Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeP-EAGLE: Parallel-Drafting EAGLE with Scalable Training
Reasoning LLMs produce longer outputs, requiring speculative decoding drafters trained on extended sequences. Parallel drafting - predicting multiple tokens per forward pass - offers latency benefits over sequential generation, but training complexity scales quadratically with the product of sequence length and parallel positions, rendering long-context training impractical. We present P(arallel)-EAGLE, which transforms EAGLE from autoregressive to parallel multi-token prediction via a learnable shared hidden state. To scale training to long contexts, we develop a framework featuring attention mask pre-computation and sequence partitioning techniques, enabling gradient accumulation within individual sequences for parallel-prediction training. We implement P-EAGLE in vLLM and demonstrate speedups of 1.10-1.36x over autoregressive EAGLE-3 across GPT-OSS 120B, 20B, and Qwen3-Coder 30B.
TriSpec: Ternary Speculative Decoding via Lightweight Proxy Verification
Inference efficiency in Large Language Models (LLMs) is fundamentally limited by their serial, autoregressive generation, especially as reasoning becomes a key capability and response sequences grow longer. Speculative decoding (SD) offers a powerful solution, providing significant speed-ups through its lightweight drafting and parallel verification mechanism. While existing work has nearly saturated improvements in draft effectiveness and efficiency, this paper advances SD from a new yet critical perspective: the verification cost. We propose TriSpec, a novel ternary SD framework that, at its core, introduces a lightweight proxy to significantly reduce computational cost by approving easily verifiable draft sequences and engaging the full target model only when encountering uncertain tokens. TriSpec can be integrated with state-of-the-art SD methods like EAGLE-3 to further reduce verification costs, achieving greater acceleration. Extensive experiments on the Qwen3 and DeepSeek-R1-Distill-Qwen/LLaMA families show that TriSpec achieves up to 35\% speedup over standard SD, with up to 50\% fewer target model invocations while maintaining comparable accuracy.
DEER: Draft with Diffusion, Verify with Autoregressive Models
Efficiency, as a critical practical challenge for LLM-driven agentic and reasoning systems, is increasingly constrained by the inherent latency of autoregressive (AR) decoding. Speculative decoding mitigates this cost through a draft-verify scheme, yet existing approaches rely on AR draft models (a.k.a., drafters), which introduce two fundamental issues: (1) step-wise uncertainty accumulation leads to a progressive collapse of trust between the target model and the drafter, and (2) inherently sequential decoding of AR drafters. Together, these factors cause limited speedups. In this paper, we show that a diffusion large language model (dLLM) drafters can naturally overcome these issues through its fundamentally different probabilistic modeling and efficient parallel decoding strategy. Building on this insight, we introduce DEER, an efficient speculative decoding framework that drafts with diffusion and verifies with AR models. To enable high-quality drafting, DEER employs a two-stage training pipeline to align the dLLM-based drafters with the target AR model, and further adopts single-step decoding to generate long draft segments. Experiments show DEER reaches draft acceptance lengths of up to 32 tokens, far surpassing the 10 tokens achieved by EAGLE-3. Moreover, on HumanEval with Qwen3-30B-A3B, DEER attains a 5.54x speedup, while EAGLE-3 achieves only 2.41x. Code, model, demo, etc, will be available at https://czc726.github.io/DEER/
Double: Breaking the Acceleration Limit via Double Retrieval Speculative Parallelism
Parallel Speculative Decoding (PSD) accelerates traditional Speculative Decoding (SD) by overlapping draft generation with verification. However, it remains hampered by two fundamental challenges: (1) a theoretical speedup ceiling dictated by the speed ratio between the draft and target models, and (2) high computational waste and pipeline stall due to mid-sequence token rejections of early errors. To address these limitations, we introduce Double (Double Retrieval Speculative Parallelism). By bridging the gap between SD and PSD, our framework resolves the Retrieval Precision-Efficiency Dilemma through a novel synchronous mechanism. Specifically, we enable the draft model to execute iterative retrieval speculations to break the theoretical speedup limits; to alleviate rejections without rollback, the target model performs authoritative retrieval to generate multi-token guidance. Double is entirely training-free and lossless. Extensive experiments demonstrate state-of-the-art speedup of 5.3times on LLaMA3.3-70B and 2.8times on Qwen3-32B, significantly outperforming the advanced method EAGLE-3 that requires extensive model training.
