Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeUnderstanding and Improving Transformer From a Multi-Particle Dynamic System Point of View
The Transformer architecture is widely used in natural language processing. Despite its success, the design principle of the Transformer remains elusive. In this paper, we provide a novel perspective towards understanding the architecture: we show that the Transformer can be mathematically interpreted as a numerical Ordinary Differential Equation (ODE) solver for a convection-diffusion equation in a multi-particle dynamic system. In particular, how words in a sentence are abstracted into contexts by passing through the layers of the Transformer can be interpreted as approximating multiple particles' movement in the space using the Lie-Trotter splitting scheme and the Euler's method. Given this ODE's perspective, the rich literature of numerical analysis can be brought to guide us in designing effective structures beyond the Transformer. As an example, we propose to replace the Lie-Trotter splitting scheme by the Strang-Marchuk splitting scheme, a scheme that is more commonly used and with much lower local truncation errors. The Strang-Marchuk splitting scheme suggests that the self-attention and position-wise feed-forward network (FFN) sub-layers should not be treated equally. Instead, in each layer, two position-wise FFN sub-layers should be used, and the self-attention sub-layer is placed in between. This leads to a brand new architecture. Such an FFN-attention-FFN layer is "Macaron-like", and thus we call the network with this new architecture the Macaron Net. Through extensive experiments, we show that the Macaron Net is superior to the Transformer on both supervised and unsupervised learning tasks. The reproducible codes and pretrained models can be found at https://github.com/zhuohan123/macaron-net
Collaborative Score Distillation for Consistent Visual Synthesis
Generative priors of large-scale text-to-image diffusion models enable a wide range of new generation and editing applications on diverse visual modalities. However, when adapting these priors to complex visual modalities, often represented as multiple images (e.g., video), achieving consistency across a set of images is challenging. In this paper, we address this challenge with a novel method, Collaborative Score Distillation (CSD). CSD is based on the Stein Variational Gradient Descent (SVGD). Specifically, we propose to consider multiple samples as "particles" in the SVGD update and combine their score functions to distill generative priors over a set of images synchronously. Thus, CSD facilitates seamless integration of information across 2D images, leading to a consistent visual synthesis across multiple samples. We show the effectiveness of CSD in a variety of tasks, encompassing the visual editing of panorama images, videos, and 3D scenes. Our results underline the competency of CSD as a versatile method for enhancing inter-sample consistency, thereby broadening the applicability of text-to-image diffusion models.
EuLagNet: Eulerian Fluid Prediction with Lagrangian Dynamics
Accurately predicting the future fluid is important to extensive areas, such as meteorology, oceanology and aerodynamics. However, since the fluid is usually observed from an Eulerian perspective, its active and intricate dynamics are seriously obscured and confounded in static grids, bringing horny challenges to the prediction. This paper introduces a new Lagrangian-guided paradigm to tackle the tanglesome fluid dynamics. Instead of solely predicting the future based on Eulerian observations, we propose the Eulerian-Lagrangian Dual Recurrent Network (EuLagNet), which captures multiscale fluid dynamics by tracking movements of adaptively sampled key particles on multiple scales and integrating dynamics information over time. Concretely, a EuLag Block is presented to communicate the learned Eulerian and Lagrangian features at each moment and scale, where the motion of tracked particles is inferred from Eulerian observations and their accumulated dynamics information is incorporated into Eulerian fields to guide future prediction. Tracking key particles not only provides a clear and interpretable clue for fluid dynamics but also makes our model free from modeling complex correlations among massive grids for better efficiency. Experimentally, EuLagNet excels in three challenging fluid prediction tasks, covering both 2D and 3D, simulated and real-world fluids.
Training neural networks without backpropagation using particles
Neural networks are a group of neurons stacked together in multiple layers to mimic the biological neurons in a human brain. Neural networks have been trained using the backpropagation algorithm based on gradient descent strategy for several decades. Several variants have been developed to improve the backpropagation algorithm. The loss function for the neural network is optimized through backpropagation, but several local minima exist in the manifold of the constructed neural network. We obtain several solutions matching the minima. The gradient descent strategy cannot avoid the problem of local minima and gets stuck in the minima due to the initialization. Particle swarm optimization (PSO) was proposed to select the best local minima among the search space of the loss function. The search space is limited to the instantiated particles in the PSO algorithm, and sometimes it cannot select the best solution. In the proposed approach, we overcome the problem of gradient descent and the limitation of the PSO algorithm by training individual neurons separately, capable of collectively solving the problem as a group of neurons forming a network. Our code and data are available at https://github.com/dipkmr/train-nn-wobp/
A General Framework for Inference-time Scaling and Steering of Diffusion Models
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .
Distracting Downpour: Adversarial Weather Attacks for Motion Estimation
Current adversarial attacks on motion estimation, or optical flow, optimize small per-pixel perturbations, which are unlikely to appear in the real world. In contrast, adverse weather conditions constitute a much more realistic threat scenario. Hence, in this work, we present a novel attack on motion estimation that exploits adversarially optimized particles to mimic weather effects like snowflakes, rain streaks or fog clouds. At the core of our attack framework is a differentiable particle rendering system that integrates particles (i) consistently over multiple time steps (ii) into the 3D space (iii) with a photo-realistic appearance. Through optimization, we obtain adversarial weather that significantly impacts the motion estimation. Surprisingly, methods that previously showed good robustness towards small per-pixel perturbations are particularly vulnerable to adversarial weather. At the same time, augmenting the training with non-optimized weather increases a method's robustness towards weather effects and improves generalizability at almost no additional cost. Our code will be available at https://github.com/cv-stuttgart/DistractingDownpour.
Quantum Switch for the Quantum Internet: Noiseless Communications through Noisy Channels
Counter-intuitively, quantum mechanics enables quantum particles to propagate simultaneously among multiple space-time trajectories. Hence, a quantum information carrier can travel through different communication channels in a quantum superposition of different orders, so that the relative time-order of the communication channels becomes indefinite. This is realized by utilizing a quantum device known as quantum switch. In this paper, we investigate, from a communication-engineering perspective, the use of the quantum switch within the quantum teleportation process, one of the key functionalities of the Quantum Internet. Specifically, a theoretical analysis is conducted to quantify the performance gain that can be achieved by employing a quantum switch for the entanglement distribution process within the quantum teleportation with respect to the case of absence of quantum switch. This analysis reveals that, by utilizing the quantum switch, the quantum teleportation is heralded as a noiseless communication process with a probability that, remarkably and counter-intuitively, increases with the noise levels affecting the communication channels considered in the indefinite-order time combination.
Cybloids - Creation and Control of Cybernetic Colloids
Colloids play an important role in fundamental science as well as in nature and technology. They have had a strong impact on the fundamental understanding of statistical physics. For example, colloids have helped to obtain a better understanding of collective phenomena, ranging from phase transitions and glass formation to the swarming of active Brownian particles. Yet the success of colloidal systems hinges crucially on the specific physical and chemical properties of the colloidal particles, i.e. particles with the appropriate characteristics must be available. Here we present an idea to create particles with freely selectable properties. The properties might depend, for example, on the presence of other particles (hence mimicking specific pair or many-body interactions), previous configurations (hence introducing some memory or feedback), or a directional bias (hence changing the dynamics). Without directly interfering with the sample, each particle is fully controlled and can receive external commands through a predefined algorithm that can take into account any input parameters. This is realized with computer-controlled colloids, which we term cybloids - short for cybernetic colloids. The potential of cybloids is illustrated by programming a time-delayed external potential acting on a single colloid and interaction potentials for many colloids. Both an attractive harmonic potential and an annular potential are implemented. For a single particle, this programming can cause subdiffusive behavior or lend activity. For many colloids, the programmed interaction potential allows to select a crystal structure at wish. Beyond these examples, we discuss further opportunities which cybloids offer.
Two-photon interference: the Hong-Ou-Mandel effect
Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.
Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC
Results are presented from searches for the standard model Higgs boson in proton-proton collisions at sqrt(s) = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 inverse femtobarns at 7 TeV and 5.3 inverse femtobarns at 8 TeV. The search is performed in five decay modes: gamma gamma, ZZ, WW, tau tau, and b b-bar. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, gamma gamma and ZZ; a fit to these signals gives a mass of 125.3 +/- 0.4 (stat.) +/- 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one.
Observation of four-top-quark production in the multilepton final state with the ATLAS detector
This paper presents the observation of four-top-quark (tttt) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 fb^{-1} at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured tttt signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The tttt production cross section is measured to be 22.5^{+6.6}_{-5.5} fb, consistent with the SM prediction of 12.0 pm 2.4 fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect tttt production.
PILArNet: Public Dataset for Particle Imaging Liquid Argon Detectors in High Energy Physics
Rapid advancement of machine learning solutions has often coincided with the production of a test public data set. Such datasets reduce the largest barrier to entry for tackling a problem -- procuring data -- while also providing a benchmark to compare different solutions. Furthermore, large datasets have been used to train high-performing feature finders which are then used in new approaches to problems beyond that initially defined. In order to encourage the rapid development in the analysis of data collected using liquid argon time projection chambers, a class of particle detectors used in high energy physics experiments, we have produced the PILArNet, first 2D and 3D open dataset to be used for a couple of key analysis tasks. The initial dataset presented in this paper contains 300,000 samples simulated and recorded in three different volume sizes. The dataset is stored efficiently in sparse 2D and 3D matrix format with auxiliary information about simulated particles in the volume, and is made available for public research use. In this paper we describe the dataset, tasks, and the method used to procure the sample.
Gravity Wave Phase Shift in a Cold Quark Star with a Nonconvex QCD BZT Shock Wave Van Der Waals Equation of State
We investigate BZT shocks and the QCD phase transition in the dense core of a cold quark star in beta equilibrium subject to the multicomponent van der Waals (MvdW) equation of state (EoS) as a model of internal structure. When this system is expressed in terms of multiple components, it can be used to explore the impact of a phase transition from a hadronic state to a quark plasma state with a complex clustering structure. The clustering can take the form of colored diquarks or triquarks and bound colorless meson, baryon, or hyperon states at the phase transition boundary. The resulting multicomponent EoS system is nonconvex, which can give rise to Bethe-Zel'dovich-Thompson (BZT) phase changing shock waves. Using the BZT shock wave condition we find constraints on the quark density and examine how this changes the tidal deformability of the compact core. These results are then combined with the TOV equations to find the resulting mass and radius relationship. These state are compared to recent astrophysical high-mass neutron star systems, which may provide evidence for a core that has undergone a quark gluon phase transition such as PSR 0943+10 or GW 190814.
Prompt emission of relativistic protons up to GeV energies from M6.4-class solar flare on July 17, 2023
We show evidence of particle acceleration at GEV energies associated directly with protons from the prompt emission of a long-duration M6-class solar flare on July 17, 2023, rather than from protons acceleration by shocks from its associated Coronal Mass Ejection (CME), which erupted with a speed of 1342 km/s. Solar Energetic Particles (SEP) accelerated by the blast have reached Earth, up to an almost S3 (strong) category of a radiation storm on the NOAA scale. Also, we show a temporal correlation between the fast rising of GOES-16 proton and muon excess at ground level in the count rate of the New-Tupi muon detector at the central SAA region. A Monte Carlo spectral analysis based on muon excess at New-Tupi is consistent with the acceleration of electrons and protons (ions) up to relativistic energies (GeV energy range) in the impulsive phase of the flare. In addition, we present another two marginal particle excesses (with low confidence) at ground-level detectors in correlation with the solar flare prompt emission.
Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning
The rapidly-developing intersection of machine learning (ML) with high-energy physics (HEP) presents both opportunities and challenges to our community. Far beyond applications of standard ML tools to HEP problems, genuinely new and potentially revolutionary approaches are being developed by a generation of talent literate in both fields. There is an urgent need to support the needs of the interdisciplinary community driving these developments, including funding dedicated research at the intersection of the two fields, investing in high-performance computing at universities and tailoring allocation policies to support this work, developing of community tools and standards, and providing education and career paths for young researchers attracted by the intellectual vitality of machine learning for high energy physics.
Building an AdS/CFT superconductor
We show that a simple gravitational theory can provide a holographically dual description of a superconductor. There is a critical temperature, below which a charged condensate forms via a second order phase transition and the (DC) conductivity becomes infinite. The frequency dependent conductivity develops a gap determined by the condensate. We find evidence that the condensate consists of pairs of quasiparticles.
Enhancing the significance of astrophysical events with multimessenger coincidences
Coincident multimessenger observations of cosmic sources can offer numerous benefits, especially when used in the context of synergistic astrophysics. One significant advantage is enhancing the detection significance of separate detectors by correlating their data and assuming joint emission. We have formulated an approach for updating the Bayesian posterior probability of an astrophysical origin, namely p_{rm astro}, relying on multimessenger coincidences assuming an emission model. The description is applicable to any combination of messengers. We demonstrated the formalism for the gravitational waves and high-energy neutrinos case. Applying our method to the public data of candidate coincident high-energy neutrinos with subthreshold gravitational-wave triggers, we found that in the case of highly energetic neutrino coincidences, p_{rm astro} can increase from approximately sim 0.1 to sim 0.9. The amount of improvement depends on the assumed joint emission model. If models are trusted, the marked improvement makes subthreshold detections much more confident. Moreover, the model dependency can also be used to test the consistency of different models. This work is a crucial step toward the goal of uniting all detectors on equal footing into a statistically integrated, Earth-sized observatory for comprehensive multimessenger astrophysics.
Lake- and Surface-Based Detectors for Forward Neutrino Physics
We propose two medium-baseline, kiloton-scale neutrino experiments to study neutrinos from LHC proton-proton collisions: SINE, a surface-based scintillator panel detector observing muon neutrinos from the CMS interaction point, and UNDINE, a water Cherenkov detector submerged in lake Geneva observing all-flavor neutrinos from LHCb. Using a Monte Carlo simulation, we estimate millions of neutrino interactions during the high-luminosity LHC era. We show that these datasets can constrain neutrino cross sections, charm production in pp collisions, and strangeness enhancement as a solution to the cosmic-ray muon puzzle. SINE and UNDINE thus offer a cost-effective medium-baseline complement to the proposed short-baseline forward physics facility.
Evidence of Nonlinear Signatures in Solar Wind Proton Density at the L1 Lagrange point
The solar wind is a medium characterized by strong turbulence and significant field fluctuations on various scales. Recent observations have revealed that magnetic turbulence exhibits a self-similar behavior. Similarly, high-resolution measurements of the proton density have shown comparable characteristics, prompting several studies into the multifractal properties of these density fluctuations. In this work, we show that low-resolution observations of the solar wind proton density over time, recorded by various spacecraft at Lagrange point L1, also exhibit non-linear and multifractal structures. The novelty of our study lies in the fact that this is the first systematic analysis of solar wind proton density using low-resolution (hourly) data collected by multiple spacecraft at the L1 Lagrange point over a span of 17 years. Furthermore, we interpret our results within the framework of non-extensive statistical mechanics, which appears to be consistent with the observed nonlinear behavior. Based on the data, we successfully validate the q-triplet predicted by non-extensive statistical theory. To the best of our knowledge, this represents the most rigorous and systematic validation to date of the q-triplet in the solar wind.
The Tracking Machine Learning challenge : Throughput phase
This paper reports on the second "Throughput" phase of the Tracking Machine Learning (TrackML) challenge on the Codalab platform. As in the first "Accuracy" phase, the participants had to solve a difficult experimental problem linked to tracking accurately the trajectory of particles as e.g. created at the Large Hadron Collider (LHC): given O(10^5) points, the participants had to connect them into O(10^4) individual groups that represent the particle trajectories which are approximated helical. While in the first phase only the accuracy mattered, the goal of this second phase was a compromise between the accuracy and the speed of inference. Both were measured on the Codalab platform where the participants had to upload their software. The best three participants had solutions with good accuracy and speed an order of magnitude faster than the state of the art when the challenge was designed. Although the core algorithms were less diverse than in the first phase, a diversity of techniques have been used and are described in this paper. The performance of the algorithms are analysed in depth and lessons derived.
Dark Matter Catalyzed Baryon Destruction
WIMP-type dark matter may have additional interactions that break baryon number, leading to induced nucleon decays which are subject to direct experimental constraints from proton decay experiments. In this work, we analyze the possibility of continuous baryon destruction, deriving strong limits from the dark matter accumulating inside old neutron stars, as such a process leads to excess heat generation. We construct the simplest particle dark matter model that breaks baryon and lepton numbers separately but conserves B-L. Virtual exchange by DM particles in this model results in di-nucleon decay via nnto nbarnu and npto ne^+ processes.
Deriving pulsar pair-production multiplicities from pulsar wind nebulae using H.E.S.S. and LHAASO observations
Pulsar Wind Nebulae (PWNe) dominate the galactic gamma-ray sky at very high energies, and are major contributors to the leptonic cosmic ray flux. However, whether or not pulsars also accelerate ions to comparable energies is not yet experimentally confirmed. We aim to constrain the birth period and pair-production multiplicity for a set of pulsars. In doing so, we aim to constrain the proportion of ions in the pulsar magnetosphere and hence the proportion of ions that could enter the pulsar wind. We estimate possible ranges of the value of the average pair production multiplicity for a sample of 26 pulsars in the Australia Telescope National Facility (ATNF) catalogue, which have also been observed by the High Energy Stereoscopic System (H.E.S.S.) telescopes. We then derive lower limits for the pulsar birth periods and average pair production multiplicities for a subset of these sources where the extent of the pulsar wind nebula and surrounding supernova shell have been measured in the radio. We also derive curves for the average pair production multiplicities as a function of birth period for sources recently observed by the Large High Altitude Air Shower Observatory (LHAASO). We show that there is a potential for hadrons entering the pulsar wind for most of the H.E.S.S. and LHAASO sources we consider, dependent upon the efficiency of luminosity conversion into particles. We also present estimates of the pulsar birth period for six of these sources, which all fall into the range of simeq10-50 ms.
Baryon-number-violating nucleon decays in SMEFT extended with a light scalar
New light particles have received considerable attention in recent years. Baryon-number-violating (BNV) nucleon decays involving such light particles are able to provide stringent constraints. They exhibit distinctive experimental signatures that merit thorough investigation. We systematically investigate BNV nucleon decay with a light scalar in an effective field theory framework. Within this framework, we set stringent bounds on BNV operators using available experimental data and predict the occurrence of several BNV three-body nucleon decays. We further study contributions to dinucleon to dilepton transitions in a nucleus mediated by the scalar, which complements single nucleon decay. Finally, we provide three ultraviolet-complete models that can generate different subsets of BNV operators in leading order. Our theoretical framework will facilitate experimental searches for those exotic nucleon decays.
Beyond monoculture: Polydisperse moment methods for sub-stellar atmosphere cloud microphysics II. A three-moment gamma distribution formulation for GCM applications
Context. Understanding how the shape of cloud particle size distributions affects the atmospheric properties of sub-stellar atmospheres is a key area to explore, particularly in the JWST era of broad wavelength coverage, where observations are sensitive to particle size distributions. It is therefore important to elucidate how underlying cloud microphysical processes influence the size distribution, in order to better understand how clouds affect observed atmospheric properties. Aims. In this follow-up paper, we aim to extend our sub-stellar atmosphere microphysical cloud formation framework from Paper I to include effects of assuming a polydisperse gamma particle size distribution, requiring a three-moment solution set of equations. Methods. We develop a three-moment framework for sub-stellar mineral cloud particle microphysical nucleation, condensation, evaporation and collisional growth assuming a gamma distribution. As in the previous paper, we demonstrate the effects of polydispersity using a simple one-dimensional Y-dwarf KCl cloud formation scenario, and compare the results with the monodisperse case. Results. Our three-moment scheme provides a generalised framework applicable to any size distribution with a defined moment generation expression. In our test case, we show that the gamma distribution evolves with altitude, initially broad at the cloud base and narrowing at lower pressures. We find that differences between the gamma and monodisperse cloud structures can be significant, depending on the surface gravity of the atmosphere. Conclusions. We present a self-consistent framework for including the effects of polydispersity for sub-stellar microphysical cloud studies using the moment method.
Physically Embodied Gaussian Splatting: A Realtime Correctable World Model for Robotics
For robots to robustly understand and interact with the physical world, it is highly beneficial to have a comprehensive representation - modelling geometry, physics, and visual observations - that informs perception, planning, and control algorithms. We propose a novel dual Gaussian-Particle representation that models the physical world while (i) enabling predictive simulation of future states and (ii) allowing online correction from visual observations in a dynamic world. Our representation comprises particles that capture the geometrical aspect of objects in the world and can be used alongside a particle-based physics system to anticipate physically plausible future states. Attached to these particles are 3D Gaussians that render images from any viewpoint through a splatting process thus capturing the visual state. By comparing the predicted and observed images, our approach generates visual forces that correct the particle positions while respecting known physical constraints. By integrating predictive physical modelling with continuous visually-derived corrections, our unified representation reasons about the present and future while synchronizing with reality. Our system runs in realtime at 30Hz using only 3 cameras. We validate our approach on 2D and 3D tracking tasks as well as photometric reconstruction quality. Videos are found at https://embodied-gaussians.github.io/.
Extension of the J-PARC Hadron Experimental Facility: Third White Paper
The J-PARC Hadron Experimental Facility was constructed with an aim to explore the origin and evolution of matter in the universe through the experiments with intense particle beams. In the past decade, many results on particle and nuclear physics have been obtained at the present facility. To expand the physics programs to unexplored regions never achieved, the extension project of the Hadron Experimental Facility has been extensively discussed. This white paper presents the physics of the extension of the Hadron Experimental Facility for resolving the issues in the fields of the strangeness nuclear physics, hadron physics, and flavor physics.
Masked Particle Modeling on Sets: Towards Self-Supervised High Energy Physics Foundation Models
We propose masked particle modeling (MPM) as a self-supervised method for learning generic, transferable, and reusable representations on unordered sets of inputs for use in high energy physics (HEP) scientific data. This work provides a novel scheme to perform masked modeling based pre-training to learn permutation invariant functions on sets. More generally, this work provides a step towards building large foundation models for HEP that can be generically pre-trained with self-supervised learning and later fine-tuned for a variety of down-stream tasks. In MPM, particles in a set are masked and the training objective is to recover their identity, as defined by a discretized token representation of a pre-trained vector quantized variational autoencoder. We study the efficacy of the method in samples of high energy jets at collider physics experiments, including studies on the impact of discretization, permutation invariance, and ordering. We also study the fine-tuning capability of the model, showing that it can be adapted to tasks such as supervised and weakly supervised jet classification, and that the model can transfer efficiently with small fine-tuning data sets to new classes and new data domains.
On the Higgs spectra of the 3-3-1 model with the sextet of scalars engendering the type II seesaw mechanism
In the 3-3-1 model with right-handed neutrinos, three triplets of scalars engender the correct sequence of symmetry breaking, SU(3)_C times SU(3)_L times U(1)_X rightarrow SU(3)_C times SU(2)_L times U(1)_Y rightarrow SU(3)_C times U(1)_{EM}, generating mass for all fermions, except neutrinos. Tiny neutrino masses may be achieved by adding one sextet of scalars to the original scalar content. As consequence, it emerges a very complex scalar sector, involving terms that violate lepton number explicitly, too. The main obstacle to the development of the phenomenology of such scenario is the knowledge of its spectrum of scalars since, now, there are 15 massive scalar particles on it. The proposal of this work is to do an exhaustive analysis of such scalar sector with lepton number being explicitly violated at low, electroweak and high energy scales by means of trilinear terms in the potential. The first case can be addressed analytically and, as a nice result, we have observed that the scalar content of such case is split into two categories: One belonging to the 331 energy scale and the other belonging to the EWSB energy scale, with the last recovering the well known THDM+triplet. For the other cases, the scalar sector can be addressed only numerically. Hence, we proposed a very general approach for the numerical study of the potential, avoiding simplifications that can make us reach conclusions without foundation. We show that, in the case of lepton number being explicitly violated at electroweak scale, it is possible to recover the same physics of the THDM+triplet, as the previous case. Among all the possibilities, we call the attention to one special case which generates the 3HDM+triplet scenario. For the last case, when lepton number is violated at high energy scale, the sextet become very massive and decouples from the original scalar content of the 3-3-1 model.
Probing solar modulation of AMS-02 time-dependent D, ^3He and ^4He fluxes with modified force field approximation
The AMS-02 experiment recently published time-dependent fluxes of deuterons (D) from May 2011 to April 2021, divided into 33 periods of four Bartels rotations each. These temporal structures are associated with solar modulation. In this study, three modified force-field approximation are employed to examine the long-term behavior of cosmic-ray (CR) isotopes such as D, ^3He, and ^4He, as well as the ratios D/^3He and ^3He/^4He. The solar modulation potential is rigidity-dependent for these modified force-field approximation models. Due to the unknown local interstellar spectrum (LIS) for these isotopes, we utilize the Non-LIS method for solar modulation. By fitting to the AMS-02 time-dependent fluxes, we derive the solar modulation parameters. Our findings prove the assumption in literature that all isotopes can be fitted using the same solar modulation parameters and it shown that the modified FFA models are validated parametrization for solar modulation. Based on these, we forecast the daily fluxes of D, ^3He and ^4He from 2011 to 2020.
Quarks to Cosmos: Particles and Plasma in Cosmological evolution
We describe in the context of the particle physics (PP) standard model (SM) `PP-SM' the understanding of the primordial properties and composition of the Universe in the temperature range 130GeV>T>20keV. The Universe evolution is described using FLRW cosmology. We present a global view on particle content across time and describe the different evolution eras using deceleration parameter q. We follow the arrow of time in the expanding and cooling Universe: After the PP-SM heavies (t, h, W, Z) diminish in abundance below Tsimeq 50GeV, the PP-SM plasma in the Universe is governed by the strongly interacting Quark-Gluon content. Once the temperature drops below Tsimeq 150MeV, quarks and gluons hadronize into strongly interacting matter particles. Rapid disappearance of baryonic antimatter completes at T_B=38.2MeV. We study the ensuing disappearance of strangeness and mesons in general. We show that the different eras defined by particle populations are barely separated from each other with abundance of muons fading out just prior to T=O(2.5)MeV, the era of emergence of the free-streaming neutrinos. We discuss the two relevant fundamental constants controlling the decoupling of neutrinos. We subsequently follow the primordial Universe as it passes through the hot dense electron-positron plasma epoch. The high density of positron antimatter disappears near T=20.3keV: Nuclear reactions occur in the presence of a highly mobile and relatively strongly interacting electron-positron plasma phase. We apply plasma theory methods to describe the strong screening effects between heavy dust particle (nucleons). We analyze the paramagnetic characteristics of the electron-positron plasma when exposed to an external primordial magnetic field.
