + attn_implementation: str = 'flash_attention_2', + activation=F.gelu, + attn_bias: bool = False, + use_deterministic_attn: bool = False, + ): + super().__init__() + self.num_heads = num_heads + self.hidden_dim = hidden_dim + self.hidden_size_per_attention_head = self.hidden_dim // self.num_heads + self.attn_implementation = attn_implementation + self.use_deterministic_attn = use_deterministic_attn + + self.norm0 = nn.LayerNorm(hidden_dim) + self.norm1 = nn.LayerNorm(hidden_dim) + self.mlp = MLP2([hidden_dim, mlp_dim, hidden_dim], activation) + self.wqkv = nn.Linear(hidden_dim, hidden_dim * 3, bias=attn_bias) + self.wo = nn.Linear(hidden_dim, hidden_dim, bias=attn_bias) + + def attention_qkvpacked( + self, + x: torch.Tensor, + cu_seqlens: torch.Tensor, + max_seqlen: torch.Tensor, + rope_freqs_cis: torch.Tensor | None = None, + ): + """ + Args: + x (torch.Tensor): (batch_size, seqlen, hidden_dim) + cu_seqlens (torch.Tensor): + """ + xqkv = self.wqkv(x) + + qkv_shape = xqkv.size()[:-1] + ( + 3, + self.num_heads, + self.hidden_size_per_attention_head, + ) + # xqkv: (batch_size, seqlen, 3, nheads, headdim) + xqkv = xqkv.view(*qkv_shape) + xq, xk, xv = torch.unbind(xqkv, dim=-3) + + xq, xk = apply_rope(xq, xk, rope_freqs_cis) + + attn_func = VL_VISION_ATTENTION_FUNCTIONS[self.attn_implementation] + attn_out = attn_func(xq, + xk, + xv, + q_cu_seqlens=cu_seqlens, + k_cu_seqlens=cu_seqlens, + max_seqlen_k=max_seqlen, + max_seqlen_q=max_seqlen, + deterministic=self.use_deterministic_attn) + + attn_out = self.wo(attn_out) + return attn_out + + def forward( + self, + hidden_states: torch.Tensor, + cu_seqlens: torch.Tensor, + max_seqlen: int, + rope_freqs_cis: torch.Tensor | None = None, + ): + residual = hidden_states + hidden_states = self.norm0(hidden_states) + + hidden_states = self.attention_qkvpacked(hidden_states, cu_seqlens, + max_seqlen, rope_freqs_cis) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.norm1(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + return hidden_states + + +class MoonViT3dEncoder(nn.Module): + + def __init__(self, + hidden_dim: int, + num_layers: int, + block_cfg: dict, + video_attn_type: str = 'spatial_temporal', use_deterministic_attn: bool = False) -> None: + super().__init__() + + assert video_attn_type == 'spatial_temporal', f'video_attn_type must be "spatial_temporal", got {video_attn_type}' + self.use_deterministic_attn = use_deterministic_attn + self.video_attn_type = video_attn_type + self.rope_2d = Rope2DPosEmbRepeated( + block_cfg['hidden_dim'] // block_cfg['num_heads'], 512, 512) + self.blocks = nn.ModuleList([ + MoonViTEncoderLayer( + **block_cfg, + use_deterministic_attn=self.use_deterministic_attn) + for _ in range(num_layers) + ]) + self.final_layernorm = nn.LayerNorm(hidden_dim) + + def forward( + self, + hidden_states: torch.Tensor, + grid_thws: torch.Tensor, + ) -> torch.Tensor: + rope_freqs_cis = self.rope_2d.get_freqs_cis( + grid_thws=grid_thws, device=hidden_states.device) + + lengths = torch.cat(( + torch.zeros(1, dtype=grid_thws.dtype, device=grid_thws.device), + grid_thws[:, 0] * grid_thws[:, 1] * grid_thws[:, 2], + )) + + max_seqlen = lengths.max() + cu_seqlens = lengths.to(hidden_states.device).cumsum(dim=0, + dtype=torch.int32) + for block in self.blocks: + hidden_states = block(hidden_states, + cu_seqlens, + max_seqlen, + rope_freqs_cis=rope_freqs_cis) + + hidden_states = self.final_layernorm(hidden_states) + return hidden_states + + +def tpool_patch_merger( + x: torch.Tensor, + grid_thws: torch.Tensor, + merge_kernel_size: tuple[int, int] = (2, 2), +) -> list[torch.Tensor]: + d_model = x.size(-1) + + outputs = [] + pre_sum = 0 + for t, h, w in grid_thws.tolist(): + # Get the current sequence + seq = x[pre_sum:pre_sum + t * h * w] + # Reshape along self.merge_kernel_size and concat to the last dimension + kernel_height, kernel_width = merge_kernel_size + new_height, new_width = h // kernel_height, w // kernel_width + reshaped_seq = seq.view(t, new_height, kernel_height, new_width, + kernel_width, d_model) + reshaped_seq = reshaped_seq.permute(0, 1, + 3, 2, 4, 5).contiguous().mean( + dim=0) # temporal pooling + padded_seq = reshaped_seq.view(new_height * new_width, + kernel_height * kernel_width, -1) + outputs.append(padded_seq) + pre_sum += t * h * w + + return outputs + + +class MoonViT3dPretrainedModel(PreTrainedModel): + config_class = None + model_type = 'moonvit3d' + _no_split_modules = ['PackingTransformer'] + _supports_flash_attn_2 = True + _supports_sdpa = True + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.use_deterministic_attn = False + config = deepcopy(config) + self.merge_kernel_size = config.merge_kernel_size + self.patch_size = config.patch_size + self.merge_type = config.merge_type + + self.patch_embed = MoonVision3dPatchEmbed( + out_dim=config.hidden_size, + patch_size=config.patch_size, + pos_emb_height=config.init_pos_emb_height, + pos_emb_width=config.init_pos_emb_width, + pos_emb_time=config.init_pos_emb_time, + pos_emb_type=config.pos_emb_type, + ) + + self.encoder = MoonViT3dEncoder(hidden_dim=config.hidden_size, + num_layers=config.num_hidden_layers, + block_cfg={ + 'num_heads': + config.num_attention_heads, + 'hidden_dim': + config.hidden_size, + 'mlp_dim': + config.intermediate_size, + 'activation': + PytorchGELUTanh(), + 'attn_bias': + True, + 'attn_implementation': + config._attn_implementation, + }, + video_attn_type=config.video_attn_type, use_deterministic_attn=self.use_deterministic_attn) + + def forward(self, pixel_values: torch.Tensor, + grid_thws: torch.Tensor) -> torch.Tensor: + """ + Args: + pixel_values (torch.Tensor): The input pixel values. + grid_thws (torch.Tensor): Temporal, height and width. + + Returns: + torch.Tensor: The output tokens. + """ + # grid_thws = grid_thws.to('cpu') + assert grid_thws.ndim == 2, f'grid_thws should be 2D, got {grid_thws.ndim}' + assert grid_thws.size(1) == 3, f'No support for thw: {grid_thws}' + hidden_states = self.patch_embed(pixel_values, grid_thws) + hidden_states = self.encoder(hidden_states, grid_thws) + if self.merge_type == 'sd2_tpool': # spatial downsampling 2x with temporal pooling all + hidden_states = tpool_patch_merger( + hidden_states, + grid_thws, + merge_kernel_size=self.merge_kernel_size) + else: + raise NotImplementedError(f'Not support {self.merge_type}') + + return hidden_states + + +# ============================================================================ +# MM Projector Helper Classes (from mm_projector/modeling_mm_projectors.py) +# ============================================================================ + + +class IdentityMap(nn.Module): + + def __init__(self): + super().__init__() + + def forward(self, x, *args, **kwargs): + return x + + +class MLP(nn.Module): + + def __init__(self, config): + super().__init__() + # TODO, use faster LayerNorm + self.pre_norm = nn.LayerNorm(config.mm_hidden_size) + self.proj = nn.Sequential( + nn.Linear(config.mm_hidden_size, config.hidden_size), nn.GELU(), + nn.Linear(config.hidden_size, config.hidden_size)) + + def forward(self, x, *args, **kwargs): + assert isinstance(x, + list | tuple), f'x is not a list or tuple: {type(x)}' + lengths = [item.shape[0] for item in x] + x = torch.cat(x, dim=0) + x = self.pre_norm(x) + x = self.proj(x) + x = torch.split(x, lengths, dim=0) + + return x + + +class PatchMergerMLP(nn.Module): + + def __init__(self, config): + super().__init__() + eps = config.projector_ln_eps + self.hidden_size = config.mm_hidden_size * ( + config.merge_kernel_size[0] * config.merge_kernel_size[1]) + self.pre_norm = nn.LayerNorm(config.mm_hidden_size, eps=eps) + self.proj = nn.Sequential( + nn.Linear(self.hidden_size, self.hidden_size), + nn.GELU(), + nn.Linear(self.hidden_size, config.hidden_size), + ) + + def forward(self, x, *args, **kwargs): + if isinstance(x, list) or isinstance(x, tuple): + x = [ + self.proj(self.pre_norm(item).view(item.shape[0], -1)) + for item in x + ] + else: + # B, N, N_k, C = x.shape + B = x.shape[0] + x = self.proj(self.pre_norm(x).view(B, -1, self.hidden_size)) + return x + + +class KimiK25PreTrainedModel(PreTrainedModel): + config_class = KimiK25Config + base_model_prefix = "model" + _no_split_modules = [ + "MoonViT3dPretrainedModel", + "MoonViTEncoderLayer", + "DeepseekDecoderLayer", + "PatchMergerMLP", + ] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + _supports_sdpa = False + + def _init_weights(self, module): + # important: this ported version of Llava isn't meant for training from scratch - only + # inference and fine-tuning - so the proper init weights code has been removed - the original codebase + # https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose + std = (self.config.initializer_range if hasattr( + self.config, "initializer_range") else + self.config.text_config.initializer_range) + + if hasattr(module, "class_embedding"): + module.class_embedding.data.normal_(mean=0.0, std=std) + + if isinstance(module, (nn.Linear, nn.Conv2d)): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +class VisionTowerConfig(PretrainedConfig): + model_type = 'moonvit3d' + + def __init__(self, config: KimiK25Config, **kwargs): + super().__init__(**kwargs) + self.patch_size = config.patch_size + self.init_pos_emb_height = config.init_pos_emb_height + self.init_pos_emb_width = config.init_pos_emb_width + self.init_pos_emb_time = config.init_pos_emb_time + self.pos_emb_type = config.pos_emb_type + self.num_attention_heads = config.vt_num_attention_heads + self.num_hidden_layers = config.vt_num_hidden_layers + self.hidden_size = config.vt_hidden_size + self.intermediate_size = config.vt_intermediate_size + self.merge_kernel_size = config.merge_kernel_size + self.video_attn_type = config.video_attn_type + self.merge_type = config.merge_type + self._attn_implementation = config._attn_implementation + + +class ProjectorConfig: + + def __init__(self, config: KimiK25Config): + self.mm_projector_type = config.mm_projector_type + self.mm_hidden_size = config.mm_hidden_size + self.hidden_size = config.text_hidden_size + self.merge_kernel_size = config.merge_kernel_size + self.projector_hidden_act = config.projector_hidden_act + self.projector_ln_eps = config.projector_ln_eps + + +# ref https://github.com/huggingface/transformers/blob/78b2929c0554b79e0489b451ce4ece14d265ead2/src/transformers/models/llava/modeling_llava.py#L240 +class KimiK25ForConditionalGeneration(KimiK25PreTrainedModel): + + def __init__(self, config: KimiK25Config): + super().__init__(config) + + vt_config = VisionTowerConfig(config.vision_config) + self.vision_tower = MoonViT3dPretrainedModel(vt_config) + + proj_config = ProjectorConfig(config.vision_config) + if proj_config.mm_projector_type == 'identity': + self.mm_projector = IdentityMap() + elif proj_config.mm_projector_type == 'mlp': + self.mm_projector = MLP(proj_config) + elif proj_config.mm_projector_type == 'patchmerger': + self.mm_projector = PatchMergerMLP(proj_config) + else: + raise ValueError( + f"Unsupported mm_projector_type: {proj_config.mm_projector_type}" + ) + + self.language_model = DeepseekV3ForCausalLM(config.text_config) + self.post_init() + + if hasattr(self.language_model, 'dtype'): + target_dtype = self.language_model.dtype + self.vision_tower = self.vision_tower.to(dtype=target_dtype) + self.mm_projector = self.mm_projector.to(dtype=target_dtype) + + def get_input_embeddings(self): + return self.language_model.get_input_embeddings() + + def set_input_embeddings(self, value): + self.language_model.set_input_embeddings(value) + + def get_output_embeddings(self): + return self.language_model.get_output_embeddings() + + def set_output_embeddings(self, new_embeddings): + self.language_model.set_output_embeddings(new_embeddings) + + def set_decoder(self, decoder): + self.language_model.set_decoder(decoder) + + def get_decoder(self): + return self.language_model.get_decoder() + + def tie_weights(self): + return self.language_model.tie_weights() + + def resize_token_embeddings(self, + new_num_tokens: int | None = None, + pad_to_multiple_of=None) -> nn.Embedding: + model_embeds = self.language_model.resize_token_embeddings( + new_num_tokens, pad_to_multiple_of) + # update vocab size + self.config.text_config.vocab_size = model_embeds.num_embeddings + self.vocab_size = model_embeds.num_embeddings + return model_embeds + + def _merge_input_ids_with_image_features( + self, + image_features: list[torch.Tensor], + inputs_embeds: torch.Tensor, + input_ids: torch.Tensor, + attention_mask: torch.Tensor, + labels: torch.Tensor | None = None, + ): + """ + Args: + image_features (:obj:`torch.Tensor` of shape :obj:`(num_image_tokens, embed_dim)`): + The image features to merge with the input embeddings. + inputs_embeds (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length, embed_dim)`): + The input embeddings. + input_ids (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`): + The input ids. + attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`): + The attention mask. + labels (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, *optional*): + The labels. + """ + _, embed_dim = image_features[0].shape + feature_lengths = [x.shape[0] for x in image_features] + image_features = torch.cat(image_features, dim=0) + + image_token_index: int = self.config.media_placeholder_token_id + pad_token_id: int = self.config.pad_token_id + ignore_index: int = self.config.ignore_index + + batch_size, sequence_length = input_ids.shape + left_padding = not torch.sum( + input_ids[:, -1] == torch.tensor(pad_token_id)) + + # 1. Create a mask to know where special image tokens are + _token_occupation_table = torch.ones_like(input_ids.flatten()) + _token_occupation_table[input_ids.flatten() == + image_token_index] = torch.tensor( + feature_lengths, + dtype=torch.long, + device=input_ids.device) + _token_occupation_table = _token_occupation_table.reshape( + input_ids.shape) + + max_embed_dim = _token_occupation_table.sum(-1).max().item() + assert ( + max_embed_dim >= sequence_length + ), f"The maximum embedding dimension ({max_embed_dim}) is less than the sequence length ({sequence_length})" + batch_indices, non_image_indices = torch.where( + input_ids != image_token_index) + + # 2. Compute the positions where text should be written + # Calculate new positions for text tokens in merged image-text sequence. + new_token_positions = torch.cumsum(_token_occupation_table, -1) - 1 + nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] + if left_padding: + new_token_positions += nb_image_pad[:, + None] # offset for left padding + text_to_overwrite = new_token_positions[batch_indices, + non_image_indices] + + # 3. Create the full embedding, already padded to the maximum position + final_embedding = torch.zeros( + batch_size, + max_embed_dim, + embed_dim, + dtype=inputs_embeds.dtype, + device=inputs_embeds.device, + ) + final_attention_mask = torch.zeros(batch_size, + max_embed_dim, + dtype=attention_mask.dtype, + device=inputs_embeds.device) + if labels is not None: + final_labels = torch.full( + (batch_size, max_embed_dim), + ignore_index, + dtype=input_ids.dtype, + device=input_ids.device, + ) + # In case the Vision model or the Language model has been offloaded to CPU, we need to manually + # set the corresponding tensors into their correct target device. + target_device = inputs_embeds.device + batch_indices, non_image_indices, text_to_overwrite = ( + batch_indices.to(target_device), + non_image_indices.to(target_device), + text_to_overwrite.to(target_device), + ) + attention_mask = attention_mask.to(target_device) + + # 4. Fill the embeddings based on the mask. + final_embedding[batch_indices, + text_to_overwrite] = inputs_embeds[batch_indices, + non_image_indices] + final_attention_mask[batch_indices, + text_to_overwrite] = attention_mask[ + batch_indices, non_image_indices] + if labels is not None: + final_labels[batch_indices, + text_to_overwrite] = labels[batch_indices, + non_image_indices] + + # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835) + image_to_overwrite = torch.full((batch_size, max_embed_dim), + True, + dtype=torch.bool, + device=inputs_embeds.device) + image_to_overwrite[batch_indices, text_to_overwrite] = False + image_to_overwrite &= image_to_overwrite.cumsum( + -1) - 1 >= nb_image_pad[:, None].to(target_device) + + if image_to_overwrite.sum() != image_features.shape[:-1].numel(): + raise ValueError( + f"The input provided to the model are wrong. The number of image tokens is {image_to_overwrite.sum()} while" + f" the number of image features given to the model is {image_features.shape[:-1].numel()}. " + "This prevents correct indexing and breaks batch generation.") + + final_embedding[image_to_overwrite] = ( + image_features.contiguous().reshape(-1, + embed_dim).to(target_device)) + final_attention_mask |= image_to_overwrite + position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_( + (final_attention_mask == 0), 1) + + # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens. + batch_indices, pad_indices = torch.where(input_ids == pad_token_id) + indices_to_mask = new_token_positions[batch_indices, pad_indices] + + final_embedding[batch_indices, indices_to_mask] = 0 + + if labels is None: + final_labels = None + + return final_embedding, final_attention_mask, final_labels, position_ids + + def _extract_image_features(self, pixel_values: torch.Tensor, + grid_thws: torch.Tensor) -> list[torch.Tensor]: + """ + Args: + pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_channels, height, width)`): + The pixel values of the images processed by image processor. + grid_thws (:obj:`torch.Tensor` of shape :obj:`(batch_size, 3)`): + The grid, height, width of the images. + + Returns: + selected_image_feature (:obj:`torch.FloatTensor` of shape :obj:`(num_image_tokens, embed_dim)`): + The selected image features to use as input to the projector head. + + """ + + target_dtype = self.vision_tower.patch_embed.proj.weight.dtype + pixel_values = pixel_values.to(target_dtype) + + image_features = self.vision_tower(pixel_values, grid_thws) + return image_features + + def forward( + self, + input_ids: torch.LongTensor | None = None, + pixel_values: torch.FloatTensor | list[torch.FloatTensor] + | None = None, + grid_thws: torch.Tensor | None = None, + attention_mask: torch.Tensor | None = None, + position_ids: torch.LongTensor | None = None, + past_key_values: list[torch.FloatTensor] | None = None, + inputs_embeds: torch.FloatTensor | None = None, + labels: torch.LongTensor | None = None, + use_cache: bool | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + ) -> tuple | LlavaCausalLMOutputWithPast: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + ```""" + assert self.vision_tower is not None, "vision_tower is not loaded" + output_attentions = (output_attentions if output_attentions is not None + else self.config.output_attentions) + output_hidden_states = (output_hidden_states + if output_hidden_states is not None else + self.config.output_hidden_states) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if inputs_embeds is None: + # 1. Extra the input embeddings + inputs_embeds = self.get_input_embeddings()(input_ids) + + # 2. Merge text and images + if pixel_values is not None and len( + pixel_values) > 0 and input_ids.shape[1] != 1: + image_features = self._extract_image_features( + pixel_values, grid_thws) + if self.mm_projector: + image_features = self.mm_projector(image_features) + + inputs_embeds = inputs_embeds.to( + image_features[0].dtype) # num_tokens, embed_dim + inputs_embeds, attention_mask, labels, position_ids = ( + self._merge_input_ids_with_image_features( + image_features, + inputs_embeds, + input_ids, + attention_mask, + labels, + )) + + # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of + # generation with cache + elif (past_key_values is not None and pixel_values is not None + and input_ids.shape[1] == 1): + # Retrieve the first layer to inspect the logits and mask out the hidden states + # that are set to 0 + first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] + + # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 + batch_index, non_attended_tokens = torch.where( + first_layer_past_key_value.float().sum(-2) == 0) + + # Get the target length + target_length = input_ids.shape[1] + past_length = first_layer_past_key_value.shape[-1] + + extended_attention_mask = torch.ones( + (attention_mask.shape[0], past_length), + dtype=attention_mask.dtype, + device=attention_mask.device, + ) + + # Filter out only the tokens that can be un-attended, this can happen + # if one uses Llava + Fused modules where the cache on the + # first iteration is already big enough, or if one passes custom cache + valid_indices = non_attended_tokens < extended_attention_mask.size( + -1) + new_batch_index = batch_index[valid_indices] + new_non_attended_tokens = non_attended_tokens[valid_indices] + + # Zero-out the places where we don't need to attend + extended_attention_mask[new_batch_index, + new_non_attended_tokens] = 0 + + attention_mask = torch.cat( + (extended_attention_mask, attention_mask[:, + -target_length:]), + dim=1) + position_ids = torch.sum(attention_mask, + dim=1).unsqueeze(-1) - 1 + + outputs = self.language_model( + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + logits = outputs[0] + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + if attention_mask is not None: + shift_attention_mask = attention_mask[..., 1:] + shift_logits = logits[..., :-1, :][shift_attention_mask.to( + logits.device) != 0].contiguous() + shift_labels = labels[..., 1:][shift_attention_mask.to( + labels.device) != 0].contiguous() + else: + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = nn.CrossEntropyLoss() + loss = loss_fct( + shift_logits.view(-1, shift_logits.size(-1)), + shift_labels.view(-1).to(shift_logits.device), + ) + + if not return_dict: + output = (logits, ) + outputs[1:] + return (loss, ) + output if loss is not None else output + + return LlavaCausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + inputs_embeds=None, + pixel_values=None, + grid_thws=None, + attention_mask=None, + **kwargs, + ): + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = getattr(past_key_values, 'seen_tokens', + cache_length) + else: + cache_length = past_length = past_key_values[0][0].shape[2] + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as + # input) + if attention_mask is not None and attention_mask.shape[ + 1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - + past_length):] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + elif self.config.media_placeholder_token_id in input_ids: + input_ids = input_ids[:, input_ids.shape[1] - 1:] + # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the + # older attention values, as their corresponding values are not part of the input. + if cache_length < past_length and attention_mask is not None: + attention_mask = attention_mask[:, -(cache_length + + input_ids.shape[1]):] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1]:] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update({ + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + "pixel_values": pixel_values, + "grid_thws": grid_thws, + }) + return model_inputs + + def _reorder_cache(self, *args, **kwargs): + return self.language_model._reorder_cache(*args, **kwargs) + diff --git a/preprocessor_config.json b/preprocessor_config.json new file mode 100644 index 0000000000000000000000000000000000000000..b0accb4b335998b847e0093bf4a63e1f32447cc9 --- /dev/null +++ b/preprocessor_config.json @@ -0,0 +1,30 @@ +{ + "auto_map": { + "AutoProcessor": "kimi_k25_processor.KimiK25Processor", + "AutoImageProcessor": "kimi_k25_vision_processing.KimiK25VisionProcessor" + }, + "media_proc_cfg": { + "in_patch_limit": 16384, + "patch_size": 14, + "image_mean": [ + 0.5, + 0.5, + 0.5 + ], + "image_std": [ + 0.5, + 0.5, + 0.5 + ], + "merge_kernel_size": 2, + "fixed_output_tokens": null, + "patch_limit_on_one_side": 512, + "in_patch_limit_each_frame": 4096, + "in_patch_limit_video": null, + "sample_fps": 2.0, + "max_num_frames_each_video": null, + "temporal_merge_kernel_size": 4, + "timestamp_mode": "hh:mm:ss.fff", + "config_type": "media_proc.processors.moonvit.MoonViTMediaProcessorConfig" + } +} \ No newline at end of file diff --git a/processor_config.json b/processor_config.json new file mode 100644 index 0000000000000000000000000000000000000000..31838a3332c7aad5652f4fa910b2f5c3cae3636c --- /dev/null +++ b/processor_config.json @@ -0,0 +1,6 @@ +{ + "auto_map": { + "AutoProcessor": "kimi_k25_processor.KimiK25Processor" + }, + "processor_class": "KimiK25Processor" +} diff --git a/special_tokens_map.json b/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..a7815a0bd492c62d5f88efca347cb04bcf99b408 --- /dev/null +++ b/special_tokens_map.json @@ -0,0 +1,38 @@ +{ + "additional_special_tokens": [ + "<|im_end|>", + "<|im_user|>", + "<|im_assistant|>", + "<|start_header_id|>", + "<|end_header_id|>", + "[EOT]", + "<|im_system|>", + "<|im_middle|>", + "<|media_begin|>", + "<|media_content|>", + "<|media_end|>", + "<|media_pad|>" + ], + "bos_token": { + "content": "[BOS]", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "[EOS]", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "[EOS]", + "unk_token": { + "content": "[UNK]", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/tiktoken.model b/tiktoken.model new file mode 100644 index 0000000000000000000000000000000000000000..b4149a6e17a01b6442187f39890f89bc2fe8d309 --- /dev/null +++ b/tiktoken.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b6c497a7469b33ced9c38afb1ad6e47f03f5e5dc05f15930799210ec050c5103 +size 2795286 diff --git a/tokenization_kimi.py b/tokenization_kimi.py new file mode 100644 index 0000000000000000000000000000000000000000..0b5a39706cc48c5e7209431de17aa2670f1862e9 --- /dev/null +++ b/tokenization_kimi.py @@ -0,0 +1,356 @@ +import os +from collections import OrderedDict +from logging import getLogger +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Iterator, List, Optional, Tuple, Union, cast + +import tiktoken +from tiktoken.load import load_tiktoken_bpe +from tokenizers import AddedToken + +try: + from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode +except: + from transformers.convert_slow_tokenizer import bytes_to_unicode + +from transformers.tokenization_utils import PreTrainedTokenizer + +from .tool_declaration_ts import encode_tools_to_typescript_style + +logger = getLogger(__name__) +VOCAB_FILES_NAMES = {"vocab_file": "tiktoken.model"} + + +class TikTokenTokenizer(PreTrainedTokenizer): + """ + Tokenizing and encoding/decoding text using the Tiktoken tokenizer. See megatron/tokenizer/tiktoken_tokenizer.py. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + The path to the Tiktoken model file. + bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|begin_of_text|>",`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|end_of_text|>"`): + The end of sequence token. + unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_249|>"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. The second to last item in special_tokens. + pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_250|>"`): + The token used for padding, for example when batching sequences of different lengths. + additional_special_tokens (list of `str`, *optional*): + A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be + skipped when decoding if `skip_special_tokens` is set to `True`. + """ + + vocab_files_names = VOCAB_FILES_NAMES + + model_input_names = ["input_ids", "attention_mask"] + + special_tokens: Dict[str, int] + + num_reserved_special_tokens = 256 + + pat_str = "|".join([ + r"""[\p{Han}]+""", + r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?""", + r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?""", + r"""\p{N}{1,3}""", + r""" ?[^\s\p{L}\p{N}]+[\r\n]*""", + r"""\s*[\r\n]+""", + r"""\s+(?!\S)""", + r"""\s+""", + ]) + + def __init__( + self, + vocab_file, + bos_token: Union[str, AddedToken] = "[BOS]", + eos_token: Union[str, AddedToken] = "[EOS]", + unk_token: Union[str, AddedToken, None] = None, + pad_token: Union[str, AddedToken, None] = None, + additional_special_tokens: List[str] = None, + added_tokens_decoder: Optional[dict] = None, + **kwargs, + ): + assert os.path.isfile(vocab_file), vocab_file + + if additional_special_tokens is None: + additional_special_tokens = [ + "<|im_end|>", + "<|im_user|>", + "<|im_assistant|>", + "<|start_header_id|>", + "<|end_header_id|>", + "[EOT]", + "<|im_system|>", + "<|im_middle|>", + ] + + if added_tokens_decoder: + special_tokens_mapping = { + i: added_tokens_decoder[i].content + for i in added_tokens_decoder + } + else: + special_tokens_mapping = {} + + self.vocab_file = vocab_file + mergeable_ranks = load_tiktoken_bpe(vocab_file) + num_base_tokens = len(mergeable_ranks) + self.special_tokens = { + special_tokens_mapping.get(i, f"<|reserved_token_{i}|>"): i + for i in range(num_base_tokens, num_base_tokens + + self.num_reserved_special_tokens) + } + + self.model = tiktoken.Encoding( + name=Path(vocab_file).name, + pat_str=self.pat_str, + mergeable_ranks=mergeable_ranks, + special_tokens=self.special_tokens, + ) + logger.info(f"Reloaded tiktoken model from {vocab_file}") + + self.n_words: int = self.model.n_vocab + # BOS / EOS token IDs + self.bos_id: int = self.special_tokens[str(bos_token)] + self.eos_id: int = self.special_tokens[str(eos_token)] + logger.info( + f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}" + ) + + self.pad_id: int = self.special_tokens[str(pad_token)] + self.unk_id: int = self.special_tokens[str(unk_token)] + + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + + self.decoder = {} + for i in range(self.n_words): + # Taken from https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee + decoding = ''.join([ + self.byte_encoder[ord(char)] for char in + self.model.decode_single_token_bytes(i).decode('latin-1') + ]) + self.decoder[i] = decoding + + self.encoder = {} + for i in range(self.n_words): + if i in self.decoder: + self.encoder[self.decoder[i]] = i + + self._token_config_cache = OrderedDict() + self._cache_max_size = 128 + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + additional_special_tokens=additional_special_tokens, + added_tokens_decoder=added_tokens_decoder, + **kwargs, + ) + self.all_special_ids_set = set(self.all_special_ids) + + def encode(self, + text: str, + allow_special_tokens: bool = True, + **kwargs) -> List[int]: + """ + Encodes a string into a list of token IDs. + + Args: + text (str): The input string to be encoded. + + Returns: + list[int]: A list of token IDs. + """ + # If there are other args, we should call super().encode because there are a lot of code + # to handle those args. supper().encode finally will call _tokenize and _convert_token_to_id. + # NOTE: our encode method is not compatible with the super().encode method, + # e.g. split_special_tokens' default is True in our encode method. + if len(kwargs) > 0: + logger.warning(f"Calling super().encode with {kwargs}") + return super().encode(text, **kwargs) + + assert type(text) is str + + # The tiktoken tokenizer can handle <=400k chars without + # pyo3_runtime.PanicException. + TIKTOKEN_MAX_ENCODE_CHARS = 400_000 + + # https://github.com/openai/tiktoken/issues/195 + # Here we iterate over subsequences and split if we exceed the limit + # of max consecutive non-whitespace or whitespace characters. + MAX_NO_WHITESPACES_CHARS = 25_000 + + texts = self.pre_tokenizer_process(text) + + all_substrs = [] + for text in texts: + substrs = ( + substr for i in range(0, len(text), TIKTOKEN_MAX_ENCODE_CHARS) + for substr in self._split_whitespaces_or_nonwhitespaces( + text[i:i + + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS)) + all_substrs.extend(substrs) + + t: List[int] = [] + for substr in all_substrs: + if allow_special_tokens: + t.extend( + # we should consider special token as a common token + self.model.encode( + substr, + allowed_special="all", + )) + else: + t.extend( + # we should consider special token as a common token + self.model.encode( + substr, + disallowed_special=(), + )) + + return t + + def decode(self, token_ids: Union[int, List[int]], **kwargs) -> str: + """ + Decodes a list of token IDs into a string. + + Args: + token_ids (List[int]): The list of token IDs to be decoded. + + Returns: + str: The decoded string. + """ + # If there are other args, we should call super().decode because there are a lot of code + # to handle those args. supper().encode finally will call convert_tokens_to_string and _convert_id_to_token. + if len(kwargs) > 0: + return super().decode(token_ids, **kwargs) + + if type(token_ids) is int: + token_ids = [token_ids] + + return self.model.decode(cast(List[int], token_ids)) + + @staticmethod + def _split_whitespaces_or_nonwhitespaces( + s: str, max_consecutive_slice_len: int) -> Iterator[str]: + """ + Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len` + consecutive whitespaces or consecutive non-whitespaces. + """ + current_slice_len = 0 + current_slice_is_space = s[0].isspace() if len(s) > 0 else False + slice_start = 0 + + for i in range(len(s)): + is_now_space = s[i].isspace() + + if current_slice_is_space ^ is_now_space: + current_slice_len = 1 + current_slice_is_space = is_now_space + else: + current_slice_len += 1 + if current_slice_len > max_consecutive_slice_len: + yield s[slice_start:i] + slice_start = i + current_slice_len = 1 + yield s[slice_start:] + + def pre_tokenizer_process(self, text: str) -> List[str]: + """ + pre-tokenizes the input text into a list of tokens. + This method is used to split the input text into smaller chunks for internal processing. + """ + return [text] + + """ ----- Below are the abstract methods required by PreTrainedTokenizer ----- """ + + @property + def vocab_size(self) -> int: + return self.n_words + + def get_vocab(self) -> Dict[str, int]: + return self.encoder + + def _tokenize(self, text: str, **kwargs) -> List[str]: + return [self.decoder[t] for t in self.encode(text)] + + def _convert_token_to_id(self, token: str) -> int: + return self.encoder.get(token, self.unk_id) + + def _convert_id_to_token(self, index: int) -> str: + return self.decoder.get(index) + + @staticmethod + def clean_up_tokenization(out_string: str) -> str: + return out_string + + def convert_tokens_to_string(self, tokens: List[str]) -> str: + text = ''.join(tokens) + text = bytearray([self.byte_decoder[c] + for c in text]).decode('utf-8', 'replace') + return text + + def save_vocabulary(self, + save_directory: str, + filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + raise ValueError( + f"vocabulary path ({save_directory}) should be a directory") + out_vocab_file = os.path.join( + save_directory, + (filename_prefix + "-" if filename_prefix else "") + + VOCAB_FILES_NAMES["vocab_file"]) + + if os.path.abspath(self.vocab_file) != os.path.abspath( + out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file, ) + + def apply_chat_template(self, + conversation, + tools: Optional[list[dict]] = None, + tokenize: bool = False, + add_generation_prompt: bool = True, + thinking: bool = True, + **kwargs): + + tools = deep_sort_dict(tools) + + # Convert tools to TypeScript style string if tools are provided + tools_ts_str = None + if tools: + try: + tools_ts_str = encode_tools_to_typescript_style(tools) + + except Exception as e: + print(f"Failed to convert tools to TypeScript style: {e}") + tools_ts_str = None + + # Store the TypeScript string in kwargs so it can be accessed by the template + if tools_ts_str is not None: + kwargs['tools_ts_str'] = tools_ts_str + return super().apply_chat_template( + conversation, + tools=tools, + tokenize=tokenize, + add_generation_prompt=add_generation_prompt, + thinking=thinking, + **kwargs) + + +def deep_sort_dict(obj: Any) -> Any: + if isinstance(obj, dict): + return {k: deep_sort_dict(v) for k, v in sorted(obj.items())} + if isinstance(obj, list): + return [deep_sort_dict(item) for item in obj] + return obj diff --git a/tokenizer_config.json b/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..2a1e4b6eadcea8e6ea6f3a227d48e603e19b7140 --- /dev/null +++ b/tokenizer_config.json @@ -0,0 +1,216 @@ +{ + "added_tokens_decoder": { + "163584": { + "content": "[BOS]", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163585": { + "content": "[EOS]", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163586": { + "content": "<|im_end|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163587": { + "content": "<|im_user|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163588": { + "content": "<|im_assistant|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163590": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163591": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163593": { + "content": "[EOT]", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163594": { + "content": "<|im_system|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163595": { + "content": "<|tool_calls_section_begin|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "163596": { + "content": "<|tool_calls_section_end|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "163597": { + "content": "<|tool_call_begin|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "163598": { + "content": "<|tool_call_argument_begin|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "163599": { + "content": "<|tool_call_end|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "163601": { + "content": "<|im_middle|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163602": { + "content": "<|media_begin|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163603": { + "content": "<|media_content|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163604": { + "content": "<|media_end|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163605": { + "content": "<|media_pad|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163606": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "163607": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "163838": { + "content": "[UNK]", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "163839": { + "content": "[PAD]", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [ + "<|im_end|>", + "<|im_user|>", + "<|im_assistant|>", + "<|start_header_id|>", + "<|end_header_id|>", + "[EOT]", + "<|im_system|>", + "<|im_middle|>", + "<|media_begin|>", + "<|media_content|>", + "<|media_end|>", + "<|media_pad|>" + ], + "auto_map": { + "AutoTokenizer": [ + "tokenization_kimi.TikTokenTokenizer", + null + ] + }, + "bos_token": "[BOS]", + "clean_up_tokenization_spaces": false, + "eos_token": "[EOS]", + "extra_special_tokens": {}, + "model_max_length": 1000000000000000019884624838656, + "pad_token": "[EOS]", + "tokenizer_class": "TikTokenTokenizer", + "unk_token": "[UNK]" +} diff --git a/tool_declaration_ts.py b/tool_declaration_ts.py new file mode 100644 index 0000000000000000000000000000000000000000..3cc7727ddbeabef16b90ce0219446bc2d4ea9032 --- /dev/null +++ b/tool_declaration_ts.py @@ -0,0 +1,479 @@ +""" +Encode structured tool declaration to typescript style string. +""" +import dataclasses +import json +import logging +from collections.abc import Sequence +from typing import Any + +logger = logging.getLogger(__name__) + +_TS_INDENT = " " +_TS_FIELD_DELIMITER = ",\n" + + +class _SchemaRegistry: + """Registry for schema definitions to handle $ref resolution""" + + def __init__(self): + self.definitions = {} + self.has_self_ref = False + + def register_definitions(self, defs: dict[str, Any]): + """Register schema definitions from $defs section""" + if not defs: + return + for def_name, def_schema in defs.items(): + self.definitions[def_name] = def_schema + + def resolve_ref(self, ref: str) -> dict[str, Any]: + """Resolve a reference to its schema definition""" + if ref == "#": + self.has_self_ref = True + return {"$self_ref": True} + elif ref.startswith("#/$defs/"): + def_name = ref.split("/")[-1] + if def_name not in self.definitions: + raise ValueError(f"Reference not found: {ref}") + return self.definitions[def_name] + else: + raise ValueError(f"Unsupported reference format: {ref}") + + +def _format_description(description: str, indent: str = "") -> str: + return "\n".join([ + f"{indent}// {line}" if line else "" + for line in description.split("\n") + ]) + + +class _BaseType: + description: str + constraints: dict[str, Any] + + def __init__( + self, + extra_props: dict[str, Any], + *, + allowed_constraint_keys: Sequence[str] = (), + ): + self.description = extra_props.get("description", "") + self.constraints = { + k: v + for k, v in extra_props.items() if k in allowed_constraint_keys + } + + def to_typescript_style(self, indent: str = "") -> str: + raise NotImplementedError + + def format_docstring(self, indent: str) -> str: + lines = [] + if self.description: + lines.append(_format_description(self.description, indent)) + if self.constraints: + constraints_str = ", ".join(f"{k}: {v}" for k, v in sorted( + self.constraints.items(), key=lambda kv: kv[0])) + lines.append(f"{indent}// {constraints_str}") + + return "".join(x + "\n" for x in lines) + + +class _ParameterTypeScalar(_BaseType): + type: str + + def __init__(self, type: str, extra_props: dict[str, Any] | None = None): + self.type = type + + allowed_constraint_keys: list[str] = [] + if self.type == "string": + allowed_constraint_keys = ["maxLength", "minLength", "pattern"] + elif self.type in ("number", "integer"): + allowed_constraint_keys = ["maximum", "minimum"] + + super().__init__(extra_props or {}, + allowed_constraint_keys=allowed_constraint_keys) + + def to_typescript_style(self, indent: str = "") -> str: + # Map integer to number in TypeScript + if self.type == "integer": + return "number" + return self.type + + +class _ParameterTypeObject(_BaseType): + properties: list["_Parameter"] + additional_properties: Any | None = None + + def __init__(self, + json_schema_object: dict[str, Any], + registry: _SchemaRegistry | None = None): + super().__init__(json_schema_object) + + self.properties = [] + self.additional_properties = None + + if not json_schema_object: + return + + if "$defs" in json_schema_object and registry: + registry.register_definitions(json_schema_object["$defs"]) + + self.additional_properties = json_schema_object.get( + "additionalProperties") + if isinstance(self.additional_properties, dict): + self.additional_properties = _parse_parameter_type( + self.additional_properties, registry) + + if "properties" not in json_schema_object: + return + + required_parameters = json_schema_object.get("required", []) + optional_parameters = set( + json_schema_object["properties"].keys()) - set(required_parameters) + + self.properties = [ + _Parameter( + name=name, + type=_parse_parameter_type(prop, registry), + optional=name in optional_parameters, + default=prop.get("default") + if isinstance(prop, dict) else None, + ) for name, prop in json_schema_object["properties"].items() + ] + + def to_typescript_style(self, indent: str = "") -> str: + # sort by optional, make the required parameters first + parameters = [p for p in self.properties if not p.optional] + opt_params = [p for p in self.properties if p.optional] + + parameters = sorted(parameters, key=lambda p: p.name) + parameters.extend(sorted(opt_params, key=lambda p: p.name)) + + param_strs = [] + for p in parameters: + one = p.to_typescript_style(indent=indent + _TS_INDENT) + param_strs.append(one) + + if self.additional_properties is not None: + ap_type_str = "any" + if self.additional_properties is True: + ap_type_str = "any" + elif self.additional_properties is False: + ap_type_str = "never" + elif isinstance(self.additional_properties, _ParameterType): + ap_type_str = self.additional_properties.to_typescript_style( + indent=indent + _TS_INDENT) + else: + raise ValueError( + f"Unknown additionalProperties: {self.additional_properties}" + ) + param_strs.append( + f"{indent + _TS_INDENT}[k: string]: {ap_type_str}") + + if not param_strs: + return "{}" + + params_str = _TS_FIELD_DELIMITER.join(param_strs) + if params_str: + # add new line before and after + params_str = f"\n{params_str}\n" + # always wrap with object + return f"{{{params_str}{indent}}}" + + +class _ParameterTypeArray(_BaseType): + item: "_ParameterType" + + def __init__(self, + json_schema_object: dict[str, Any], + registry: _SchemaRegistry | None = None): + super().__init__(json_schema_object, + allowed_constraint_keys=("minItems", "maxItems")) + if json_schema_object.get("items"): + self.item = _parse_parameter_type(json_schema_object["items"], + registry) + else: + self.item = _ParameterTypeScalar(type="any") + + def to_typescript_style(self, indent: str = "") -> str: + item_docstring = self.item.format_docstring(indent + _TS_INDENT) + if item_docstring: + return ("Array<\n" + item_docstring + indent + _TS_INDENT + + self.item.to_typescript_style(indent=indent + _TS_INDENT) + + "\n" + indent + ">") + else: + return f"Array<{self.item.to_typescript_style(indent=indent)}>" + + +class _ParameterTypeEnum(_BaseType): + # support scalar types only + enum: list[str | int | float | bool | None] + + def __init__(self, json_schema_object: dict[str, Any]): + super().__init__(json_schema_object) + self.enum = json_schema_object["enum"] + + # Validate enum values against declared type if present + if "type" in json_schema_object: + typ = json_schema_object["type"] + if isinstance(typ, list): + if len(typ) == 1: + typ = typ[0] + elif len(typ) == 2: + if "null" not in typ: + raise ValueError(f"Enum type {typ} is not supported") + else: + typ = typ[0] if typ[0] != "null" else typ[1] + else: + raise ValueError(f"Enum type {typ} is not supported") + for val in self.enum: + if val is None: + continue + if typ == "string" and not isinstance(val, str): + raise ValueError(f"Enum value {val} is not a string") + elif typ == "number" and not isinstance(val, (int, float)): + raise ValueError(f"Enum value {val} is not a number") + elif typ == "integer" and not isinstance(val, int): + raise ValueError(f"Enum value {val} is not an integer") + elif typ == "boolean" and not isinstance(val, bool): + raise ValueError(f"Enum value {val} is not a boolean") + + def to_typescript_style(self, indent: str = "") -> str: + return " | ".join( + [f'"{e}"' if isinstance(e, str) else str(e) for e in self.enum]) + + +class _ParameterTypeAnyOf(_BaseType): + types: list["_ParameterType"] + + def __init__( + self, + json_schema_object: dict[str, Any], + registry: _SchemaRegistry | None = None, + ): + super().