Fail Fast, Win Big: Rethinking the Drafting Strategy in Speculative Decoding via Diffusion LLMs
Diffusion Large Language Models (dLLMs) offer fast, parallel token generation, but their standalone use is plagued by an inherent efficiency-quality tradeoff. We show that, if carefully applied, the attributes of dLLMs can actually be a strength for drafters in speculative decoding with autoregressive (AR) verifiers. Our core insight is that dLLM's speed from parallel decoding drastically lowers the risk of costly rejections, providing a practical mechanism to effectively realize the (elusive) lengthy drafts that lead to large speedups with speculative decoding. We present FailFast, a dLLM-based speculative decoding framework that realizes this approach by dynamically adapting its speculation length. It "fails fast" by spending minimal compute in hard-to-speculate regions to shrink speculation latency and "wins big" by aggressively extending draft lengths in easier regions to reduce verification latency (in many cases, speculating and accepting 70 tokens at a time!). Without any fine-tuning, FailFast delivers lossless acceleration of AR LLMs and achieves up to 4.9times speedup over vanilla decoding, 1.7times over the best naive dLLM drafter, and 1.4times over EAGLE-3 across diverse models and workloads. We open-source FailFast at https://github.com/ruipeterpan/failfast.
DFlash: Block Diffusion for Flash Speculative Decoding
Autoregressive large language models (LLMs) deliver strong performance but require inherently sequential decoding, leading to high inference latency and poor GPU utilization. Speculative decoding mitigates this bottleneck by using a fast draft model whose outputs are verified in parallel by the target LLM; however, existing methods still rely on autoregressive drafting, which remains sequential and limits practical speedups. Diffusion LLMs offer a promising alternative by enabling parallel generation, but current diffusion models typically underperform compared with autoregressive models. In this paper, we introduce DFlash, a speculative decoding framework that employs a lightweight block diffusion model for parallel drafting. By generating draft tokens in a single forward pass and conditioning the draft model on context features extracted from the target model, DFlash enables efficient drafting with high-quality outputs and higher acceptance rates. Experiments show that DFlash achieves over 6x lossless acceleration across a range of models and tasks, delivering up to 2.5x higher speedup than the state-of-the-art speculative decoding method EAGLE-3.
EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty
Auto-regressive decoding makes the inference of Large Language Models (LLMs) time-consuming. We propose a simple framework, EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency), for lossless acceleration. Unlike traditional speculative sampling methods, EAGLE operates the drafting process auto-regressively at the more regular (second-top-layer) feature level and addresses the sampling uncertainty issues in the next-feature prediction problems by integrating tokens from one time step ahead. The acceleration provided by EAGLE is lossless: it involves no fine-tuning of the target LLM, and the generated text maintains the same distribution as that of vanilla auto-regressive decoding. As of the submission of this paper, EAGLE is the fastest known framework within the speculative sampling family. On MT-bench, EAGLE is 3x faster than vanilla decoding, 2x faster than Lookahead, and 1.6x faster than Medusa. Using gpt-fast, EAGLE attains on average 160 tokens/s with LLaMA2-Chat 13B on a single RTX 3090 GPU, compared to 24 tokens/s of Huggingface's implementations.
SuffixDecoding: Extreme Speculative Decoding for Emerging AI Applications
Speculative decoding is widely adopted to reduce latency in large language model (LLM) inference by leveraging smaller draft models capable of handling diverse user tasks. However, emerging AI applications, such as LLM-based agents, present unique workload characteristics: instead of diverse independent requests, agentic frameworks typically submit repetitive inference requests, such as multi-agent pipelines performing similar subtasks or self-refinement loops iteratively enhancing outputs. These workloads result in long and highly predictable sequences, which current speculative decoding methods do not effectively exploit. To address this gap, we introduce SuffixDecoding, a novel method that utilizes efficient suffix trees to cache long token sequences from prompts and previous outputs. By adaptively speculating more tokens when acceptance likelihood is high and fewer when it is low, SuffixDecoding effectively exploits opportunities for longer speculations while conserving computation when those opportunities are limited. Evaluations on agentic benchmarks, including SWE-Bench and Text-to-SQL, demonstrate that SuffixDecoding achieves speedups of up to 5.3times, outperforming state-of-the-art methods -- 2.8times faster than model-based approaches like EAGLE-2/3 and 1.9times faster than model-free approaches such as Token Recycling. SuffixDecoding is open-sourced at https://github.com/snowflakedb/ArcticInference
Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence
We present Eagle (RWKV-5) and Finch (RWKV-6), sequence models improving upon the RWKV (RWKV-4) architecture. Our architectural design advancements include multi-headed matrix-valued states and a dynamic recurrence mechanism that improve expressivity while maintaining the inference efficiency characteristics of RNNs. We introduce a new multilingual corpus with 1.12 trillion tokens and a fast tokenizer based on greedy matching for enhanced multilinguality. We trained four Eagle models, ranging from 0.46 to 7.5 billion parameters, and two Finch models with 1.6 and 3.1 billion parameters and find that they achieve competitive performance across a wide variety of benchmarks. We release all our models on HuggingFace under the Apache 2.0 license. Models at: https://huggingface.co/RWKV Training code at: https://github.com/RWKV/RWKV-LM Inference code at: https://github.com/RWKV/ChatRWKV Time-parallel training code at: https://github.com/RWKV/RWKV-infctx-trainer
EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios 3.05x-4.26x, which is 20%-40% faster than EAGLE-1. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a lossless acceleration algorithm.