Surprising Variation of Gamma Rays from the Sun over the Solar Cycle Revealed with Fermi-LAT
The steady-state gamma-ray emission from the Sun is thought to consist of two emission components due to interactions with Galactic cosmic rays: (1) a hadronic component covering the solar disk, and (2) a leptonic component peaking at the solar edge and extending into the heliosphere. The flux of these components is expected to vary with the 11-year solar cycle, being highest during solar minimum and lowest during solar maximum, because it is correlated with the cosmic-ray flux. No study has yet analyzed the flux variation of the two components separately over solar cycles. In this work, we measure the temporal variations of the flux of each component over 15 years of Fermi Large Area Telescope observations and compare them with the sunspot number and Galactic cosmic-ray flux from AMS-02 near the Earth. We find that the flux variation of the disk anticorrelates with solar activity and correlates with cosmic-ray protons, confirming its emission mechanism. The flux variation of the extended component anticorrelates with solar activity only until mid 2012. After that, we no longer observe any correlation or anticorrelation, even with the CR electron flux. This most likely suggests that cosmic-ray transport and modulation in the inner heliosphere are unexpectedly complex and different for electrons and protons or, alternatively, the presence of an additional, unknown component of gamma rays or cosmic rays. These findings impact space weather research and emphasize the need for close monitoring of Cycle 25 and the ongoing polarity reversal.
mini-TimeCube as a Neutron Scatter Camera
We present Monte Carlo (MC) simulation results from a study of a compact plastic-scintillator detector suitable for imaging fast neutrons in the 1 -- 10 MeV energy range: the miniTimeCube (mTC). Originally designed for antineutrino detection, the mTC consists of 24 MultiChannel Plate (MCP) photodetectors surrounding a 13 cm cube of boron-doped plastic scintillator. Our simulation results show that waveform digitization of 1536 optically sensitive channels surrounding the scintillator should allow for spatiotemporal determination of individual neutron-proton scatters in the detector volume to thicksim100 picoseconds and thicksim5 mm. A Bayesian estimation framework is presented for multiple-scatter reconstruction, and is used to estimate the incoming direction and energy of simulated individual neutrons. Finally, we show how populations of reconstructed neutrons can be used to estimate the direction and energy spectrum of nearby simulated neutron sources.
The Quest for the Origins of Ultra-High-Energy Cosmic Rays
Significant progress has been made over the past decades towards unveiling the sources of the most energetic particles in nature, the ultra-high-energy cosmic rays (UHECRs). Despite these advancements, the exact astrophysical sites capable of accelerating these particles to such extreme energies remain largely unknown. Moreover, the mechanisms by which they achieve these extreme energies are poorly understood. Here, I provide a concise overview of the theory underlying the acceleration and propagation of UHECRs. I then critically discuss three recent results that could help unveil their origins: the reported excess around Centaurus A, the correlation with starburst galaxies, and the efforts to jointly model the energy spectrum, composition, and arrival directions. Finally, I discuss strategies for advancing this field, emphasising the need for refined theoretical models, the challenges in building them, and the potential for new observatories to shed light on the mysteries of UHECRs.
Dynamical evolution of massless particles in star clusters with NBODY6++GPU-MASSLESS: I. Free-floating MLPs
Context. Low-mass bodies, such as comets, asteroids, planetesimals, and free-floating planets, are continuously injected into the intra-cluster environment after expulsion from their host planetary systems. These can be modeled as massless particles (MLPs, hereafter). The dynamics of large populations of MLPs, however, has yet received little attention in literature. Aims. We investigate the dynamical evolution of MLP populations in star clusters, and characterize their kinematics and ejection rates. Methods. We present NBODY6++GPU-MASSLESS, a modified version of the N-body simulation code NBODY6++GPU, that allows fast integration of star clusters that contain large numbers of massless particles (MLPs). NBODY6++GPU-MASSLESS contains routines specifically directed at the dynamical evolution of low-mass bodies, such as planets. Results. Unlike stars, MLPs do not participate in the mass segregation process. Instead, MLPs mostly follow the gravitational potential of the star cluster, which gradually decreases over time due to stellar ejections and stellar evolution. The dynamical evolution of MLPs is primarily affected by the evolution of the core of the star cluster. This is most apparent in the outer regions for clusters with higher initial densities. High escape rates of MLPs are observed before the core-collapse, after which escape rates remain stable. Denser star clusters undergo a more intense core collapse, but this does not impact the dynamical evolution of MLPs. The speeds of escaping stars are similar to those of escaping MLPs, when disregarding the high-velocity ejections of neutron stars during the first 50 Myr.
Is Tokenization Needed for Masked Particle Modelling?
In this work, we significantly enhance masked particle modeling (MPM), a self-supervised learning scheme for constructing highly expressive representations of unordered sets relevant to developing foundation models for high-energy physics. In MPM, a model is trained to recover the missing elements of a set, a learning objective that requires no labels and can be applied directly to experimental data. We achieve significant performance improvements over previous work on MPM by addressing inefficiencies in the implementation and incorporating a more powerful decoder. We compare several pre-training tasks and introduce new reconstruction methods that utilize conditional generative models without data tokenization or discretization. We show that these new methods outperform the tokenized learning objective from the original MPM on a new test bed for foundation models for jets, which includes using a wide variety of downstream tasks relevant to jet physics, such as classification, secondary vertex finding, and track identification.
Muon: Training and Trade-offs with Latent Attention and MoE
We present a comprehensive theoretical and empirical study of the Muon optimizer for training transformers only with a small to medium decoder (30M - 200M parameters), with an emphasis on its mathematical foundations, convergence properties and synergistic interactions with modern architectural optimizations. Building on recent work showing Muon's scalability, we provide rigorous theoretical analysis including: (i)showing the convergence rate under standard assumptions, (ii) spectral regularization properties that prevent gradient explosion, (iii) connection to natural gradient descent on the Stiefel manifold, and (iv) equivalence to steepest gradient descent under the spectral norm. Crucially, we demonstrate that Muon expands the Pareto frontier in the compute-time trade-off by maintaining superior data efficiency at large batch sizes, a key finding of~essentialai2025muon that we validate across our model scales. Empirically, Muon reaches the target loss with 48-52\% of the training calculated by AdamW while maintaining or improving the final perplexity, consistent with larger-scale results. When combined with Multi-Head Latent Attention (MLA) and Mixture-of-Experts (MoE), we observe multiplicative efficiency gains: MLA+MoE+Muon achieves 68\% memory reduction and 3.2times inference speedup, while improving perplexity by 8-12\%. We provide detailed procedures on 15 architectural and optimizer components, stability analyzes across 100+ training runs, and practical implementation guidelines including Newton-Schulz coefficients (3.4445, -4.7750, 2.0315) optimized by~su2024muonblog. Our theoretical analysis and comprehensive experiments establish Muon as a principled, robust alternative to AdamW that particularly excels when combined with modern efficiency techniques and large-batch training regimes.
Observation of nuclear modification of energy-energy correlators inside jets in heavy ion collisions
Energy-energy correlators are constructed by averaging the number of charged particle pairs within jets, weighted by the product of their transverse momenta, as a function of the angular separation of the particles within a pair. They are sensitive to a multitude of perturbative and nonperturbative quantum chromodynamics phenomena in high-energy particle collisions. Using lead-lead data recorded with the CMS detector, energy-energy correlators inside high transverse momentum jets are measured in heavy ion collisions for the first time. The data are obtained at a nucleon-nucleon center-of-mass energy of 5.02 TeV and correspond to an integrated luminosity of 1.70 nb^{-1}. A similar analysis is done for proton-proton collisions at the same center-of-mass energy to establish a reference. The ratio of lead-lead to proton-proton energy-energy correlators reveals significant jet substructure modifications in the quark-gluon plasma. The results are compared to different models that incorporate either color coherence or medium response effects, where the two effects predict similar substructure modifications.
Demonstrating Agreement between Radio and Fluorescence Measurements of the Depth of Maximum of Extensive Air Showers at the Pierre Auger Observatory
We show, for the first time, radio measurements of the depth of shower maximum (X_max) of air showers induced by cosmic rays that are compared to measurements of the established fluorescence method at the same location. Using measurements at the Pierre Auger Observatory we show full compatibility between our radio and the previously published fluorescence data set, and between a subset of air showers observed simultaneously with both radio and fluorescence techniques, a measurement setup unique to the Pierre Auger Observatory. Furthermore, we show radio X_max resolution as a function of energy and demonstrate the ability to make competitive high-resolution X_max measurements with even a sparse radio array. With this, we show that the radio technique is capable of cosmic-ray mass composition studies, both at Auger and at other experiments.
Calculation of prompt diphoton production cross sections at Tevatron and LHC energies
A fully differential calculation in perturbative quantum chromodynamics is presented for the production of massive photon pairs at hadron colliders. All next-to-leading order perturbative contributions from quark-antiquark, gluon-(anti)quark, and gluon-gluon subprocesses are included, as well as all-orders resummation of initial-state gluon radiation valid at next-to-next-to-leading logarithmic accuracy. The region of phase space is specified in which the calculation is most reliable. Good agreement is demonstrated with data from the Fermilab Tevatron, and predictions are made for more detailed tests with CDF and DO data. Predictions are shown for distributions of diphoton pairs produced at the energy of the Large Hadron Collider (LHC). Distributions of the diphoton pairs from the decay of a Higgs boson are contrasted with those produced from QCD processes at the LHC, showing that enhanced sensitivity to the signal can be obtained with judicious selection of events.
Diquark Correlations in Hadron Physics: Origin, Impact and Evidence
The last decade has seen a marked shift in how the internal structure of hadrons is understood. Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularised QCD have provided strong indications that soft quark+quark (diquark) correlations play a crucial role in hadron physics. For example, theory indicates that the appearance of such correlations is a necessary consequence of dynamical chiral symmetry breaking, viz. a corollary of emergent hadronic mass that is responsible for almost all visible mass in the universe; experiment has uncovered signals for such correlations in the flavour-separation of the proton's electromagnetic form factors; and phenomenology suggests that diquark correlations might be critical to the formation of exotic tetra- and penta-quark hadrons. A broad spectrum of such information is evaluated herein, with a view to consolidating the facts and therefrom moving toward a coherent, unified picture of hadron structure and the role that diquark correlations might play.
Dynamics of the Beta Pictoris planetary system and possibility of an additional planet
The Beta Pictoris system is characterized by a dusty debris disk, in addition to the presence of two already known planets. This makes it a particularly interesting case for studying the formation and evolution of planetary systems at a stage where giant planets have already formed, most of the protoplanetary gas has dissipated, and terrestrial planets could emerge. Our goal here is to explore the possibility of additional planets orbiting beyond the outermost known one, beta Pic b. More specifically, we aim to assess whether additional planets in the system could explain the discrepancy between the predicted cutoff of the disk inner cavity at sim28 au with only two planets, and the observed one at sim50 au. We perform an exhaustive dynamical modeling of the debris disk and the carving of its inner edge, by introducing one or two additional planets beyond beta Pic b, coplanar with the disk. Guided by theoretical predictions for the parameter space - mass, semi-major axis, eccentricity - allowed for additional planets, we further carry out a set of N-body simulations, using the symplectic integrator RMVS3. Our simulations indicate that an additional planet with a low eccentricity of 0.05, a mass between 0.15 and 1 M_{Jup}, and a semi-major axis between 30 and 36 au, would be consistent with the observations of an inner debris disk edge at 50 au. We have also explored the hypotheses of a higher eccentricity and the presence of two additional lower mass planets instead of one, which could also account for these observations. While we have found that one or even two additional planets could explain the observed location of the disk inner edge, these hypothetical planets remain in most cases below the current observational limits of high contrast imaging. Future observational campaigns with improved sensitivity will help lowering these limits and perhaps detect that planet.
Search for dark matter subhalos among unassociated Fermi-LAT sources in presence of dataset shift
We search for dark matter (DM) annihilating subhalos of the Milky Way halo among the Fermi Large Area Telescope (LAT) unassociated sources. We construct, for the first time, a statistical model of the unassociated sources at latitudes above 10 degrees. The latter is built as a combination of both DM annihilation subhalos as well as Galactic and extragalactic astrophysical components. The astrophysical components are constructed based on distributions of associated sources, while the distribution of DM subhalos is derived from Monte Carlo simulations. In this model we take into account the differences in the distributions of associated and unassociated sources including both covariate and prior probability shifts (both being forms of ``dataset shifts''). Previous searches of DM subhalos were based on classify-and-count strategies, while the approach adopted in this work is based on quantification learning, which allows one to determine a well-defined statistical interpretation of the contribution of a population of DM subhalos to the unassociated Fermi-LAT sources. In the bb annihilation channel and for a range of DM masses from 10 GeV to 1 TeV, we don't find a significant contribution from DM subhalos and derive a statistical 95% confidence upper limit on the DM annihilation cross section in this channel. While the derived limits are consistent with previous classify-and-count approaches, our generative statistical model opens new avenues for population studies of Fermi-LAT sources and, more generally, for searches of anomalies on top of backgrounds in presence of statistical and systematic uncertainties.
Spectrophotometry in the integrated light of multiple populations in globular clusters
There is vast evidence from observations of multiple stellar populations (MPs) in globular clusters (GCs). To explore the issue theoretically, this work considers two subsolar metallicities, two ages, and two initial abundance patterns: a first population of standard alpha-enhanced metal mixture stars and a second stellar population displaying C-N and Na-O anticorrelations chemical abundance patterns, along with an enhanced helium fraction. Analysing the predictions for these extreme compositions, we provide insights into the observability of not-resolved MPs into individual stars of GCs. We use colours and spectrophotometric indices measurable with modern facilities (e.g. Euclid, LSST, DES, JWST).
Quantifying the Rise and Fall of Complexity in Closed Systems: The Coffee Automaton
In contrast to entropy, which increases monotonically, the "complexity" or "interestingness" of closed systems seems intuitively to increase at first and then decrease as equilibrium is approached. For example, our universe lacked complex structures at the Big Bang and will also lack them after black holes evaporate and particles are dispersed. This paper makes an initial attempt to quantify this pattern. As a model system, we use a simple, two-dimensional cellular automaton that simulates the mixing of two liquids ("coffee" and "cream"). A plausible complexity measure is then the Kolmogorov complexity of a coarse-grained approximation of the automaton's state, which we dub the "apparent complexity." We study this complexity measure, and show analytically that it never becomes large when the liquid particles are non-interacting. By contrast, when the particles do interact, we give numerical evidence that the complexity reaches a maximum comparable to the "coffee cup's" horizontal dimension. We raise the problem of proving this behavior analytically.
