2 Uncertainty Quantification of Large Language Models using Approximate Bayesian Computation Despite their widespread applications, Large Language Models (LLMs) often struggle to express uncertainty, posing a challenge for reliable deployment in high stakes and safety critical domains like clinical diagnostics. Existing standard baseline methods such as model logits and elicited probabilities produce overconfident and poorly calibrated estimates. In this work, we propose Approximate Bayesian Computation (ABC), a likelihood-free Bayesian inference, based approach that treats LLMs as a stochastic simulator to infer posterior distributions over predictive probabilities. We evaluate our ABC approach on two clinically relevant benchmarks: a synthetic oral lesion diagnosis dataset and the publicly available GretelAI symptom-to-diagnosis dataset. Compared to standard baselines, our approach improves accuracy by up to 46.9\%, reduces Brier scores by 74.4\%, and enhances calibration as measured by Expected Calibration Error (ECE) and predictive entropy. 6 authors · Sep 19, 2025
- Unifying Summary Statistic Selection for Approximate Bayesian Computation Extracting low-dimensional summary statistics from large datasets is essential for efficient (likelihood-free) inference. We characterize different classes of summaries and demonstrate their importance for correctly analysing dimensionality reduction algorithms. We demonstrate that minimizing the expected posterior entropy (EPE) under the prior predictive distribution of the model subsumes many existing methods. They are equivalent to or are special or limiting cases of minimizing the EPE. We offer a unifying framework for obtaining informative summaries, provide concrete recommendations for practitioners, and propose a practical method to obtain high-fidelity summaries whose utility we demonstrate for both benchmark and practical examples. 2 authors · Jun 5, 2022
- Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference Likelihood-free inference methods typically make use of a distance between simulated and real data. A common example is the maximum mean discrepancy (MMD), which has previously been used for approximate Bayesian computation, minimum distance estimation, generalised Bayesian inference, and within the nonparametric learning framework. The MMD is commonly estimated at a root-m rate, where m is the number of simulated samples. This can lead to significant computational challenges since a large m is required to obtain an accurate estimate, which is crucial for parameter estimation. In this paper, we propose a novel estimator for the MMD with significantly improved sample complexity. The estimator is particularly well suited for computationally expensive smooth simulators with low- to mid-dimensional inputs. This claim is supported through both theoretical results and an extensive simulation study on benchmark simulators. 5 authors · Jan 27, 2023
- On Transportation of Mini-batches: A Hierarchical Approach Mini-batch optimal transport (m-OT) has been successfully used in practical applications that involve probability measures with a very high number of supports. The m-OT solves several smaller optimal transport problems and then returns the average of their costs and transportation plans. Despite its scalability advantage, the m-OT does not consider the relationship between mini-batches which leads to undesirable estimation. Moreover, the m-OT does not approximate a proper metric between probability measures since the identity property is not satisfied. To address these problems, we propose a novel mini-batch scheme for optimal transport, named Batch of Mini-batches Optimal Transport (BoMb-OT), that finds the optimal coupling between mini-batches and it can be seen as an approximation to a well-defined distance on the space of probability measures. Furthermore, we show that the m-OT is a limit of the entropic regularized version of the BoMb-OT when the regularized parameter goes to infinity. Finally, we carry out experiments on various applications including deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow to show that the BoMb-OT can be widely applied and performs well in various applications. 8 authors · Feb 11, 2021
- Bayesian Computation in Deep Learning This review paper is intended for the 2nd edition of the Handbook of Markov chain Monte Carlo. We provide an introduction to approximate inference techniques as Bayesian computation methods applied to deep learning models. We organize the chapter by presenting popular computational methods for Bayesian neural networks and deep generative models, explaining their unique challenges in posterior inference as well as the solutions. 4 authors · Feb 25, 2025
- Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation While Bayesian inference provides a principled framework for reasoning under uncertainty, its widespread adoption is limited by the intractability of exact posterior computation, necessitating the use of approximate inference. However, existing methods are often computationally expensive, or demand costly retraining when priors change, limiting their utility, particularly in sequential inference problems such as real-time sensor fusion. To address these challenges, we introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings. Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset -- thus performing approximate Bayesian inference. Our novel architecture represents a prior distribution as a (universally-approximating) Gaussian Mixture Model (GMM), and transforms it into a GMM representation of the posterior. The components of the GMM attend to each other via self-attention, and to the datapoints via cross-attention. We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces computation times-from minutes to milliseconds-while achieving log-likelihood performance on par with or superior to existing approximate inference methods across tasks such as sequential inference, quantum system parameter inference, and Gaussian Process predictive posterior inference with hyperpriors. 4 authors · Feb 4, 2025
- A GAMP Based Low Complexity Sparse Bayesian Learning Algorithm In this paper, we present an algorithm for the sparse signal recovery problem that incorporates damped Gaussian generalized approximate message passing (GGAMP) into Expectation-Maximization (EM)-based sparse Bayesian learning (SBL). In particular, GGAMP is used to implement the E-step in SBL in place of matrix inversion, leveraging the fact that GGAMP is guaranteed to converge with appropriate damping. The resulting GGAMP-SBL algorithm is much more robust to arbitrary measurement matrix A than the standard damped GAMP algorithm while being much lower complexity than the standard SBL algorithm. We then extend the approach from the single measurement vector (SMV) case to the temporally correlated multiple measurement vector (MMV) case, leading to the GGAMP-TSBL algorithm. We verify the robustness and computational advantages of the proposed algorithms through numerical experiments. 3 authors · Mar 8, 2017