Nemotron ColEmbed V2: Top-Performing Late Interaction embedding models for Visual Document Retrieval
Retrieval-Augmented Generation (RAG) systems have been popular for generative applications, powering language models by injecting external knowledge. Companies have been trying to leverage their large catalog of documents (e.g. PDFs, presentation slides) in such RAG pipelines, whose first step is the retrieval component. Dense retrieval has been a popular approach, where embedding models are used to generate a dense representation of the user query that is closer to relevant content embeddings. More recently, VLM-based embedding models have become popular for visual document retrieval, as they preserve visual information and simplify the indexing pipeline compared to OCR text extraction. Motivated by the growing demand for visual document retrieval, we introduce Nemotron ColEmbed V2, a family of models that achieve state-of-the-art performance on the ViDoRe benchmarks. We release three variants - with 3B, 4B, and 8B parameters - based on pre-trained VLMs: NVIDIA Eagle 2 with Llama 3.2 3B backbone, Qwen3-VL-4B-Instruct and Qwen3-VL-8B-Instruct, respectively. The 8B model ranks first on the ViDoRe V3 leaderboard as of February 03, 2026, achieving an average NDCG@10 of 63.42. We describe the main techniques used across data processing, training, and post-training - such as cluster-based sampling, hard-negative mining, bidirectional attention, late interaction, and model merging - that helped us build our top-performing models. We also discuss compute and storage engineering challenges posed by the late interaction mechanism and present experiments on how to balance accuracy and storage with lower dimension embeddings.
Speculative Decoding Meets Quantization: Compatibility Evaluation and Hierarchical Framework Design
Speculative decoding and quantization effectively accelerate memory-bound inference of large language models. Speculative decoding mitigates the memory bandwidth bottleneck by verifying multiple tokens within a single forward pass, which increases computational effort. Quantization achieves this optimization by compressing weights and activations into lower bit-widths and also reduces computations via low-bit matrix multiplications. To further leverage their strengths, we investigate the integration of these two techniques. Surprisingly, experiments applying the advanced speculative decoding method EAGLE-2 to various quantized models reveal that the memory benefits from 4-bit weight quantization are diminished by the computational load from speculative decoding. Specifically, verifying a tree-style draft incurs significantly more time overhead than a single-token forward pass on 4-bit weight quantized models. This finding led to our new speculative decoding design: a hierarchical framework that employs a small model as an intermediate stage to turn tree-style drafts into sequence drafts, leveraging the memory access benefits of the target quantized model. Experimental results show that our hierarchical approach achieves a 2.78times speedup across various tasks for the 4-bit weight Llama-3-70B model on an A100 GPU, outperforming EAGLE-2 by 1.31times. Code available at https://github.com/AI9Stars/SpecMQuant.
DART: Diffusion-Inspired Speculative Decoding for Fast LLM Inference
Speculative decoding is an effective and lossless approach for accelerating LLM inference. However, existing widely adopted model-based draft designs, such as EAGLE3, improve accuracy at the cost of multi-step autoregressive inference, resulting in high drafting latency and ultimately rendering the drafting stage itself a performance bottleneck. Inspired by diffusion-based large language models (dLLMs), we propose DART, which leverages parallel generation to reduce drafting latency. DART predicts logits for multiple future masked positions in parallel within a single forward pass based on hidden states of the target model, thereby eliminating autoregressive rollouts in the draft model while preserving a lightweight design. Based on these parallel logit predictions, we further introduce an efficient tree pruning algorithm that constructs high-quality draft token trees with N-gram-enforced semantic continuity. DART substantially reduces draft-stage overhead while preserving high draft accuracy, leading to significantly improved end-to-end decoding speed. Experimental results demonstrate that DART achieves a 2.03x--3.44x wall-clock time speedup across multiple datasets, surpassing EAGLE3 by 30% on average and offering a practical speculative decoding framework. Code is released at https://github.com/fvliang/DART.
EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS
Recently, 3D Gaussian splatting (3D-GS) has gained popularity in novel-view scene synthesis. It addresses the challenges of lengthy training times and slow rendering speeds associated with Neural Radiance Fields (NeRFs). Through rapid, differentiable rasterization of 3D Gaussians, 3D-GS achieves real-time rendering and accelerated training. They, however, demand substantial memory resources for both training and storage, as they require millions of Gaussians in their point cloud representation for each scene. We present a technique utilizing quantized embeddings to significantly reduce memory storage requirements and a coarse-to-fine training strategy for a faster and more stable optimization of the Gaussian point clouds. Our approach results in scene representations with fewer Gaussians and quantized representations, leading to faster training times and rendering speeds for real-time rendering of high resolution scenes. We reduce memory by more than an order of magnitude all while maintaining the reconstruction quality. We validate the effectiveness of our approach on a variety of datasets and scenes preserving the visual quality while consuming 10-20x less memory and faster training/inference speed. Project page and code is available https://efficientgaussian.github.io
DreamCraft: Text-Guided Generation of Functional 3D Environments in Minecraft
Procedural Content Generation (PCG) algorithms enable the automatic generation of complex and diverse artifacts. However, they don't provide high-level control over the generated content and typically require domain expertise. In contrast, text-to-3D methods allow users to specify desired characteristics in natural language, offering a high amount of flexibility and expressivity. But unlike PCG, such approaches cannot guarantee functionality, which is crucial for certain applications like game design. In this paper, we present a method for generating functional 3D artifacts from free-form text prompts in the open-world game Minecraft. Our method, DreamCraft, trains quantized Neural Radiance Fields (NeRFs) to represent artifacts that, when viewed in-game, match given text descriptions. We find that DreamCraft produces more aligned in-game artifacts than a baseline that post-processes the output of an unconstrained NeRF. Thanks to the quantized representation of the environment, functional constraints can be integrated using specialized loss terms. We show how this can be leveraged to generate 3D structures that match a target distribution or obey certain adjacency rules over the block types. DreamCraft inherits a high degree of expressivity and controllability from the NeRF, while still being able to incorporate functional constraints through domain-specific objectives.
Scaling Laws for Speculative Decoding
The escalating demand for efficient decoding in large language models (LLMs) is particularly critical for reasoning-intensive architectures like OpenAI-o3 and DeepSeek-R1, which depend on extended chain-of-thought reasoning. This study investigates speculative decoding techniques through dense LLM architectures to establish foundational insights for accelerating reasoning tasks. While speculative decoding methods leveraging parallel draft-verification cycles have emerged as promising acceleration techniques, the scaling laws governing decoding efficiency remain under-explored compared to conventional backbone LLMs developed through Pretraining->SFT->RLHF training paradigms. In this work, we discover Log-linear Scaling Laws (Theorem 1.1, 1.2 and 1.3) governing draft model acceptance rate (or decoding speed) across three dimensions: pretraining token volume, draft model capacity, and decoding batch size. Building on these laws, we achieve Scylla, which coordinates multi-dimensional scaling for popular LLMs (Llama2/3, Qwen2.5). Empirical validation shows Scylla achieves 1.5-2.2 higher acceptance rate than EAGLE2 and 0.3 higher than EAGLE3 at temperature T = 0, with peak performance gains on summarization and QA tasks (Figure 2). Industrial inference engine deployments demonstrate 2X decoding throughput improvements over EAGLE2 (Table 5), validating the transformative potential of systematic scaling for efficient LLM inference. Code will be released later.
Mirror Speculative Decoding: Breaking the Serial Barrier in LLM Inference
Speculative decoding accelerates LLM inference by using a draft model to look ahead, but gains are capped by the cost of autoregressive draft generation: increasing draft size elevates acceptance rates but introduces additional latency overhead exacerbating the speed-accuracy tradeoff. Prior methods (Medusa, Hydra, EAGLE) partially reduce draft cost but either degrade acceptance or introduce overheads that limit scaling. We present Mirror Speculative Decoding (Mirror-SD), an inference algorithm that breaks the latency-acceptance tradeoff. Mirror-SD launches branch-complete rollouts from early-exit signals in parallel with the target model's suffix and explicitly maps computation across heterogeneous accelerators (GPU and NPU) to exploit cross-device parallelism. The draft speculates forward continuations for the target to verify, while the target simultaneously speculates correction paths for the draft, converting speculation into two complementary execution pipelines. To further cut draft latency without weakening acceptance semantics, we add speculative streaming so the draft emits multiple tokens per step. This dual strategy of parallel heterogeneous execution plus multi-token speculative streaming pushes speculative decoding toward its ideal regime of high acceptance with low overhead. On SpecBench with server-scale models from 14B to 66B parameters, Mirror-SD delivers consistent end-to-end gains, achieving 2.8x-5.8x wall-time speedups across diverse tasks and a 30% average relative improvement over the strongest baseline, EAGLE3.