Comments on Fermi Liquid from Holography
We investigate the signatures of Fermi liquid formation in the N=4 super Yang-Mills theory coupled to fundamental hypermultiplet at nonvanishing chemical potential for the global U(1) vector symmetry. At strong 't Hooft coupling the system can be analyzed in terms of the D7 brane dynamics in AdS_5 x S^5 background. The phases with vanishing and finite charge density are separated at zero temperature by a quantum phase transition. In case of vanishing hypermultiplet mass, Karch, Son and Starinets discovered a gapless excitation whose speed equals the speed of sound. We find that this zero sound mode persists to all values of the hypermultiplet mass, and its speed vanishes at the point of phase transition. The value of critical exponent and the ratio of the velocities of zero and first sounds are consistent with the predictions of Landau Fermi liquid theory at strong coupling.
Deep learning probability flows and entropy production rates in active matter
Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. These systems generically involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the magnitude of the steady-state probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry and the strength of nonequilibrium transport of measure. Yet, their efficient computation has remained elusive, as they depend on the system's unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework that estimates the score of this density. We show that the score, together with the microscopic equations of motion, gives direct access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles, spatial regions, and degrees of freedom. To represent the score, we introduce a novel, spatially-local transformer-based network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of interacting active particles undergoing motility-induced phase separation (MIPS). We show that a single instance of our network trained on a system of 4096 particles at one packing fraction can generalize to other regions of the phase diagram, including systems with as many as 32768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction.
A Language Model for Particle Tracking
Particle tracking is crucial for almost all physics analysis programs at the Large Hadron Collider. Deep learning models are pervasively used in particle tracking related tasks. However, the current practice is to design and train one deep learning model for one task with supervised learning techniques. The trained models work well for tasks they are trained on but show no or little generalization capabilities. We propose to unify these models with a language model. In this paper, we present a tokenized detector representation that allows us to train a BERT model for particle tracking. The trained BERT model, namely TrackingBERT, offers latent detector module embedding that can be used for other tasks. This work represents the first step towards developing a foundational model for particle detector understanding.
Vector-Based Approach to the Stoichiometric Analysis of Multicomponent Chemical Reactions: The Case of Black Powder
The study demonstrates the capabilities of a vector-based approach for calculating stoichiometric coefficients in chemical equations, using black powder as an illustrative example. A method is proposed for selecting and constraining intermediate interactions between reactants, as well as for identifying final products. It is shown that even a small number of components can lead to a large number of final and intermediate products. Through concrete calculations, a correlation is established between the number of possible chemical equations and the number of reactants. A methodology is proposed for computing all possible chemical equations within a reaction system for arbitrary component ratios, enabling the derivation of all feasible chemical reactions. Additionally, a method is developed for calculating the chemical composition for a fixed set of reactants, allowing for the evaluation of the set of products resulting from all possible chemical interactions given a specified initial composition.
Linear statistics for Coulomb gases: higher order cumulants
We consider N classical particles interacting via the Coulomb potential in spatial dimension d and in the presence of an external trap, at equilibrium at inverse temperature beta. In the large N limit, the particles are confined within a droplet of finite size. We study smooth linear statistics, i.e. the fluctuations of sums of the form {cal L}_N = sum_{i=1}^N f({bf x}_i), where {bf x}_i's are the positions of the particles and where f({bf x}_i) is a sufficiently regular function. There exists at present standard results for the first and second moments of {cal L}_N in the large N limit, as well as associated Central Limit Theorems in general dimension and for a wide class of confining potentials. Here we obtain explicit expressions for the higher order cumulants of {cal L}_N at large N, when the function f({bf x})=f(|{bf x}|) and the confining potential are both rotationnally invariant. A remarkable feature of our results is that these higher cumulants depend only on the value of f'(|{bf x}|) and its higher order derivatives evaluated exactly at the boundary of the droplet, which in this case is a d-dimensional sphere. In the particular two-dimensional case d=2 at the special value beta=2, a connection to the Ginibre ensemble allows us to derive these results in an alternative way using the tools of determinantal point processes. Finally we also obtain the large deviation form of the full probability distribution function of {cal L}_N.
Neutron capture measurements for s-process nucleosynthesis; A review about CERN n_TOF developments and contributions
This article presents a review about the main CERN n\_TOF contributions to the field of neutron-capture experiments of interest for s-process nucleosynthesis studies over the last 25 years, with special focus on the measurement of radioactive isotopes. A few recent capture experiments on stable isotopes of astrophysical interest are also discussed. Results on s-process branching nuclei are appropriate to illustrate how advances in detection systems and upgrades in the facility have enabled increasingly challenging experiments and, as a consequence, have led to a better understanding and modeling of the s-process mechanism of nucleosynthesis. New endeavors combining radioactive-ion beams from ISOLDE for the production of radioisotopically pure samples for activation experiments at the new NEAR facility at n\_TOF are briefly discussed. On the basis of these new exciting results, also current limitations of state-of-the-art TOF and activation techniques will be depicted, thereby showing the pressing need for further upgrades and enhancements on both facilities and detection systems. A brief account of the potential technique based on inverse kinematics for direct neutron-capture measurements is also presented.
On a Seldom Oversight in Fermi's Calculations: Seventy Years Later
We discuss an unfortunate mistake, for a Dirac free particle, in the last Fermi lecture notes on quantum mechanics, in a course given at the University of Chicago in winter and spring of 1954. As is demonstrated, the correct result can be obtained by a simple matrix multiplication. An attempt to collect a relevant bibliography is made.
Point cloud-based diffusion models for the Electron-Ion Collider
At high-energy collider experiments, generative models can be used for a wide range of tasks, including fast detector simulations, unfolding, searches of physics beyond the Standard Model, and inference tasks. In particular, it has been demonstrated that score-based diffusion models can generate high-fidelity and accurate samples of jets or collider events. This work expands on previous generative models in three distinct ways. First, our model is trained to generate entire collider events, including all particle species with complete kinematic information. We quantify how well the model learns event-wide constraints such as the conservation of momentum and discrete quantum numbers. We focus on the events at the future Electron-Ion Collider, but we expect that our results can be extended to proton-proton and heavy-ion collisions. Second, previous generative models often relied on image-based techniques. The sparsity of the data can negatively affect the fidelity and sampling time of the model. We address these issues using point clouds and a novel architecture combining edge creation with transformer modules called Point Edge Transformers. Third, we adapt the foundation model OmniLearn, to generate full collider events. This approach may indicate a transition toward adapting and fine-tuning foundation models for downstream tasks instead of training new models from scratch.
Multiphysics Bench: Benchmarking and Investigating Scientific Machine Learning for Multiphysics PDEs
Solving partial differential equations (PDEs) with machine learning has recently attracted great attention, as PDEs are fundamental tools for modeling real-world systems that range from fundamental physical science to advanced engineering disciplines. Most real-world physical systems across various disciplines are actually involved in multiple coupled physical fields rather than a single field. However, previous machine learning studies mainly focused on solving single-field problems, but overlooked the importance and characteristics of multiphysics problems in real world. Multiphysics PDEs typically entail multiple strongly coupled variables, thereby introducing additional complexity and challenges, such as inter-field coupling. Both benchmarking and solving multiphysics problems with machine learning remain largely unexamined. To identify and address the emerging challenges in multiphysics problems, we mainly made three contributions in this work. First, we collect the first general multiphysics dataset, the Multiphysics Bench, that focuses on multiphysics PDE solving with machine learning. Multiphysics Bench is also the most comprehensive PDE dataset to date, featuring the broadest range of coupling types, the greatest diversity of PDE formulations, and the largest dataset scale. Second, we conduct the first systematic investigation on multiple representative learning-based PDE solvers, such as PINNs, FNO, DeepONet, and DiffusionPDE solvers, on multiphysics problems. Unfortunately, naively applying these existing solvers usually show very poor performance for solving multiphysics. Third, through extensive experiments and discussions, we report multiple insights and a bag of useful tricks for solving multiphysics with machine learning, motivating future directions in the study and simulation of complex, coupled physical systems.
AB5 type multicomponent TiVCoNiMn2 high-entropy alloy
Recent theoretical and practical research has focused on multi-component High Entropy Alloys (HEAs), which have superior mechanical and functional properties than standard alloys based on a single major element, thereby establishing a new field. A multi-component HEA contains five or more primary elements at concentrations ranging from 5 to 35 atomic percent. We examined the microstructure and mechanical properties of TiVCoNiMn2 HEA. The mixing enthalpy and other thermodynamic parameters were determined using Meidma's model. TiVCoNiMn2 exhibits a mixing enthalpy of -15.6 kJ/mol and an atomic radius mismatch of approximately 10.03%. HEA is derived from both hydride and non-hydride-producing elements. This could be a useful hydrogen storage material. The hydrogen absorption/desorption capabilities of these HEAs are promising.
A Heavy-Metal Scenario of Ultra-High-Energy Cosmic Rays
The mass composition of ultra-high-energy cosmic rays is an open problem in astroparticle physics. It is usually inferred from the depth of the shower maximum (Xmax) of cosmic-ray showers, which is only ambiguously determined by modern hadronic interaction models. We examine a data-driven scenario, in which we consider the expectation value of Xmax as a free parameter. We test the novel hypothesis whether the cosmic-ray data from the Pierre Auger Observatory can be interpreted in a consistent picture, under the assumption that the mass composition of cosmic rays at the highest energies is dominated by high metallicity, resulting in pure iron nuclei at energies above ~40 EeV. We investigate the implications on astrophysical observations and hadronic interactions, and we discuss the global consistency of the data assuming this heavy-metal scenario. We conclude that the data from the Pierre Auger Observatory can be interpreted consistently if the expectation values for Xmax from modern hadronic interaction models are shifted to larger values.
Water Enrichment from Pebble Drift in Disks with Gap-forming Planets
Volatiles like H_2O are present as ice in solids in the outer cold regions of protoplanetary disks and as vapor in the warm inner regions within the water snow line. Icy pebbles drifting inwards from the outer disk sublimate after crossing the snow line, enriching the inner disk with solid mass and water vapor. Meanwhile, proto-planets forming within the disk open gaps in the disk gas, creating traps against the inward drift of pebbles and in turn reducing water enrichment in the inner disk. Recent disk observations from millimeter interferometry and infrared spectroscopy have supported this broad picture by finding a correlation between the outer radial distribution of pebbles and the properties of inner water vapor spectra. In this work, we aim at further informing previous and future observations by building on previous models to explore pebble drift in disks with multiple gaps. We systematically explore multiple gap locations and their depths (equivalent to specific masses of planets forming within), and different particle sizes to study their impact on inner disk water enrichment. We find that the presence of close-in deep gaps carved by a Jupiter-mass planet is likely crucial for blocking icy pebble delivery into the inner disk, while planets with lower masses only provide leaky traps. We also find that disks with multiple gaps show lower vapor enrichment in the inner disk. Altogether, these model results support the idea that inner disk water delivery and planet formation are regulated by the mass and location of the most massive planets.
Analysis of the JWST spectra of the kilonova AT 2023vfi accompanying GRB 230307A
Kilonovae are key to advancing our understanding of r-process nucleosynthesis. To date, only two kilonovae have been spectroscopically observed, AT 2017gfo and AT 2023vfi. Here, we present an analysis of the James Webb Space Telescope (JWST) spectra obtained +29 and +61 days post-merger for AT 2023vfi (the kilonova associated with GRB 230307A). After re-reducing and photometrically flux-calibrating the data, we empirically model the observed X-ray to mid-infrared continua with a power law and a blackbody, to replicate the non-thermal afterglow and apparent thermal continuum gtrsim 2 , mum. We fit Gaussians to the apparent emission features, obtaining line centroids of 20218_{-38}^{+37}, 21874 pm 89 and 44168_{-152}^{+153}\,\AA, and velocity widths spanning 0.057 - 0.110\,c. These line centroid constraints facilitated a detailed forbidden line identification search, from which we shortlist a number of r-process species spanning all three r-process peaks. We rule out Ba II and Ra II as candidates and propose Te I-III, Er I-III and W III as the most promising ions for further investigation, as they plausibly produce multiple emission features from one (W III) or multiple (Te I-III, Er I-III) ion stages. We compare to the spectra of AT 2017gfo, which also exhibit prominent emission at sim 2.1 , mum, and conclude that [Te III] lambda21050 remains the most plausible cause of the observed sim 2.1 , mum emission in both kilonovae. However, the observed line centroids are not consistent between both objects, and they are significantly offset from [Te III] lambda21050. The next strongest [Te III] transition at 29290\,\AA\ is not observed, and we quantify its detectability. Further study is required, with particular emphasis on expanding the available atomic data to enable quantitative non-LTE spectral modelling.
Symmetry-invariant quantum machine learning force fields
Machine learning techniques are essential tools to compute efficient, yet accurate, force fields for atomistic simulations. This approach has recently been extended to incorporate quantum computational methods, making use of variational quantum learning models to predict potential energy surfaces and atomic forces from ab initio training data. However, the trainability and scalability of such models are still limited, due to both theoretical and practical barriers. Inspired by recent developments in geometric classical and quantum machine learning, here we design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries. We find that our invariant quantum learning models outperform their more generic counterparts on individual molecules of growing complexity. Furthermore, we study a water dimer as a minimal example of a system with multiple components, showcasing the versatility of our proposed approach and opening the way towards larger simulations. Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning, and that chemical systems represent, in fact, an interesting and rich playground for the development and application of advanced quantum machine learning tools.
Detecting LHC Neutrinos at Surface Level
The first direct detection of neutrinos at the LHC not only marks the beginning of a novel collider neutrino program at CERN but also motivates considering additional neutrino detectors to fully exploit the associated physics potential. We investigate the feasibility and physics potential of neutrino experiments located at the surface-level. A topographic desk study was performed to identify all points at which the LHC's neutrino beams exit the earth. The closest location lies about 9 km east of the CMS interaction point, at the bottom of Lake Geneva. Several detectors to be placed at this location are considered, including a water Cherenkov detector and an emulsion detector. The detector concepts are introduced, and projections for their contribution to the LHC forward neutrino program and searches for dark sector particles are presented. However, the dilution of the neutrino flux over distance reduces the neutrino yield significantly, limiting the physics potential of surface-level detectors compared to ones closer to the interaction point, including the proposed FPF.
Critical scaling law for the deposition efficiency of inertia-driven particle collisions with a cylinder in high Reynolds number air flow
The Earth's atmosphere is an aerosol, it contains suspended particles. When air flows over an obstacle such as an aircraft wing or tree branch, these particles may not follow the same paths as the air flowing around the obstacle. Instead the particles in the air may deviate from the path of the air and so collide with the surface of the obstacle. It is known that particle inertia can drive this deposition, and that there is a critical value of this inertia, below which no point particles deposit. Particle inertia is measured by the Stokes number, St. We show that near the critical value of the Stokes number, St_c, the amount of deposition has the unusual scaling law of exp(-1/(St-St_c)^{1/2}). The scaling is controlled by the stagnation point of the flow. This scaling is determined by the time for the particle to reach the surface of the cylinder varying as 1/(St-St_c)^{1/2}, together with the distance away from the stagnation point (perpendicular to the flow direction) increasing exponentially with time. The scaling law applies to inviscid flow, a model for flow at high Reynolds numbers. The unusual scaling means that the amount of particles deposited increases only very slowly above the critical Stokes number. This has consequences for applications ranging from rime formation and fog harvesting to pollination.
The discrete generalized exchange-driven system
We study a discrete model for generalized exchange-driven growth in which the particle exchanged between two clusters is not limited to be of size one. This set of models include as special cases the usual exchange-driven growth system and the coagulation-fragmentation system with binary fragmentation. Under reasonable general condition on the rate coefficients we establish the existence of admissible solutions, meaning solutions that are obtained as appropriate limit of solutions to a finite-dimensional truncation of the infinite-dimensional ODE. For these solutions we prove that, in the class of models we call isolated both the total number of particles and the total mass are conserved, whereas in those models we can non-isolated only the mass is conserved. Additionally, under more restrictive growth conditions for the rate equations we obtain uniqueness of solutions to the initial value problems.
Generating particle physics Lagrangians with transformers
In physics, Lagrangians provide a systematic way to describe laws governing physical systems. In the context of particle physics, they encode the interactions and behavior of the fundamental building blocks of our universe. By treating Lagrangians as complex, rule-based constructs similar to linguistic expressions, we trained a transformer model -- proven to be effective in natural language tasks -- to predict the Lagrangian corresponding to a given list of particles. We report on the transformer's performance in constructing Lagrangians respecting the Standard Model SU(3)times SU(2)times U(1) gauge symmetries. The resulting model is shown to achieve high accuracies (over 90\%) with Lagrangians up to six matter fields, with the capacity to generalize beyond the training distribution, albeit within architectural constraints. We show through an analysis of input embeddings that the model has internalized concepts such as group representations and conjugation operations as it learned to generate Lagrangians. We make the model and training datasets available to the community. An interactive demonstration can be found at: https://huggingface.co/spaces/JoseEliel/generate-lagrangians.
Detection asymmetry in solar energetic particle events
Context. Solar energetic particles (SEPs) are detected in interplanetary space in association with flares and coronal mass ejections (CMEs) at the Sun. The magnetic connection between the observing spacecraft and the solar active region (AR) source of the event is a key parameter in determining whether SEPs are observed and the properties of the particle event. Aims. We investigate whether an east-west asymmetry in the detection of SEP events is present in observations and discuss its possible link to corotation of magnetic flux tubes with the Sun. Methods. We used a published dataset of 239 CMEs recorded between 2006 and 2017 and having source regions both on the front side and far side of the Sun as seen from Earth. We produced distributions of occurrence of in-situ SEP intensity enhancements associated with the CME events, versus \Delta \phi, the separation in longitude between the source active region and the magnetic footpoint of the observing spacecraft based on the nominal Parker spiral. We focused on protons of energy >10 MeV measured by the STEREO A, STEREO B and GOES spacecraft at 1 au. We also considered the occurrence of 71-112 keV electron events detected by MESSENGER between 0.31 and 0.47 au. Results. We find an east-west asymmetry in the detection of >10 MeV proton events and of 71-112 keV electron events. For protons, observers for which the source AR is on the east side of the spacecraft footpoint and not well connected (-180 < \Delta \phi < -40) are 93% more likely to detect an SEP event compared to observers with +40 < \Delta \phi < +180. The asymmetry may be a signature of corotation of magnetic flux tubes with the Sun, given that for events with \Delta \phi < 0 corotation sweeps the particle-filled flux tubes towards the observing spacecraft, while for \Delta \phi > 0 it takes them away from it.
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Creating fast and accurate force fields is a long-standing challenge in computational chemistry and materials science. Recently, several equivariant message passing neural networks (MPNNs) have been shown to outperform models built using other approaches in terms of accuracy. However, most MPNNs suffer from high computational cost and poor scalability. We propose that these limitations arise because MPNNs only pass two-body messages leading to a direct relationship between the number of layers and the expressivity of the network. In this work, we introduce MACE, a new equivariant MPNN model that uses higher body order messages. In particular, we show that using four-body messages reduces the required number of message passing iterations to just two, resulting in a fast and highly parallelizable model, reaching or exceeding state-of-the-art accuracy on the rMD17, 3BPA, and AcAc benchmark tasks. We also demonstrate that using higher order messages leads to an improved steepness of the learning curves.
An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass
In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon.
PAH Emission Spectra and Band Ratios for Arbitrary Radiation Fields with the Single Photon Approximation
We present a new method for generating emission spectra from polycyclic aromatic hydrocarbons (PAHs) in arbitrary radiation fields. We utilize the single-photon limit for PAH heating and emission to treat individual photon absorptions as independent events. This allows the construction of a set of single-photon emission "basis spectra" that can be scaled to produce an output emission spectrum given any input heating spectrum. We find that this method produces agreement with PAH emission spectra computed accounting for multi-photon effects to within simeq10% in the 3-20~{rm mu m} wavelength range for radiation fields with intensity U<100. We use this framework to explore the dependence of PAH band ratios on the radiation field spectrum across grain sizes, finding in particular a strong dependence of the 3.3 to 11.2~mum band ratio on radiation field hardness. A Python-based tool and a set of basis spectra that can be used to generate these emission spectra are made publicly available.
Transforming Simulation to Data Without Pairing
We explore a generative machine learning-based approach for estimating multi-dimensional probability density functions (PDFs) in a target sample using a statistically independent but related control sample - a common challenge in particle physics data analysis. The generative model must accurately reproduce individual observable distributions while preserving the correlations between them, based on the input multidimensional distribution from the control sample. Here we present a conditional normalizing flow model (CNF) based on a chain of bijectors which learns to transform unpaired simulation events to data events. We assess the performance of the CNF model in the context of LHC Higgs to diphoton analysis, where we use the CNF model to convert a Monte Carlo diphoton sample to one that models data. We show that the CNF model can accurately model complex data distributions and correlations. We also leverage the recently popularized Modified Differential Multiplier Method (MDMM) to improve the convergence of our model and assign physical meaning to usually arbitrary loss-function parameters.
A Review of NEST Models for Liquid Xenon and Exhaustive Comparison to Other Approaches
This paper will discuss the microphysical simulation of interactions in liquid xenon, the active detector medium in many leading rare-event searches for new physics, and describe experimental observables useful for understanding detector performance. The scintillation and ionization yield distributions for signal and background will be presented using the Noble Element Simulation Technique (NEST), which is a toolkit based on experimental data and simple, empirical formulae, which mimic previous microphysics modeling, but are guided by data. The NEST models for light and charge production as a function of the particle type, energy, and electric field will be reviewed, as well as models for energy resolution and final pulse areas. NEST will be compared to other models or sets of models, and vetted against real data, with several specific examples pulled from XENON, ZEPLIN, LUX, LZ, PandaX, and table-top experiments used for calibrations.
MuonAll: Muon Variant for Efficient Finetuning of Large Language Models
Muon optimizer has demonstrated robust results in pretraining of language models but its performance in finetuning of existing public pretrained models is not yet explored. Currently, Muon is used along with AdamW introducing a scope of improvement for adopting all parameters inside Muon. We introduce MuonAll, which incorporates all the parameters inside Muon by transforming into 2D matrices. We conduct extensive finetuning experiments across publicly available language models with model sizes upto half billion parameters. Muon and MuonAll perform at par with AdamW across major benchmarks, highlighting their effectiveness as alternative optimizers. We open-source the distributed implementations of Muon and MuonAll, available at https://github.com/Saurabh750/optimizer
An Informal Introduction to Multiplet Neural Networks
In the artificial neuron, I replace the dot product with the weighted Lehmer mean, which may emulate different cases of a generalized mean. The single neuron instance is replaced by a multiplet of neurons which have the same averaging weights. A group of outputs feed forward, in lieu of the single scalar. The generalization parameter is typically set to a different value for each neuron in the multiplet. I further extend the concept to a multiplet taken from the Gini mean. Derivatives with respect to the weight parameters and with respect to the two generalization parameters are given. Some properties of the network are investigated, showing the capacity to emulate the classical exclusive-or problem organically in two layers and perform some multiplication and division. The network can instantiate truncated power series and variants, which can be used to approximate different functions, provided that parameters are constrained. Moreover, a mean case slope score is derived that can facilitate a learning-rate novelty based on homogeneity of the selected elements. The multiplet neuron equation provides a way to segment regularization timeframes and approaches.
The interstellar flux gap: From dust to kilometer-scale objects
Context. Three kilometer-sized interstellar objects (ISOs) have been detected transiting the Solar System, and spacecraft have directly measured micrometer-scale interstellar dust (ISD). Yet no intermediate-size interstellar meteoroids have been identified in current meteor surveys. Aims. We test whether a power-law flux extrapolation connecting spacecraft ISD and kilometer-scale ISOs is consistent with meteor surveys, and we quantify the expected interstellar impacting flux based on various observational reports. Methods. We compiled differential fluxes and limits from spacecraft ISD, radar and optical meteor surveys, and theoretical estimates. We evaluated the power-law size-frequency fits, computed the 3I-like flux, and compared measured fluxes to predictions. Results. The spacecraft-measured dust flux exceeds extrapolations constrained by meteor surveys and kilometer-scale ISOs by sim2-7 orders of magnitude. An r^{-3.0} fit combining spacecraft ISD detections with kilometer-scale ISOs overpredicts the number of meteors with hyperbolic orbits, whereas slopes of r^{-2.7}-r^{-2.3} (derived from radar and optical meteor upper limits, respectively) instead yield interplanetary-to-interstellar flux ratios of 10^{3}-10^{6}. Conclusions. A simple power-law from ISD to ISOs is inconsistent with meteor survey constraints and yields unrealistic predictions for interstellar meteoroids. The data reveal a gap between submicron dust entrained in the Local Interstellar Cloud (LIC) and macroscopic bodies ejected from planetary systems. This gap may reflect distinct origins and destruction-transport processes rather than a continuous size-frequency distribution. This would imply either the dominance of a small-particle LIC component or the need to reassess spacecraft dust fluxes.
Neutrinos from muon-rich ultra high energy electromagnetic cascades: The MUNHECA code
An ultra high energy electromagnetic cascade, a purely leptonic process and initiated by either photons or e^pm, can be a source of high energy neutrinos. We present a public python3 code, MUNHECA, to compute the neutrino spectrum by taking into account various QED processes, with the cascade developing either along the propagation in the cosmic microwave background in the high-redshift universe or in a predefined photon background surrounding the astrophysical source. The user can adjust various settings of MUNHECA, including the spectrum of injected high energy photons, the background photon field and the QED processes governing the cascade evolution. We improve the modeling of several processes, provide examples of the execution of MUNHECA and compare it with some earlier and more simplified estimates of the neutrino spectrum from electromagnetic cascades.
Solar System Elemental Abundances from the Solar Photosphere and CI-Chondrites
Solar photospheric abundances and CI-chondrite compositions are reviewed and updated to obtain representative solar system abundances of the elements and their isotopes. The new photospheric abundances obtained here lead to higher solar metallicity. Full 3D NLTE photospheric analyses are only available for 11 elements. A quality index for analyses is introduced. For several elements, uncertainties remain large. Protosolar mass fractions are H (X = 0.7060), He (Y = 0.2753), and for metals Li to U (Z = 0.0187). The protosolar (C+N)/H agrees within 13% with the ratio for the solar core from the Borexino experiment. Elemental abundances in CI-chondrites were screened by analytical methods, sample sizes, and evaluated using concentration frequency distributions. Aqueously mobile elements (e.g., alkalis, alkaline earths, etc.) often deviate from normal distributions indicating mobilization and/or sequestration into carbonates, phosphates, and sulfates. Revised CI-chondrite abundances of non-volatile elements are similar to earlier estimates. The moderately volatile elements F and Sb are higher than before, as are C, Br and I, whereas the CI-abundances of Hg and N are now significantly lower. The solar system nuclide distribution curves of s-process elements agree within 4% with s-process predictions of Galactic chemical evolution models. P-process nuclide distributions are assessed. No obvious correlation of CI-chondritic to solar elemental abundance ratios with condensation temperatures is observed, nor is there one for ratios of CI-chondrites/solar wind abundances.
