GamiBench: Evaluating Spatial Reasoning and 2D-to-3D Planning Capabilities of MLLMs with Origami Folding Tasks
Abstract
GamiBench is a new benchmark for evaluating spatial reasoning and 2D-to-3D planning in multimodal large language models through origami folding tasks that assess the full reasoning process across multiple views and complexity levels.
Multimodal large language models (MLLMs) are proficient in perception and instruction-following, but they still struggle with spatial reasoning: the ability to mentally track and manipulate objects across multiple views and over time. Spatial reasoning is a key component of human intelligence, but most existing benchmarks focus on static images or final outputs, failing to account for the sequential and viewpoint-dependent nature of this skill. To close this gap, we introduce GamiBench, a benchmark designed to evaluate spatial reasoning and 2D-to-3D planning in MLLMs through origami-inspired folding tasks. GamiBench includes 186 regular and 186 impossible 2D crease patterns paired with their corresponding 3D folded shapes, produced from six distinct viewpoints across three visual question-answering (VQA) tasks: predicting 3D fold configurations, distinguishing valid viewpoints, and detecting impossible patterns. Unlike previous benchmarks that assess only final predictions, GamiBench holistically evaluates the entire reasoning process--measuring cross-view consistency, physical feasibility through impossible-fold detection, and interpretation of intermediate folding steps. It further introduces new diagnostic metrics--viewpoint consistency (VC) and impossible fold selection rate (IFSR)--to measure how well models handle folds of varying complexity. Our experiments show that even leading models such as GPT-5 and Gemini-2.5-Pro struggle on single-step spatial understanding. These contributions establish a standardized framework for evaluating geometric understanding and spatial reasoning in MLLMs. Dataset and code: https://github.com/stvngo/GamiBench.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper