new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 29

Jets of foliations and $b^k$-algebroids

In this article, we introduce and study singular foliations of b^k-type. These singular foliations formalize the properties of vector fields that are tangent to order k along a submanifold W subset M. Our first result is a classification of these foliations, relating them to geometric structures defined in a formal neighborhood of the submanifold, such as jets of distributions that are involutive up to order k-1. When W is a hypersurface, singular foliations of b^k-type are Lie algebroids. In this particular case, they are generalizations of the b^k-tangent bundles introduced by Scott. Indeed, they are always locally isomorphic to b^k-tangent bundles, but globally such an isomorphism is obstructed by a holonomy invariant. Our second main result is a Riemann-Hilbert-style classification of singular foliations of b^k-type in terms of holonomy representations. In this paper, we study singular foliations of b^k-type from several different perspectives. In particular: (1) We study the problem of extending a k-th-order foliation to a (k+1)-th order foliation and prove that this is obstructed by a characteristic class. (2) When W is a hypersurface, we give a detailed study of algebroid differential forms and extend Scott's calculation of the cohomology. (3) We study algebroid symplectic forms in terms of the geometric structures induced on W. In particular, we find that there is a close relationship between the above obstruction class for extensions and the symplectic variation of the symplectic foliation induced on W.

  • 3 authors
·
Nov 28, 2023

Evaluating AI systems under uncertain ground truth: a case study in dermatology

For safety, medical AI systems undergo thorough evaluations before deployment, validating their predictions against a ground truth which is assumed to be fixed and certain. However, this ground truth is often curated in the form of differential diagnoses. While a single differential diagnosis reflects the uncertainty in one expert assessment, multiple experts introduce another layer of uncertainty through disagreement. Both forms of uncertainty are ignored in standard evaluation which aggregates these differential diagnoses to a single label. In this paper, we show that ignoring uncertainty leads to overly optimistic estimates of model performance, therefore underestimating risk associated with particular diagnostic decisions. To this end, we propose a statistical aggregation approach, where we infer a distribution on probabilities of underlying medical condition candidates themselves, based on observed annotations. This formulation naturally accounts for the potential disagreements between different experts, as well as uncertainty stemming from individual differential diagnoses, capturing the entire ground truth uncertainty. Our approach boils down to generating multiple samples of medical condition probabilities, then evaluating and averaging performance metrics based on these sampled probabilities. In skin condition classification, we find that a large portion of the dataset exhibits significant ground truth uncertainty and standard evaluation severely over-estimates performance without providing uncertainty estimates. In contrast, our framework provides uncertainty estimates on common metrics of interest such as top-k accuracy and average overlap, showing that performance can change multiple percentage points. We conclude that, while assuming a crisp ground truth can be acceptable for many AI applications, a more nuanced evaluation protocol should be utilized in medical diagnosis.

  • 20 authors
·
Jul 5, 2023

Many Ways to Be Lonely: Fine-Grained Characterization of Loneliness and Its Potential Changes in COVID-19

Loneliness has been associated with negative outcomes for physical and mental health. Understanding how people express and cope with various forms of loneliness is critical for early screening and targeted interventions to reduce loneliness, particularly among vulnerable groups such as young adults. To examine how different forms of loneliness and coping strategies manifest in loneliness self-disclosure, we built a dataset, FIG-Loneliness (FIne-Grained Loneliness) by using Reddit posts in two young adult-focused forums and two loneliness related forums consisting of a diverse age group. We provided annotations by trained human annotators for binary and fine-grained loneliness classifications of the posts. Trained on FIG-Loneliness, two BERT-based models were used to understand loneliness forms and authors' coping strategies in these forums. Our binary loneliness classification achieved an accuracy above 97%, and fine-grained loneliness category classification reached an average accuracy of 77% across all labeled categories. With FIG-Loneliness and model predictions, we found that loneliness expressions in the young adults related forums were distinct from other forums. Those in young adult-focused forums were more likely to express concerns pertaining to peer relationship, and were potentially more sensitive to geographical isolation impacted by the COVID-19 pandemic lockdown. Also, we showed that different forms of loneliness have differential use in coping strategies.