Pre-perihelion Development of Interstellar Comet 3I/ATLAS
We describe pre-perihelion optical observations of interstellar comet 3I/ATLAS taken during July - September 2025 using the Nordic Optical Telescope. Fixed aperture photometry of the comet is well described by a power law function of heliocentric distance, rH, with the exponent (``index") n = 3.8+/-0.3 across the 4.6 au to 1.8 au distance range (phase function 0.04+/-0.02 magnitude/degree assumed). This indicates that the dust production rates vary in proportion to rH**(-1.8+/-0.3). An rH**(-2) variation is expected of a strongly volatile material, and consistent with independent spectroscopic observations showing that carbon dioxide is the primary driver of activity. The measured heliocentric index is unremarkable in the context of solar system comets, for which n is widely dispersed, and provides no basis on which to describe 3I as either dynamically old (thermally processed) or new (pristine). The morphology of the comet changes from a Sun-facing dust fan in the early 2025 July observations, to one dominated by an antisolar dust tail at later dates. We attribute the delayed emergence of the tail to the large size (effective radius 0.1 mm) and slow ejection (5 m/s) of the optically dominant dust particles, and their consequently sluggish response to solar radiation pressure. Small (micron-sized) particles may be present but not in numbers sufficient to dominate the scattering cross-section. Their relative depletion possibly reflects interparticle cohesion, which binds small particles more effectively than large ones. A similar preponderance of 0.1 mm grains was reported in 2I/Borisov. However, 2I differed from 3I in having a much smaller (asteroid-like) heliocentric index, n = 1.9+/-0.1. Dust production rates in 3I are 180 kg/s at 2 au, compared with 70 kg/s in 2I/Borisov at the same distance.
Exploring the limits of nucleonic metamodelling using different relativistic density functionals
In this work, we explore two classes of density dependent relativistic mean-field models, their predictions of proton fractions at high densities and neutron star structure. We have used a metamodelling approach to these relativistic density functionals. We have generated a large ensemble of models with these classes and then applied constraints from theoretical and experimental nuclear physics and astrophysical observations. We find that both models produce similar equations of state and neutron star mass-radius sequences. But, their underlying compositions, denoted by the proton fraction in this case, are vastly different. This reinstates previous findings that information on composition gets masqueraded in beta-equilibrium. Additional observations of non-equilibrium phenomena are necessary to pin it down.
Addendum to Research MMMCV; A Man/Microbio/Megabio/Computer Vision
In October 2007, a Research Proposal for the University of Sydney, Australia, the author suggested that biovie-physical phenomenon as `electrodynamic dependant biological vision', is governed by relativistic quantum laws and biovision. The phenomenon on the basis of `biovielectroluminescence', satisfies man/microbio/megabio/computer vision (MMMCV), as a robust candidate for physical and visual sciences. The general aim of this addendum is to present a refined text of Sections 1-3 of that proposal and highlighting the contents of its Appendix in form of a `Mechanisms' Section. We then briefly remind in an article aimed for December 2007, by appending two more equations into Section 3, a theoretical II-time scenario as a time model well-proposed for the phenomenon. The time model within the core of the proposal, plays a significant role in emphasizing the principle points on Objectives no. 1-8, Sub-hypothesis 3.1.2, mentioned in Article [arXiv:0710.0410]. It also expresses the time concept in terms of causing quantized energy f(|E|) of time |t|, emit in regard to shortening the probability of particle loci as predictable patterns of particle's un-occurred motion, a solution to Heisenberg's uncertainty principle (HUP) into a simplistic manner. We conclude that, practical frames via a time algorithm to this model, fixates such predictable patterns of motion of scenery bodies onto recordable observation points of a MMMCV system. It even suppresses/predicts superposition phenomena coming from a human subject and/or other bio-subjects for any decision making event, e.g., brainwave quantum patterns based on vision. Maintaining the existential probability of Riemann surfaces of II-time scenarios in the context of biovielectroluminescence, makes motion-prediction a possibility.
Evidence for a Massive Protocluster in S255N
S255N is a luminous far-infrared source that contains many indications of active star formation but lacks a prominent near-infrared stellar cluster. We present mid-infrared through radio observations aimed at exploring the evolutionary state of this region. Our observations include 1.3mm continuum and spectral line data from the Submillimeter Array, VLA 3.6cm continuum and 1.3cm water maser data, and multicolor IRAC images from the Spitzer Space Telescope. The cometary morphology of the previously-known UCHII region G192.584-0.041 is clearly revealed in our sensitive, multi-configuration 3.6cm images. The 1.3mm continuum emission has been resolved into three compact cores, all of which are dominated by dust emission and have radii < 7000AU. The mass estimates for these cores range from 6 to 35 Msun. The centroid of the brightest dust core (SMA1) is offset by 1.1'' (2800 AU) from the peak of the cometary UCHII region and exhibits the strongest HC3N, CN, and DCN line emission in the region. SMA1 also exhibits compact CH3OH, SiO, and H2CO emission and likely contains a young hot core. We find spatial and kinematic evidence that SMA1 may contain further multiplicity, with one of the components coincident with a newly-detected H2O maser. There are no mid-infrared point source counterparts to any of the dust cores, further suggesting an early evolutionary phase for these objects. The dominant mid-infrared emission is a diffuse, broadband component that traces the surface of the cometary UCHII region but is obscured by foreground material on its southern edge. An additional 4.5 micron linear feature emanating to the northeast of SMA1 is aligned with a cluster of methanol masers and likely traces a outflow from a protostar within SMA1. Our observations provide direct evidence that S255N is forming a cluster of intermediate to high-mass stars.
MeLM, a generative pretrained language modeling framework that solves forward and inverse mechanics problems
We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems, that can deal with a set of instructions, numbers and microstructure data. The framework is applied to various examples including bio-inspired hierarchical honeycomb design, carbon nanotube mechanics, and protein unfolding. In spite of the flexible nature of the model-which allows us to easily incorporate diverse materials, scales, and mechanical features-it performs well across disparate forward and inverse tasks. Based on an autoregressive attention-model, MeLM effectively represents a large multi-particle system consisting of hundreds of millions of neurons, where the interaction potentials are discovered through graph-forming self-attention mechanisms that are then used to identify relationships from emergent structures, while taking advantage of synergies discovered in the training data. We show that the model can solve complex degenerate mechanics design problems and determine novel material architectures across a range of hierarchical levels, providing an avenue for materials discovery and analysis. Looking beyond the demonstrations reported in this paper, we discuss other opportunities in applied mechanics and general considerations about the use of large language models in modeling, design, and analysis that can span a broad spectrum of material properties from mechanical, thermal, optical, to electronic.
Holographic Thermodynamics at Finite Baryon Density: Some Exact Results
We use the AdS/CFT correspondence to study the thermodynamics of massive N=2 supersymmetric hypermultiplets coupled to N=4 supersymmetric SU(Nc) Yang-Mills theory in the limits of large Nc and large 't Hooft coupling. In particular, we study the theory at finite baryon number density. At zero temperature, we present an exact expression for the hypermultiplets' leading-order contribution to the free energy, and in the supergravity description we clarify which D-brane configuration is appropriate for any given value of the chemical potential. We find a second-order phase transition when the chemical potential equals the mass. At finite temperature, we present an exact expression for the hypermultiplets' leading-order contribution to the free energy at zero mass.
Particle-Hole Symmetry in the Fermion-Chern-Simons and Dirac Descriptions of a Half-Filled Landau Level
It is well known that there is a particle-hole symmetry for spin-polarized electrons with two-body interactions in a partially filled Landau level, which becomes exact in the limit where the cyclotron energy is large compared to the interaction strength, so one can ignore mixing between Landau levels. This symmetry is explicit in the description of a half-filled Landau level recently introduced by D. T. Son, using Dirac fermions, but it was thought to be absent in the older fermion-Chern- Simons approach, developed by Halperin, Lee, and Read and subsequent authors. We show here, however, that when properly evaluated, the Halperin, Lee, Read (HLR) theory gives results for long-wavelength low-energy physical properties, including the Hall conductance in the presence of impurities and the positions of minima in the magnetoroton spectra for fractional quantized Hall states close to half-filling, that are identical to predictions of the Dirac formulation. In fact, the HLR theory predicts an emergent particle-hole symmetry near half filling, even when the cyclotron energy is finite.
Orb-v3: atomistic simulation at scale
We introduce Orb-v3, the next generation of the Orb family of universal interatomic potentials. Models in this family expand the performance-speed-memory Pareto frontier, offering near SoTA performance across a range of evaluations with a >10x reduction in latency and > 8x reduction in memory. Our experiments systematically traverse this frontier, charting the trade-off induced by roto-equivariance, conservatism and graph sparsity. Contrary to recent literature, we find that non-equivariant, non-conservative architectures can accurately model physical properties, including those which require higher-order derivatives of the potential energy surface. This model release is guided by the principle that the most valuable foundation models for atomic simulation will excel on all fronts: accuracy, latency and system size scalability. The reward for doing so is a new era of computational chemistry driven by high-throughput and mesoscale all-atom simulations.
Citizen Science Identification of Isolated Blue Stellar Systems in the Virgo cluster
We present a catalog of 34 new candidate (13 high confidence) isolated, young stellar systems within the Virgo galaxy cluster identified through a citizen science search of public optical and ultraviolet imaging. "Blue blobs" are a class of blue, faint, isolated, extremely low stellar mass, and metal-rich star-forming clouds embedded in the hot intracluster medium of the Virgo cluster. Only six blue blobs were known previously and here we confirm an additional six of our candidates through velocity and metallicity measurements from follow-up optical spectroscopy on the Hobby-Eberly Telescope (HET). Our 13 high confidence candidates (including the six confirmed) have properties consistent with prior known blue blobs and are inconsistent with being low-mass galaxies. Most candidates are concentrated in relatively dense regions, roughly following filamentary structures within the cluster, but avoiding its center. Three of our candidates are likely the stellar counterparts of known 'optically dark' clouds of neutral hydrogen in the cluster, while a further four are widely separated extensions to previously known blue blobs. The properties of our new candidates are consistent with previous conclusions that blue blobs likely originated from ram pressure stripping events, however, their locations in velocity--projected cluster-centric radius phase-space imply that their parent galaxies are not on their first infall into the cluster. Through our ongoing follow-up program with HET we aim to confirm additional candidates, however, detailed understanding of the stellar populations and star formation histories of blue blobs will require JWST observations.
Mathematical modelling of flow and adsorption in a gas chromatograph
In this paper, a mathematical model is developed to describe the evolution of the concentration of compounds through a gas chromatography column. The model couples mass balances and kinetic equations for all components. Both single and multiple-component cases are considered with constant or variable velocity. Non-dimensionalisation indicates the small effect of diffusion. The system where diffusion is neglected is analysed using Laplace transforms. In the multiple-component case, it is demonstrated that the competition between the compounds is negligible and the equations may be decoupled. This reduces the problem to solving a single integral equation to determine the concentration profile for all components (since they are scaled versions of each other). For a given analyte, we then only two parameters need to be fitted to the data. To verify this approach, the full governing equations are also solved numerically using the finite difference method and a global adaptive quadrature method to integrate the Laplace transformation. Comparison with the Laplace solution verifies the high degree of accuracy of the simpler Laplace form. The Laplace solution is then verified against experimental data from BTEX chromatography. This novel method, which involves solving a single equation and fitting parameters in pairs for individual components, is highly efficient. It is significantly faster and simpler than the full numerical solution and avoids the computationally expensive methods that would normally be used to fit all curves at the same time.
Coherent shuttle of electron-spin states
We demonstrate a coherent spin shuttle through a GaAs/AlGaAs quadruple-quantum-dot array. Starting with two electrons in a spin-singlet state in the first dot, we shuttle one electron over to either the second, third or fourth dot. We observe that the separated spin-singlet evolves periodically into the m=0 spin-triplet and back before it dephases due to nuclear spin noise. We attribute the time evolution to differences in the local Zeeman splitting between the respective dots. With the help of numerical simulations, we analyse and discuss the visibility of the singlet-triplet oscillations and connect it to the requirements for coherent spin shuttling in terms of the inter-dot tunnel coupling strength and rise time of the pulses. The distribution of entangled spin pairs through tunnel coupled structures may be of great utility for connecting distant qubit registers on a chip.
Applications of Machine Learning to Lattice Quantum Field Theory
There is great potential to apply machine learning in the area of numerical lattice quantum field theory, but full exploitation of that potential will require new strategies. In this white paper for the Snowmass community planning process, we discuss the unique requirements of machine learning for lattice quantum field theory research and outline what is needed to enable exploration and deployment of this approach in the future.
Characterisation of three-body loss in {}^{166}Er and optimised production of large Bose-Einstein condensates
Ultracold gases of highly magnetic lanthanide atoms have enabled the realisation of dipolar quantum droplets and supersolids. However, future studies could be limited by the achievable atom numbers and hindered by high three-body loss rates. Here we study density-dependent atom loss in an ultracold gas of {}^{166}Er for magnetic fields below 4 G, identifying six previously unreported, strongly temperature-dependent features. We find that their positions and widths show a linear temperature dependence up to at least 15,muK. In addition, we observe a weak, polarisation-dependent shift of the loss features with the intensity of the light used to optically trap the atoms. This detailed knowledge of the loss landscape allows us to optimise the production of dipolar BECs with more than 2 times 10^5 atoms and points towards optimal strategies for the study of large-atom-number dipolar gases in the droplet and supersolid regimes.
Disentangling axion-like particle couplings to nucleons via a delayed signal in Super-Kamiokande from a future supernova
In this work, we show that, if axion-like particles (ALPs) from core-collapse supernovae (SNe) couple to protons, they would produce very characteristic signatures in neutrino water Cherenkov detectors through their scattering off free protons via a , p rightarrow p , gamma interactions. Specifically, sub-MeV ALPs would generate photons with energies sim 30 MeV, which could be observed by Super-Kamiokande and Hyper-Kamiokande as a delayed signal after a future detection of SN neutrinos. We apply this to a hypothetical neighbouring SN (at a maximum distance of 100 kpc) and demonstrate that the region in the parameter space with ALP masses between 10^{-4} MeV and 1 MeV and ALP-proton couplings in the range 3 times 10^{-6}-4 times 10^{-5} could be probed. We argue that this new signature, combined with the one expected at sim 7 MeV from oxygen de-excitation, would allow us to disentangle ALP-neutron and ALP-proton couplings.
