Update README.md
Browse files
README.md
CHANGED
|
@@ -104,151 +104,31 @@ This code has been tested on Transformers v4.51.2, torch 2.6.0+cu124 and 2 NVIDI
|
|
| 104 |
The model was trained with "nothink" instruction in order not to lose Qwen-3's reasoning ability.
|
| 105 |
When prompting model, please append ` /nothink` to the user query and an empty thinking trace `<think>\n\n</think>\n\n` to the model response.
|
| 106 |
|
| 107 |
-
|
| 108 |
|
| 109 |
```python
|
| 110 |
-
# server.py
|
| 111 |
-
|
| 112 |
-
import argparse
|
| 113 |
import torch
|
| 114 |
-
from
|
| 115 |
-
from pydantic import BaseModel
|
| 116 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 117 |
-
import uvicorn
|
| 118 |
-
|
| 119 |
-
app = FastAPI()
|
| 120 |
-
|
| 121 |
-
class GenerateRequest(BaseModel):
|
| 122 |
-
prompts: list[str]
|
| 123 |
-
|
| 124 |
-
# Globals to hold our model/tokenizer once loaded
|
| 125 |
-
tokenizer: AutoTokenizer
|
| 126 |
-
model: AutoModelForSequenceClassification
|
| 127 |
-
|
| 128 |
-
def load_model(model_path: str):
|
| 129 |
-
global tokenizer, model
|
| 130 |
-
|
| 131 |
-
print(f"Loading model from {model_path}…")
|
| 132 |
-
# load tokenizer as usual
|
| 133 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 134 |
-
|
| 135 |
-
# load the model in FP16 to save memory; drop .to() calls
|
| 136 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 137 |
-
model_path,
|
| 138 |
-
pad_token_id=tokenizer.pad_token_id,
|
| 139 |
-
torch_dtype=torch.float16,
|
| 140 |
-
device_map="auto",
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
# optional: disable dropout everywhere
|
| 144 |
-
disable_dropout_in_model(model)
|
| 145 |
-
|
| 146 |
-
print("Model loaded and dispatched across GPUs.")
|
| 147 |
-
|
| 148 |
-
def disable_dropout_in_model(module: torch.nn.Module) -> None:
|
| 149 |
-
for m in module.modules():
|
| 150 |
-
if isinstance(m, torch.nn.Dropout):
|
| 151 |
-
m.p = 0
|
| 152 |
-
|
| 153 |
-
@app.post("/generate")
|
| 154 |
-
async def generate(req: GenerateRequest):
|
| 155 |
-
inputs = tokenizer(
|
| 156 |
-
req.prompts,
|
| 157 |
-
return_tensors="pt",
|
| 158 |
-
padding=True,
|
| 159 |
-
truncation=True,
|
| 160 |
-
max_length=8192, # adjust as needed
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
# Forward pass — no .to() calls needed
|
| 164 |
-
with torch.no_grad():
|
| 165 |
-
outputs = model(**inputs)
|
| 166 |
-
|
| 167 |
-
# Return raw logits
|
| 168 |
-
return {"logits": outputs.logits.cpu().tolist()}
|
| 169 |
-
|
| 170 |
-
if __name__ == "__main__":
|
| 171 |
-
parser = argparse.ArgumentParser(description="Sharded RM FastAPI server")
|
| 172 |
-
parser.add_argument(
|
| 173 |
-
"--model-path",
|
| 174 |
-
type=str,
|
| 175 |
-
required=True,
|
| 176 |
-
default='nvidia/Qwen-3-Nemotron-32B-Reward',
|
| 177 |
-
help="HuggingFace model ID or local checkpoint directory",
|
| 178 |
-
)
|
| 179 |
-
parser.add_argument(
|
| 180 |
-
"--host", type=str, default="0.0.0.0", help="host for the FastAPI server"
|
| 181 |
-
)
|
| 182 |
-
parser.add_argument(
|
| 183 |
-
"--port", type=int, default=9000, help="port for the FastAPI server"
|
| 184 |
-
)
|
| 185 |
-
args = parser.parse_args()
|
| 186 |
-
|
| 187 |
-
load_model(args.model_path)
|
| 188 |
-
uvicorn.run(app, host=args.host, port=args.port)
|
| 189 |
-
```
|
| 190 |
|
| 191 |
-
|
| 192 |
|
| 193 |
-
|
|
|
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
parser = argparse.ArgumentParser(description="Qwen-3-RM FastAPI server")