  • 4 authors
·
Jan 19, 2022

Synergistic Learning with Multi-Task DeepONet for Efficient PDE Problem Solving

Multi-task learning (MTL) is an inductive transfer mechanism designed to leverage useful information from multiple tasks to improve generalization performance compared to single-task learning. It has been extensively explored in traditional machine learning to address issues such as data sparsity and overfitting in neural networks. In this work, we apply MTL to problems in science and engineering governed by partial differential equations (PDEs). However, implementing MTL in this context is complex, as it requires task-specific modifications to accommodate various scenarios representing different physical processes. To this end, we present a multi-task deep operator network (MT-DeepONet) to learn solutions across various functional forms of source terms in a PDE and multiple geometries in a single concurrent training session. We introduce modifications in the branch network of the vanilla DeepONet to account for various functional forms of a parameterized coefficient in a PDE. Additionally, we handle parameterized geometries by introducing a binary mask in the branch network and incorporating it into the loss term to improve convergence and generalization to new geometry tasks. Our approach is demonstrated on three benchmark problems: (1) learning different functional forms of the source term in the Fisher equation; (2) learning multiple geometries in a 2D Darcy Flow problem and showcasing better transfer learning capabilities to new geometries; and (3) learning 3D parameterized geometries for a heat transfer problem and demonstrate the ability to predict on new but similar geometries. Our MT-DeepONet framework offers a novel approach to solving PDE problems in engineering and science under a unified umbrella based on synergistic learning that reduces the overall training cost for neural operators.

  • 5 authors
·
Aug 4, 2024

Differentially Private Sequential Learning

In a differentially private sequential learning setting, agents introduce endogenous noise into their actions to maintain privacy. Applying this to a standard sequential learning model leads to different outcomes for continuous vs. binary signals. For continuous signals with a nonzero privacy budget, we introduce a novel smoothed randomized response mechanism that adapts noise based on distance to a threshold, unlike traditional randomized response, which applies uniform noise. This enables agents' actions to better reflect both private signals and observed history, accelerating asymptotic learning speed to Theta_{epsilon}(log(n)), compared to Theta(log(n)) in the non-private regime where privacy budget is infinite. Moreover, in the non-private setting, the expected stopping time for the first correct decision and the number of incorrect actions diverge, meaning early agents may make mistakes for an unreasonably long period. In contrast, under a finite privacy budget epsilon in (0,1), both remain finite, highlighting a stark contrast between private and non-private learning. Learning with continuous signals in the private regime is more efficient, as smooth randomized response enhances the log-likelihood ratio over time, improving information aggregation. Conversely, for binary signals, differential privacy noise hinders learning, as agents tend to use a constant randomized response strategy before an information cascade forms, reducing action informativeness and hampering the overall process.

  • 2 authors
·
Feb 26

SplitMeanFlow: Interval Splitting Consistency in Few-Step Generative Modeling

Generative models like Flow Matching have achieved state-of-the-art performance but are often hindered by a computationally expensive iterative sampling process. To address this, recent work has focused on few-step or one-step generation by learning the average velocity field, which directly maps noise to data. MeanFlow, a leading method in this area, learns this field by enforcing a differential identity that connects the average and instantaneous velocities. In this work, we argue that this differential formulation is a limiting special case of a more fundamental principle. We return to the first principles of average velocity and leverage the additivity property of definite integrals. This leads us to derive a novel, purely algebraic identity we term Interval Splitting Consistency. This identity establishes a self-referential relationship for the average velocity field across different time intervals without resorting to any differential operators. Based on this principle, we introduce SplitMeanFlow, a new training framework that enforces this algebraic consistency directly as a learning objective. We formally prove that the differential identity at the core of MeanFlow is recovered by taking the limit of our algebraic consistency as the interval split becomes infinitesimal. This establishes SplitMeanFlow as a direct and more general foundation for learning average velocity fields. From a practical standpoint, our algebraic approach is significantly more efficient, as it eliminates the need for JVP computations, resulting in simpler implementation, more stable training, and broader hardware compatibility. One-step and two-step SplitMeanFlow models have been successfully deployed in large-scale speech synthesis products (such as Doubao), achieving speedups of 20x.

  • 11 authors
·
Jul 22