Precision measurement of the last bound states in H_2 and determination of the H + H scattering length
The binding energies of the five bound rotational levels J=0-4 in the highest vibrational level v=14 in the X^1Sigma_g^+ ground electronic state of H_2 were measured in a three-step ultraviolet-laser experiment. Two-photon UV-photolysis of H_2S produced population in these high-lying bound states, that were subsequently interrogated at high precision via Doppler-free spectroscopy of the F^1Sigma_g^+ - X^1Sigma_g^+ system. A third UV-laser was used for detection through auto-ionizing resonances. The experimentally determined binding energies were found to be in excellent agreement with calculations based on non-adiabatic perturbation theory, also including relativistic and quantum electrodynamical contributions. The s-wave scattering length of the H + H system is derived from the binding energy of the last bound J=0 level via a direct semi-empirical approach, yielding a value of a_s = 0.2724(5) a_0, in good agreement with a result from a previously followed theoretical approach. The subtle effect of the malpha^4 relativity contribution to a_s was found to be significant. In a similar manner a value for the p-wave scattering volume is determined via the J=1 binding energy yielding a_p = -134.0000(6) a_0^3. The binding energy of the last bound state in H_2, the (v=14, J=4) level, is determined at 0.023(4) cm^{-1}, in good agreement with calculation. The effect of the hyperfine substructure caused by the two hydrogen atoms at large internuclear separation, giving rise to three distinct dissociation limits, is discussed.
Solving Key Challenges in Collider Physics with Foundation Models
Foundation Models are neural networks that are capable of simultaneously solving many problems. Large Language Foundation Models like ChatGPT have revolutionized many aspects of daily life, but their impact for science is not yet clear. In this paper, we use a new Foundation Model for hadronic jets to solve three key challenges in collider physics. In particular, we show how experiments can (1) save significant computing power when developing reconstruction algorithms, (2) perform a complete uncertainty quantification for high-dimensional measurements, and (3) search for new physics with model agnostic methods using low-level inputs. In each case, there are significant computational or methodological challenges with current methods that limit the science potential of deep learning algorithms. By solving each problem, we take jet Foundation Models beyond proof-of-principle studies and into the toolkit of practitioners.
Rearrangement of single atoms in a 2000-site optical tweezers array at cryogenic temperatures
We report on the trapping of single rubidium atoms in large arrays of optical tweezers comprising up to 2088 sites in a cryogenic environment at 6 K. Our approach relies on the use of microscope objectives that are in-vacuum but at room temperature, in combination with windowless thermal shields into which the objectives are protruding to ensure a cryogenic environment for the trapped atoms. To achieve enough optical power for efficient trapping, we combine two lasers at slightly different wavelengths. We discuss the performance and limitations of our design. Finally, we demonstrate atom-by-atom rearrangement of an 828-atom target array using moving optical tweezers controlled by a field-programmable gate array.
Bumblebee: Foundation Model for Particle Physics Discovery
Bumblebee is a foundation model for particle physics discovery, inspired by BERT. By removing positional encodings and embedding particle 4-vectors, Bumblebee captures both generator- and reconstruction-level information while ensuring sequence-order invariance. Pre-trained on a masked task, it improves dileptonic top quark reconstruction resolution by 10-20% and excels in downstream tasks, including toponium discrimination (AUROC 0.877) and initial state classification (AUROC 0.625). The flexibility of Bumblebee makes it suitable for a wide range of particle physics applications, especially the discovery of new particles.
Anatomy of singlet-doublet dark matter relic: annihilation, co-annihilation, co-scattering, and freeze-in
The singlet-doublet vector-like fermion dark matter model has been extensively studied in the literature over the past decade. An important parameter in this model is the singlet-doublet mixing angle (sintheta). All the previous studies have primarily focused on annihilation and co-annihilation processes for obtaining the correct dark matter relic density, assuming that the singlet and doublet components decouple at the same epoch. In this work, we demonstrate that this assumption holds only for larger mixing angles with a dependency on the mass of the dark matter. However, it badly fails for the mixing angle sintheta<0.05. We present a systematic study of the parameter space of the singlet-doublet dark matter relic, incorporating annihilation, co-annihilation, and, for the first time, co-scattering processes. Additionally, the freeze-in parameter space is also explored. We found that due to the inclusion of co-scattering processes, the correct relic density parameter space is shifted towards the detection sensitivity range of the LHC and MATHUSLA via displaced vertex signatures.
Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
Modeling the dynamics of deformable objects is challenging due to their diverse physical properties and the difficulty of estimating states from limited visual information. We address these challenges with a neural dynamics framework that combines object particles and spatial grids in a hybrid representation. Our particle-grid model captures global shape and motion information while predicting dense particle movements, enabling the modeling of objects with varied shapes and materials. Particles represent object shapes, while the spatial grid discretizes the 3D space to ensure spatial continuity and enhance learning efficiency. Coupled with Gaussian Splattings for visual rendering, our framework achieves a fully learning-based digital twin of deformable objects and generates 3D action-conditioned videos. Through experiments, we demonstrate that our model learns the dynamics of diverse objects -- such as ropes, cloths, stuffed animals, and paper bags -- from sparse-view RGB-D recordings of robot-object interactions, while also generalizing at the category level to unseen instances. Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views. Furthermore, we showcase the utility of our learned models in model-based planning, enabling goal-conditioned object manipulation across a range of tasks. The project page is available at https://kywind.github.io/pgnd .
The Mu3e Experiment: Status and Short-Term Plans
Mu3e is an experiment currently under construction at the Paul Scherrer Institute in Switzerland, designed to search for the Lepton Flavor Violating (LFV) decay mu^+ rightarrow e^+e^-e^+. In extensions of the Standard Model (SM) that account for neutrino masses, this decay is theoretically allowed but occurs only through extremely rare loop processes, with a predicted branching ratio of approximately O(10^{-54}). Such a small probability implies that any observation of this decay would provide clear evidence for physics beyond the SM. The Mu3e experiment aims to probe the mu^+ rightarrow e^+e^-e^+ decay with a sensitivity of approximately O(10^{-15}) in its Phase-1 and plans to achieve a sensitivity of O(10^{-16}) after future upgrades. To reach its Phase-1 ambitious goals, Mu3e is going to use the most intense continuous muon beam in the world, generating 10^{8} muon stops per second in the target placed at the center of the Mu3e. Mu3e will use three main technologies for particle detection. The tracking will done through ultra-thin (50 - 70 mu m) pixel detectors based on MuPix11 sensors. These are high-voltage monolithic active pixel sensors (HV-MAPS) with a sim 23~mum spatial resolution. The timing will be done through scintillating fibres (sim 250 ps) and tiles (sim 40 ps), coupled to silicon photomultipliers and read out by MuTRiG3 ASICs. A triggerless DAQ system based on FPGAs will collect data from the detectors, which will then undergo reconstruction in a GPU filter farm. The assembly of the detectors has started, with a detector commissioning beam time planned for 2025. This document reports on the status of the construction, installation, and data-taking plans for the near future.
Efficient displacement convex optimization with particle gradient descent
Particle gradient descent, which uses particles to represent a probability measure and performs gradient descent on particles in parallel, is widely used to optimize functions of probability measures. This paper considers particle gradient descent with a finite number of particles and establishes its theoretical guarantees to optimize functions that are displacement convex in measures. Concretely, for Lipschitz displacement convex functions defined on probability over R^d, we prove that O(1/epsilon^2) particles and O(d/epsilon^4) computations are sufficient to find the epsilon-optimal solutions. We further provide improved complexity bounds for optimizing smooth displacement convex functions. We demonstrate the application of our results for function approximation with specific neural architectures with two-dimensional inputs.
Lectures on holographic methods for condensed matter physics
These notes are loosely based on lectures given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009 and at the IPM String School in Tehran, April 2009. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity.
Two 100 TeV neutrinos coincident with the Seyfert galaxy NGC 7469
In 2013, the IceCube collaboration announced the detection of a diffuse high-energy astrophysical neutrino flux. The origin of this flux is still largely unknown. The most significant individual source is the close-by Seyfert galaxy NGC 1068 at 4.2-sigma level with a soft spectral index. To identify sources based on their counterpart, IceCube releases realtime alerts corresponding to neutrinos with a high probability of astrophysical origin. We report here the spatial coincidence of two neutrino alerts, IC220424A and IC230416A, with the Seyfert galaxy NGC 7469 at a distance of 70 Mpc. We evaluate, a-posteriori, the chance probability of such a coincidence and discuss this source as a potential neutrino emitter based on its multi-wavelength properties and in comparison to NGC 1068 by performing a Goodness-of-Fit test. The test statistic is derived from a likelihood ratio that includes the neutrino angular uncertainty and the source distance. We apply this test first to a catalog of AGN sources and second to a catalog of Seyfert galaxies only. Our a-posteriori evaluation excludes the possibility of an accidental spatial coincidence of both neutrinos with the Seyfert galaxy NGC 7469 at 3.2-sigma level, leaving open the possibility that either one or both neutrinos originated from the source. To be compatible with non-detections of TeV neutrinos, the source would need to have a hard spectral index.
Surface codes: Towards practical large-scale quantum computation
This article provides an introduction to surface code quantum computing. We first estimate the size and speed of a surface code quantum computer. We then introduce the concept of the stabilizer, using two qubits, and extend this concept to stabilizers acting on a two-dimensional array of physical qubits, on which we implement the surface code. We next describe how logical qubits are formed in the surface code array and give numerical estimates of their fault-tolerance. We outline how logical qubits are physically moved on the array, how qubit braid transformations are constructed, and how a braid between two logical qubits is equivalent to a controlled-NOT. We then describe the single-qubit Hadamard, S and T operators, completing the set of required gates for a universal quantum computer. We conclude by briefly discussing physical implementations of the surface code. We include a number of appendices in which we provide supplementary information to the main text.
Multimodal Learning for Materials
Artificial intelligence is transforming computational materials science, improving the prediction of material properties, and accelerating the discovery of novel materials. Recently, publicly available material data repositories have grown rapidly. This growth encompasses not only more materials, but also a greater variety and quantity of their associated properties. Existing machine learning efforts in materials science focus primarily on single-modality tasks, i.e., relationships between materials and a single physical property, thus not taking advantage of the rich and multimodal set of material properties. Here, we introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials. We demonstrate our framework's potential using data from the Materials Project database on multiple axes: (i) MultiMat achieves state-of-the-art performance for challenging material property prediction tasks; (ii) MultiMat enables novel and accurate material discovery via latent space similarity, enabling screening for stable materials with desired properties; and (iii) MultiMat encodes interpretable emergent features that may provide novel scientific insights.
Zero Sound from Holography
Quantum liquids are characterized by the distinctive properties such as the low temperature behavior of heat capacity and the spectrum of low-energy quasiparticle excitations. In particular, at low temperature, Fermi liquids exhibit the zero sound, predicted by L. D. Landau in 1957 and subsequently observed in liquid He-3. In this paper, we ask a question whether such a characteristic behavior is present in theories with holographically dual description. We consider a class of gauge theories with fundamental matter fields whose holographic dual in the appropriate limit is given in terms of the Dirac-Born-Infeld action in AdS_{p+1} space. An example of such a system is the N=4 SU(N_c) supersymmetric Yang-Mills theory with N_f massless N=2 hypermultiplets at strong coupling, finite baryon number density, and low temperature. We find that these systems exhibit a zero sound mode despite having a non-Fermi liquid type behavior of the specific heat. These properties suggest that holography identifies a new type of quantum liquids.
A new type of Neutrino Detector for Sterile Neutrino Search at Nuclear Reactors and Nuclear Nonproliferation Applications
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the "Reactor Antineutrino Anomaly". NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a "Raghavan Optical Lattice" (ROL) consisting of 3375 boron or ^6Li loaded plastic scintillator cubical cells 6.3\,cm (2.500") on a side. Cell boundaries have a 0.127\,mm (0.005") air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status.
FeynTune: Large Language Models for High-Energy Theory
We present specialized Large Language Models for theoretical High-Energy Physics, obtained as 20 fine-tuned variants of the 8-billion parameter Llama-3.1 model. Each variant was trained on arXiv abstracts (through August 2024) from different combinations of hep-th, hep-ph and gr-qc. For a comparative study, we also trained models on datasets that contained abstracts from disparate fields such as the q-bio and cs categories. All models were fine-tuned using two distinct Low-Rank Adaptation fine-tuning approaches and varying dataset sizes, and outperformed the base model on hep-th abstract completion tasks. We compare performance against leading commercial LLMs (ChatGPT, Claude, Gemini, DeepSeek) and derive insights for further developing specialized language models for High-Energy Theoretical Physics.
Latent Field Discovery In Interacting Dynamical Systems With Neural Fields
Systems of interacting objects often evolve under the influence of field effects that govern their dynamics, yet previous works have abstracted away from such effects, and assume that systems evolve in a vacuum. In this work, we focus on discovering these fields, and infer them from the observed dynamics alone, without directly observing them. We theorize the presence of latent force fields, and propose neural fields to learn them. Since the observed dynamics constitute the net effect of local object interactions and global field effects, recently popularized equivariant networks are inapplicable, as they fail to capture global information. To address this, we propose to disentangle local object interactions -- which are SE(n) equivariant and depend on relative states -- from external global field effects -- which depend on absolute states. We model interactions with equivariant graph networks, and combine them with neural fields in a novel graph network that integrates field forces. Our experiments show that we can accurately discover the underlying fields in charged particles settings, traffic scenes, and gravitational n-body problems, and effectively use them to learn the system and forecast future trajectories.
Cosmic Multipoles in Galaxy Surveys Part I: How Inferences Depend on Source Counts and Masks
We present a new approach to constructing and fitting dipoles and higher-order multipoles in synthetic galaxy samples over the sky. Within our Bayesian paradigm, we illustrate that this technique is robust to masked skies, allowing us to make credible inferences about the relative contributions of each multipole. We also show that dipoles can be recovered in surveys with small footprints, determining the requisite source counts required for concrete estimation of the dipole parameters. This work is motivated by recent probes of the cosmic dipole in galaxy catalogues. Namely, the kinematic dipole of the Cosmic Microwave Background, as arising from the motion of our heliocentric frame at approx 370 km,s^{-1}, implies that an analogous dipole should be observed in the number counts of galaxies in flux-density-limited samples. Recent studies have reported a dipole aligning with the kinematic dipole but with an anomalously large amplitude. Accordingly, our new technique will be important as forthcoming galaxy surveys are made available and for revisiting previous data.
Are Sixteen Heads Really Better than One?
Attention is a powerful and ubiquitous mechanism for allowing neural models to focus on particular salient pieces of information by taking their weighted average when making predictions. In particular, multi-headed attention is a driving force behind many recent state-of-the-art NLP models such as Transformer-based MT models and BERT. These models apply multiple attention mechanisms in parallel, with each attention "head" potentially focusing on different parts of the input, which makes it possible to express sophisticated functions beyond the simple weighted average. In this paper we make the surprising observation that even if models have been trained using multiple heads, in practice, a large percentage of attention heads can be removed at test time without significantly impacting performance. In fact, some layers can even be reduced to a single head. We further examine greedy algorithms for pruning down models, and the potential speed, memory efficiency, and accuracy improvements obtainable therefrom. Finally, we analyze the results with respect to which parts of the model are more reliant on having multiple heads, and provide precursory evidence that training dynamics play a role in the gains provided by multi-head attention.
Nonequilibrium Phenomena in Driven and Active Coulomb Field Theories
The classical Coulomb gas model has served as one of the most versatile frameworks in statistical physics, connecting a vast range of phenomena across many different areas. Nonequilibrium generalisations of this model have so far been studied much more scarcely. With the abundance of contemporary research into active and driven systems, one would naturally expect that such generalisations of systems with long-ranged Coulomb-like interactions will form a fertile playground for interesting developments. Here, we present two examples of novel macroscopic behaviour that arise from nonequilibrium fluctuations in long-range interacting systems, namely (1) unscreened long-ranged correlations in strong electrolytes driven by an external electric field and the associated fluctuation-induced forces in the confined Casimir geometry, and (2) out-of-equilibrium critical behaviour in self-chemotactic models that incorporate the particle polarity in the chemotactic response of the cells. Both of these systems have nonlocal Coulomb-like interactions among their constituent particles, namely, the electrostatic interactions in the case of the driven electrolyte, and the chemotactic forces mediated by fast-diffusing signals in the case of self-chemotactic systems. The results presented here hint to the rich phenomenology of nonequilibrium effects that can arise from strong fluctuations in Coulomb interacting systems, and a rich variety of potential future directions, which are discussed.
RODEM Jet Datasets
We present the RODEM Jet Datasets, a comprehensive collection of simulated large-radius jets designed to support the development and evaluation of machine-learning algorithms in particle physics. These datasets encompass a diverse range of jet sources, including quark/gluon jets, jets from the decay of W bosons, top quarks, and heavy new-physics particles. The datasets provide detailed substructure information, including jet kinematics, constituent kinematics, and track displacement details, enabling a wide range of applications in jet tagging, anomaly detection, and generative modelling.
MovingParts: Motion-based 3D Part Discovery in Dynamic Radiance Field
We present MovingParts, a NeRF-based method for dynamic scene reconstruction and part discovery. We consider motion as an important cue for identifying parts, that all particles on the same part share the common motion pattern. From the perspective of fluid simulation, existing deformation-based methods for dynamic NeRF can be seen as parameterizing the scene motion under the Eulerian view, i.e., focusing on specific locations in space through which the fluid flows as time passes. However, it is intractable to extract the motion of constituting objects or parts using the Eulerian view representation. In this work, we introduce the dual Lagrangian view and enforce representations under the Eulerian/Lagrangian views to be cycle-consistent. Under the Lagrangian view, we parameterize the scene motion by tracking the trajectory of particles on objects. The Lagrangian view makes it convenient to discover parts by factorizing the scene motion as a composition of part-level rigid motions. Experimentally, our method can achieve fast and high-quality dynamic scene reconstruction from even a single moving camera, and the induced part-based representation allows direct applications of part tracking, animation, 3D scene editing, etc.
Relative Likelihood of Success in the Searches for Primitive versus Intelligent Extraterrestrial Life
We estimate the relative likelihood of success in the searches for primitive versus intelligent life on other planets. Taking into account the larger search volume for detectable artificial electromagnetic signals, we conclude that both searches should be performed concurrently, albeit with significantly more funding dedicated to primitive life. Based on the current federal funding allocated to the search for biosignatures, our analysis suggests that the search for extraterrestrial intelligence (SETI) may merit a federal funding level of at least 10$ million per year, assuming that the average lifetime of technological species exceeds a millennium.
Understanding the Neutron Star Population with the SKA
Since their discovery in the late 1960's the population of known neutron stars (NSs) has grown to ~2500. The last five decades of observations have yielded many surprises and demonstrated that the observational properties of NSs are remarkably diverse. The surveys that will be performed with SKA (the Square Kilometre Array) will produce a further tenfold increase in the number of Galactic NSs known. Moreover, the SKA's broad spectral coverage, sub-arraying and multi-beaming capabilities will allow us to characterise these sources with unprecedented efficiency, in turn enabling a giant leap in the understanding of their properties. Here we review the NS population and outline our strategies for studying each of the growing number of diverse classes that are populating the "NS zoo". Some of the main scientific questions that will be addressed by the much larger statistical samples and vastly improved timing efficiency provided by SKA include: (i) the spin period and spin-down rate distributions (and thus magnetic fields) at birth, and the associated information about the SNe wherein they are formed; (ii) the radio pulsar-magnetar connection; (iii) the link between normal radio pulsars, intermittent pulsars and rotating radio transients; (iv) the slowest possible spin period for a radio pulsar (revealing the conditions at the pulsar death-line); (v) proper motions of pulsars (revealing SN kick physics); (vi) the mass distribution of NSs (vii) the fastest possible spin period for a recycled pulsar (constraining magnetosphere-accretion disc interactions, gravitational wave radiation and the equation-of-state); (viii) the origin of high eccentricity millisecond pulsars (MSPs); (ix) the formation channels for recently identified triple systems; and finally (x) how isolated MSPs are formed. We expect that the SKA will break new ground unveiling exotic systems that will challenge... [abridged]
Invited Article: miniTimeCube
We present the development of the miniTimeCube (mTC), a novel compact neutrino detector. The mTC is a multipurpose detector, aiming to detect not only neutrinos but also fast/thermal neutrons. Potential applications include the counterproliferation of nuclear materials and the investigation of antineutrino short-baseline effects. The mTC is a plastic 0.2% ^{10}B - doped scintillator (13 cm)^3 cube surrounded by 24 Micro-Channel Plate (MCP) photon detectors, each with an 8times8 anode totaling 1536 individual channels/pixels viewing the scintillator. It uses custom-made electronics modules which mount on top of the MCPs, making our detector compact and able to both distinguish different types of events and reject noise in real time. The detector is currently deployed and being tested at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) nuclear reactor (20 MW_th) in Gaithersburg, MD. A shield for further tests is being constructed, and calibration and upgrades are ongoing. The mTC's improved spatiotemporal resolution will allow for determination of incident particle directions beyond previous capabilities.
A multi-messenger hierarchical triple merger gravitational-wave event pair GW190514-GW190521 inside AGN J124942.3 + 344929
There is a candidate electromagnetic counterpart to the binary black hole merger GW190521, identified as ZTF19abanrhr within AGN J124942.3 + 344929. Additionally, GW190514 is proposed as a plausible precursor merger to GW190521 within a hierarchical merger scenario. In this study, we investigate the potential association between GW190514 and GW190521 as a hierarchical triple merger associated with ZTF19abanrhr, taking into account of sky position, distance, and mass of the sources using a Bayesian criterion. Our analysis reveals that the association is favored over a random coincidence, with a log Bayes factor of 16.8, corresponding to an odds ratio of sim199:1, assuming an astrophysical prior odds of 10^{-5}. Notably, when accounting for the primary masses of the two gravitational wave events as potential products of mergers in the AGN formation channel, the Bayes factor increases significantly, further enhancing the preference for this association by a factor of sim10^2, corresponding to a log Bayes factor of 21.5 and an odds ratio of sim2times10^4:1. Our results suggest strong evidence for the first hierarchical triple merger associated with an electromagnetic counterpart in the AGN formation channel. This work is crucial for understanding the formation mechanisms of massive black holes, the role of AGNs in hierarchical mergers, and the implications of multi-messenger astronomy.
Resolving Pleiades binary stars with Gaia and speckle interferometric observations
The Pleiades is the most prominent open star cluster visible from Earth and an important benchmark for simple stellar populations, unified by common origin, age, and distance. Binary stars are its essential ingredient, yet their contribution remains uncertain due to heavy observational biases. A resolved multiplicity survey was conducted for a magnitude-limited G < 15mag sample of 423 potential cluster members, including sources with poorly fitted astrometric solutions in Gaia DR3. Speckle interferometric observations at the 2.5 meter telescope of SAI MSU observatory were combined with Gaia data, enabling the identification of 61 resolved binary or multiple systems within the 0.04 - 10 arcsec (5 - 1350 au) separation range. With speckle observations, we discovered 21 components in 20 systems. The existence of a Merope (23 Tau) companion is confirmed after several previous unsuccessful attempts. We show that the Gaia multipeak fraction is a strong predictor of subarcsecond multiplicity, as all sources with ipd_frac_multi_peak > 4% are successfully resolved. We found that 10% of Pleiades stars have a companion with a mass ratio q > 0.5 within projected separation of 27 < s < 1350 au, and confirm a deficit of wide binaries with s > 300 au. An observed dearth of wide pairs with large mass ratio (q > 0.55) may imprint the transition from hard to soft binaries regime at the early stages of cluster evolution. The total binary fraction for q > 0.5 systems is extrapolated to be around 25%.
Detecting eclipsing double white dwarfs with electromagnetic and gravitational waves
Galactic double white dwarfs are predominant sources of gravitational waves in the millihertz frequencies accessible to space-borne gravitational wave detectors. With advances in multi-messenger astronomy, an increasing number of double white dwarf systems will be discovered through both electromagnetic and gravitational wave observations. In this paper, we simulated two populations of double white dwarfs originating from different star formation histories (hereafter referred to as Model 1 and Model 2) using the binary population synthesis method. We predicted the number of double white dwarfs in our Galaxy detectable by TianQin and Laser Interferometer Space Antenna (LISA) individually, as well as through their joint observation. In addition, we performed an analysis to evaluate the accuracy of the parameter estimation using the Fisher information matrix. Furthermore, we predicted the number of detached eclipsing double white dwarfs detectable by Gaia and the Vera C. Rubin Observatory (VRO). Our study found that over the nominal mission durations, TianQin, LISA, and their joint observation can detect at least five thousand and potentially several tens of thousands of double white dwarfs with signal-to-noise ratios greater than 7. Gaia and VRO are expected to detect at least several dozen and up to several hundred eclipsing double white dwarfs with orbital periods less than 30 hours. We also found that several dozen eclipsing double white dwarfs can be detected jointly through electromagnetic and gravitational wave observations.
Why is AI hard and Physics simple?
We discuss why AI is hard and why physics is simple. We discuss how physical intuition and the approach of theoretical physics can be brought to bear on the field of artificial intelligence and specifically machine learning. We suggest that the underlying project of machine learning and the underlying project of physics are strongly coupled through the principle of sparsity, and we call upon theoretical physicists to work on AI as physicists. As a first step in that direction, we discuss an upcoming book on the principles of deep learning theory that attempts to realize this approach.
Fast kernel methods for Data Quality Monitoring as a goodness-of-fit test
We here propose a machine learning approach for monitoring particle detectors in real-time. The goal is to assess the compatibility of incoming experimental data with a reference dataset, characterising the data behaviour under normal circumstances, via a likelihood-ratio hypothesis test. The model is based on a modern implementation of kernel methods, nonparametric algorithms that can learn any continuous function given enough data. The resulting approach is efficient and agnostic to the type of anomaly that may be present in the data. Our study demonstrates the effectiveness of this strategy on multivariate data from drift tube chamber muon detectors.
Charged lepton flavor violation in light of the muon magnetic moment anomaly and colliders
Any observation of charged lepton flavor violation (CLFV) implies the existence of new physics beyond the SM in charged lepton sector. CLFV interactions may also contribute to the muon magnetic moment and explain the discrepancy between the SM prediction and the recent muon g-2 precision measurement at Fermilab. We consider the most general SM gauge invariant Lagrangian of Delta L=0 bileptons with CLFV couplings and investigate the interplay of low-energy precision experiments and colliders in light of the muon magnetic moment anomaly. We go beyond previous work by demonstrating the sensitivity of the LHC, the MACE experiment, a proposed muonium-antimuonium conversion experiment, and a muon collider. Currently-available LHC data is already able to probe unexplored parameter space via the CLFV process pptogamma^*/Z^*to ell_1^pm ell_1^pm ell_2^mp ell_2^mp.
Information divergences to parametrize astrophysical uncertainties in dark matter direct detection
Astrophysical uncertainties in dark matter direct detection experiments are typically addressed by parametrizing the velocity distribution in terms of a few uncertain parameters that vary around some central values. Here we propose a method to optimize over all velocity distributions lying within a given distance measure from a central distribution. We discretize the dark matter velocity distribution as a superposition of streams, and use a variety of information divergences to parametrize its uncertainties. With this, we bracket the limits on the dark matter-nucleon and dark matter-electron scattering cross sections, when the true dark matter velocity distribution deviates from the commonly assumed Maxwell-Boltzmann form. The methodology pursued is general and could be applied to other physics scenarios where a given physical observable depends on a function that is uncertain.
