Papers
arxiv:2602.04915

SLAY: Geometry-Aware Spherical Linearized Attention with Yat-Kernel

Published on Feb 4
Authors:
,
,

Abstract

SLAY introduces a linear-time attention mechanism based on spherical Yat-kernels that maintains near-softmax performance while achieving efficient O(L) scaling.

AI-generated summary

We propose a new class of linear-time attention mechanisms based on a relaxed and computationally efficient formulation of the recently introduced E-Product, often referred to as the Yat-kernel (Bouhsine, 2025). The resulting interactions are geometry-aware and inspired by inverse-square interactions in physics. Our method, Spherical Linearized Attention with Yat Kernels (SLAY), constrains queries and keys to the unit sphere so that attention depends only on angular alignment. Using Bernstein's theorem, we express the spherical Yat-kernel as a nonnegative mixture of polynomial-exponential product kernels and derive a strictly positive random-feature approximation enabling linear-time O(L) attention. We establish positive definiteness and boundedness on the sphere and show that the estimator yields well-defined, nonnegative attention scores. Empirically, SLAY achieves performance that is nearly indistinguishable from standard softmax attention while retaining linear time and memory scaling, and consistently outperforms prior linear-time attention mechanisms such as Performers and Cosformers. To the best of our knowledge, SLAY represents the closest linear-time approximation to softmax attention reported to date, enabling scalable Transformers without the typical performance trade-offs of attention linearization.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2602.04915 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2602.04915 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2602.04915 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.