|
| 211 |
-
parser.add_argument(
|
| 212 |
-
"--model-path",
|
| 213 |
-
type=str,
|
| 214 |
-
default='nvidia/Qwen-3-Nemotron-32B-Reward',
|
| 215 |
-
help="HuggingFace model ID or local checkpoint directory",
|
| 216 |
-
)
|
| 217 |
-
parser.add_argument(
|
| 218 |
-
"--host", type=str, default="0.0.0.0", help="host for the FastAPI server"
|
| 219 |
-
)
|
| 220 |
-
parser.add_argument(
|
| 221 |
-
"--port", type=int, default=9000, help="port for the FastAPI server"
|
| 222 |
-
)
|
| 223 |
-
args = parser.parse_args()
|
| 224 |
-
|
| 225 |
-
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
| 226 |
-
|
| 227 |
-
messages1 = [
|
| 228 |
-
{"role": "user", "content": 'Tell me something about large language models. /nothink'},
|
| 229 |
-
{"role": "assistant", "content": "<think>\n\n</think>\n\nI'm sorry, I can't answer that question."}
|
| 230 |
-
]
|
| 231 |
-
|
| 232 |
-
messages2 = [
|
| 233 |
-
{"role": "user", "content": 'Tell me something about large language models. /nothink'},
|
| 234 |
-
{"role": "assistant", "content": "<think>\n\n</think>\n\nlarge language models are a type of machine learning model that are used to generate text."}
|
| 235 |
-
]
|
| 236 |
-
|
| 237 |
-
messages1_chat = tokenizer.apply_chat_template(messages1, tokenize=False, add_generation_prompt=False)
|
| 238 |
-
messages2_chat = tokenizer.apply_chat_template(messages2, tokenize=False, add_generation_prompt=False)
|
| 239 |
-
|
| 240 |
-
prompts = [
|
| 241 |
-
messages1_chat,
|
| 242 |
-
messages2_chat,
|
| 243 |
-
]
|
| 244 |
-
out = send_prompts(args.host, args.port, prompts)
|
| 245 |
-
print(f"Received rm_scores for {len(prompts)} prompts:")
|
| 246 |
-
for i, seq_logits in enumerate(out["logits"]):
|
| 247 |
-
print(f" Prompt {i}: {seq_logits[0]}")
|
| 248 |
-
|
| 249 |
-
# outputs:
|
| 250 |
-
# Prompt 0: -8.796875
|
| 251 |
-
# Prompt 1: 5.8359375
|
| 252 |
```
|
| 253 |
|
| 254 |
## Training Datasets:
|
|
|
|
| 104 |
The model was trained with "nothink" instruction in order not to lose Qwen-3's reasoning ability.
|
| 105 |
When prompting model, please append ` /nothink` to the user query and an empty thinking trace `<think>\n\n</think>\n\n` to the model response.
|
| 106 |
|
| 107 |
+
Please note the ` /nothink` at the end of the user query and an empty thinking trace `<think>\n\n</think>\n\n` in the beginning of the model response - this can be implemented in the server side instead, as well.
|
| 108 |
|
| 109 |
```python
|
|
|
|
|
|
|
|
|
|
| 110 |
import torch
|
| 111 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"
|
| 114 |
|
| 115 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
| 116 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 117 |
|
| 118 |
+
prompt = "What is 1+1?"
|
| 119 |
+
good_response = "1+1=2"
|
| 120 |
+
bad_response = "1+1=3"
|
| 121 |
+
|
| 122 |
+
for response in [good_response, bad_response]:
|
| 123 |
+
messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
|
| 124 |
+
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
|
| 125 |
+
reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
|
| 126 |
+
print(reward)
|
| 127 |
+
|
| 128 |
+
# Example quality - note that higher scores means higher quality, and scores can be negative.
|
| 129 |
+
|
| 130 |
+
# reward for good_response = 8.0234375
|
| 131 |
+
# reward for bad_response = -7.9765625
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
```
|
| 133 |
|
| 134 |
## Training Datasets:
|