NeuCLIRBench: A Modern Evaluation Collection for Monolingual, Cross-Language, and Multilingual Information Retrieval
Abstract
NeuCLIRBench is an evaluation collection for cross-language and multilingual retrieval, featuring relevance judgments across multiple languages and scenarios.
To measure advances in retrieval, test collections with relevance judgments that can faithfully distinguish systems are required. This paper presents NeuCLIRBench, an evaluation collection for cross-language and multilingual retrieval. The collection consists of documents written natively in Chinese, Persian, and Russian, as well as those same documents machine translated into English. The collection supports several retrieval scenarios including: monolingual retrieval in English, Chinese, Persian, or Russian; cross-language retrieval with English as the query language and one of the other three languages as the document language; and multilingual retrieval, again with English as the query language and relevant documents in all three languages. NeuCLIRBench combines the TREC NeuCLIR track topics of 2022, 2023, and 2024. The 250,128 judgments across approximately 150 queries for the monolingual and cross-language tasks and 100 queries for multilingual retrieval provide strong statistical discriminatory power to distinguish retrieval approaches. A fusion baseline of strong neural retrieval systems is included with the collection so that developers of reranking algorithms are no longer reliant on BM25 as their first-stage retriever. NeuCLIRBench is publicly available.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper