new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 16

RecGPT Technical Report

Recommender systems are among the most impactful applications of artificial intelligence, serving as critical infrastructure connecting users, merchants, and platforms. However, most current industrial systems remain heavily reliant on historical co-occurrence patterns and log-fitting objectives, i.e., optimizing for past user interactions without explicitly modeling user intent. This log-fitting approach often leads to overfitting to narrow historical preferences, failing to capture users' evolving and latent interests. As a result, it reinforces filter bubbles and long-tail phenomena, ultimately harming user experience and threatening the sustainability of the whole recommendation ecosystem. To address these challenges, we rethink the overall design paradigm of recommender systems and propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline. By integrating large language models (LLMs) into key stages of user interest mining, item retrieval, and explanation generation, RecGPT transforms log-fitting recommendation into an intent-centric process. To effectively align general-purpose LLMs to the above domain-specific recommendation tasks at scale, RecGPT incorporates a multi-stage training paradigm, which integrates reasoning-enhanced pre-alignment and self-training evolution, guided by a Human-LLM cooperative judge system. Currently, RecGPT has been fully deployed on the Taobao App. Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders: users benefit from increased content diversity and satisfaction, merchants and the platform gain greater exposure and conversions. These comprehensive improvement results across all stakeholders validates that LLM-driven, intent-centric design can foster a more sustainable and mutually beneficial recommendation ecosystem.

  • 53 authors
·
Jul 30, 2025 2

LLM-Enhanced Reinforcement Learning for Long-Term User Satisfaction in Interactive Recommendation

Interactive recommender systems can dynamically adapt to user feedback, but often suffer from content homogeneity and filter bubble effects due to overfitting short-term user preferences. While recent efforts aim to improve content diversity, they predominantly operate in static or one-shot settings, neglecting the long-term evolution of user interests. Reinforcement learning provides a principled framework for optimizing long-term user satisfaction by modeling sequential decision-making processes. However, its application in recommendation is hindered by sparse, long-tailed user-item interactions and limited semantic planning capabilities. In this work, we propose LLM-Enhanced Reinforcement Learning (LERL), a novel hierarchical recommendation framework that integrates the semantic planning power of LLM with the fine-grained adaptability of RL. LERL consists of a high-level LLM-based planner that selects semantically diverse content categories, and a low-level RL policy that recommends personalized items within the selected semantic space. This hierarchical design narrows the action space, enhances planning efficiency, and mitigates overexposure to redundant content. Extensive experiments on real-world datasets demonstrate that LERL significantly improves long-term user satisfaction when compared with state-of-the-art baselines. The implementation of LERL is available at https://github.com/1163710212/LERL.

  • 3 authors
·
Jan 27

Beta-Rank: A Robust Convolutional Filter Pruning Method For Imbalanced Medical Image Analysis

As deep neural networks include a high number of parameters and operations, it can be a challenge to implement these models on devices with limited computational resources. Despite the development of novel pruning methods toward resource-efficient models, it has become evident that these models are not capable of handling "imbalanced" and "limited number of data points". We proposed a novel filter pruning method by considering the input and output of filters along with the values of the filters that deal with imbalanced datasets better than others. Our pruning method considers the fact that all information about the importance of a filter may not be reflected in the value of the filter. Instead, it is reflected in the changes made to the data after the filter is applied to it. In this work, three methods are compared with the same training conditions except for the ranking values of each method, and 14 methods are compared from other papers. We demonstrated that our model performed significantly better than other methods for imbalanced medical datasets. For example, when we removed up to 58% of FLOPs for the IDRID dataset and up to 45% for the ISIC dataset, our model was able to yield an equivalent (or even superior) result to the baseline model. To evaluate FLOP and parameter reduction using our model in real-world settings, we built a smartphone app, where we demonstrated a reduction of up to 79% in memory usage and 72% in prediction time. All codes and parameters for training different models are available at https://github.com/mohofar/Beta-Rank

  • 4 authors
·
Apr 14, 2023