__init__(json_schema_object) + self.types = [ + _parse_parameter_type(t, registry) + for t in json_schema_object["anyOf"] + ] + + def to_typescript_style(self, indent: str = "") -> str: + return " | ".join( + [t.to_typescript_style(indent=indent) for t in self.types]) + + +class _ParameterTypeUnion(_BaseType): + types: list[str] + + def __init__(self, json_schema_object: dict[str, Any]): + super().__init__(json_schema_object) + + mapping = { + "string": "string", + "number": "number", + "integer": "number", + "boolean": "boolean", + "null": "null", + "object": "{}", + "array": "Array", + } + self.types = [mapping[t] for t in json_schema_object["type"]] + + def to_typescript_style(self, indent: str = "") -> str: + return " | ".join(self.types) + + +class _ParameterTypeRef(_BaseType): + ref_name: str + is_self_ref: bool = False + + def __init__(self, json_schema_object: dict[str, Any], + registry: _SchemaRegistry): + super().__init__(json_schema_object) + + ref = json_schema_object["$ref"] + resolved_schema = registry.resolve_ref(ref) + + if resolved_schema.get("$self_ref", False): + self.ref_name = "parameters" + self.is_self_ref = True + else: + self.ref_name = ref.split("/")[-1] + + def to_typescript_style(self, indent: str = "") -> str: + return self.ref_name + + +_ParameterType = (_ParameterTypeScalar + | _ParameterTypeObject + | _ParameterTypeArray + | _ParameterTypeEnum + | _ParameterTypeAnyOf + | _ParameterTypeUnion + | _ParameterTypeRef) + + +@dataclasses.dataclass +class _Parameter: + """ + A parameter in a function, or a field in a object. + It consists of the type as well as the name. + """ + + type: _ParameterType + name: str = "_" + optional: bool = True + default: Any | None = None + + @classmethod + def parse_extended(cls, attributes: dict[str, Any]) -> "_Parameter": + if not attributes: + raise ValueError("attributes is empty") + + return cls( + name=attributes.get("name", "_"), + type=_parse_parameter_type(attributes), + optional=attributes.get("optional", False), + default=attributes.get("default"), + ) + + def to_typescript_style(self, indent: str = "") -> str: + comments = self.type.format_docstring(indent) + + if self.default is not None: + default_repr = (json.dumps(self.default, ensure_ascii=False) + if not isinstance(self.default, (int, float, bool)) + else repr(self.default)) + comments += f"{indent}// Default: {default_repr}\n" + + return ( + comments + + f"{indent}{self.name}{'?' if self.optional else ''}: {self.type.to_typescript_style(indent=indent)}" + ) + + +def _parse_parameter_type( + json_schema_object: dict[str, Any] | bool, + registry: _SchemaRegistry | None = None) -> _ParameterType: + if isinstance(json_schema_object, bool): + if json_schema_object: + return _ParameterTypeScalar(type="any") + else: + logger.warning( + f"Warning: Boolean value {json_schema_object} is not supported, use null instead." + ) + return _ParameterTypeScalar(type="null") + + if "$ref" in json_schema_object and registry: + return _ParameterTypeRef(json_schema_object, registry) + + if "anyOf" in json_schema_object: + return _ParameterTypeAnyOf(json_schema_object, registry) + elif "enum" in json_schema_object: + return _ParameterTypeEnum(json_schema_object) + elif "type" in json_schema_object: + typ = json_schema_object["type"] + if isinstance(typ, list): + return _ParameterTypeUnion(json_schema_object) + elif typ == "object": + return _ParameterTypeObject(json_schema_object, registry) + elif typ == "array": + return _ParameterTypeArray(json_schema_object, registry) + else: + return _ParameterTypeScalar(typ, json_schema_object) + elif json_schema_object == {}: + return _ParameterTypeScalar(type="any") + else: + raise ValueError(f"Invalid JSON Schema object: {json_schema_object}") + + +def _openai_function_to_typescript_style(function: dict[str, Any], ) -> str: + """Convert OpenAI function definition (dict) to TypeScript style string.""" + registry = _SchemaRegistry() + parameters = function.get("parameters") or {} + parsed = _ParameterTypeObject(parameters, registry) + + interfaces = [] + root_interface_name = None + if registry.has_self_ref: + root_interface_name = "parameters" + params_str = _TS_FIELD_DELIMITER.join([ + p.to_typescript_style(indent=_TS_INDENT) for p in parsed.properties + ]) + params_str = f"\n{params_str}\n" if params_str else "" + interface_def = f"interface {root_interface_name} {{{params_str}}}" + interfaces.append(interface_def) + + definitions_copy = dict(registry.definitions) + for def_name, def_schema in definitions_copy.items(): + obj_type = _parse_parameter_type(def_schema, registry) + params_str = obj_type.to_typescript_style() + + description_part = "" + if obj_description := def_schema.get("description", ""): + description_part = _format_description(obj_description) + "\n" + + interface_def = f"{description_part}interface {def_name} {params_str}" + interfaces.append(interface_def) + + interface_str = "\n".join(interfaces) + function_name = function.get("name", "function") + if root_interface_name: + type_def = f"type {function_name} = (_: {root_interface_name}) => any;" + else: + params_str = parsed.to_typescript_style() + type_def = f"type {function_name} = (_: {params_str}) => any;" + + description = function.get("description") + return "\n".join( + filter( + bool, + [ + interface_str, + ((description and _format_description(description)) or ""), + type_def, + ], + )) + + +def encode_tools_to_typescript_style(tools: list[dict[str, Any]], ) -> str: + """ + Convert tools (list of dict) to TypeScript style string. + + Supports OpenAI format: {"type": "function", "function": {...}} + + Args: + tools: List of tool definitions in dict format + + Returns: + TypeScript style string representation of the tools + """ + if not tools: + return "" + + functions = [] + + for tool in tools: + tool_type = tool.get("type") + if tool_type == "function": + func_def = tool.get("function", {}) + if func_def: + functions.append( + _openai_function_to_typescript_style(func_def)) + else: + # Skip unsupported tool types (like "_plugin") + continue + + if not functions: + return "" + + functions_str = "\n".join(functions) + result = "# Tools\n\n" + + if functions_str: + result += "## functions\nnamespace functions {\n" + result += functions_str + "\n" + result += "}\n" + + return result