new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation

Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose ReaRec, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.

  • 8 authors
·
Mar 28 2

DistZO2: High-Throughput and Memory-Efficient Zeroth-Order Fine-tuning LLMs with Distributed Parallel Computing

Fine-tuning large language models (LLMs) remains resource-intensive due to their sheer scale. While zeroth-order (ZO) optimization provides a memory-efficient alternative by eliminating backward passes, its application to multi-hundred-billion-parameter models is constrained by GPU memory and compute throughput. The ZO2 framework addresses the memory bottleneck by offloading model parameters to CPU memory and overlapping transformer block transfer with dual forward computation on a single GPU. However, ZO2 remains limited by its single-device execution and achieves modest throughput. In this work, we present DistZO2, a high-throughput, memory-efficient framework for distributed zeroth-order fine-tuning of LLMs. DistZO2 introduces three parallel strategies: (1) Perturbation Parallelism (PertP), which parallelizes the two perturbed forward passes across devices; (2) Distributed Data Parallelism (DDP), adapted to the scalar-gradient nature of ZO training; and (3) a unified 2D Parallelism design that combines PertP and DDP. To further mitigate communication bottlenecks introduced by parameter offloading, we propose a hardware-aware communication strategy that slices parameter blocks and redistributes them across GPUs via high-speed interconnects such as NVLink. DistZO2 scales zeroth-order fine-tuning to modern multi-GPU systems, preserving ZO2's memory efficiency while substantially improving training throughput. In our experiments on OPT-175B, DistZO2 achieves a 3x speedup over ZO2 with distributed computing. DistZO2's code has been open-sourced in https://github.com/liangyuwang/zo2.

  • 3 authors
·
Jul 3

LightSeq: Sequence Level Parallelism for Distributed Training of Long Context Transformers

Increasing the context length of large language models (LLMs) unlocks fundamentally new capabilities, but also significantly increases the memory footprints of training. Previous model-parallel systems such as Megatron-LM partition and compute different attention heads in parallel, resulting in large communication volumes, so they cannot scale beyond the number of attention heads, thereby hindering its adoption. In this paper, we introduce a new approach, LightSeq, for long-context LLMs training. LightSeq has many notable advantages. First, LightSeq partitions over the sequence dimension, hence is agnostic to model architectures and readily applicable for models with varying numbers of attention heads, such as Multi-Head, Multi-Query and Grouped-Query attention. Second, LightSeq not only requires up to 4.7x less communication than Megatron-LM on popular LLMs but also overlaps the communication with computation. To further reduce the training time, LightSeq features a novel gradient checkpointing scheme to bypass an forward computation for memory-efficient attention. We evaluate LightSeq on Llama-7B and its variants with sequence lengths from 32K to 512K. Through comprehensive experiments on single and cross-node training, we show that LightSeq achieves up to 1.24-2.01x end-to-end speedup, and a 2-8x longer sequence length on models with fewer heads, compared to Megatron-LM. Codes will be available at https://github.com/RulinShao/LightSeq.

  • 8 authors
·
Oct 4, 2023

Boundary-Guided Policy Optimization for Memory-efficient RL of Diffusion Large Language Models

A key challenge in applying reinforcement learning (RL) to diffusion large language models (dLLMs) lies in the intractability of their likelihood functions, which are essential for the RL objective, necessitating corresponding approximation in each training step. While existing methods approximate the log-likelihoods by their evidence lower bounds (ELBOs) via customized Monte Carlo (MC) sampling, the forward computational graphs of all MC samples need to be retained for the gradient computation of non-linear terms in the RL objective, resulting in significant memory overhead. This constraint restricts feasible sample sizes, leading to imprecise likelihood approximations and ultimately distorting the RL objective. To overcome this limitation, we propose Boundary-Guided Policy Optimization (BGPO), a memory-efficient RL algorithm that maximizes a specially constructed lower bound of the ELBO-based objective. This lower bound is carefully designed to satisfy two key properties: (1) Linearity: it is formulated in a linear sum where each term depends only on a single MC sample, thereby enabling gradient accumulation across samples and ensuring constant memory usage; (2) Equivalence: Both the value and gradient of this lower bound are equal to those of the ELBO-based objective in on-policy training, making it also an effective approximation for the original RL objective. These properties allow BGPO to adopt a large MC sample size, resulting in more accurate likelihood approximations and improved RL objective estimation, which in turn leads to enhanced performance. Experiments show that BGPO significantly outperforms previous RL algorithms for dLLMs in math problem solving, code generation, and planning tasks.

zai-org Z.ai
·
Oct 13 2

A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition

This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.

  • 2 authors
·
Nov 4, 2018

MatterGPT: A Generative Transformer for Multi-Property Inverse Design of Solid-State Materials

Inverse design of solid-state materials with desired properties represents a formidable challenge in materials science. Although recent generative models have demonstrated potential, their adoption has been hindered by limitations such as inefficiency, architectural constraints and restricted open-source availability. The representation of crystal structures using the SLICES (Simplified Line-Input Crystal-Encoding System) notation as a string of characters enables the use of state-of-the-art natural language processing models, such as Transformers, for crystal design. Drawing inspiration from the success of GPT models in generating coherent text, we trained a generative Transformer on the next-token prediction task to generate solid-state materials with targeted properties. We demonstrate MatterGPT's capability to generate de novo crystal structures with targeted single properties, including both lattice-insensitive (formation energy) and lattice-sensitive (band gap) properties. Furthermore, we extend MatterGPT to simultaneously target multiple properties, addressing the complex challenge of multi-objective inverse design of crystals. Our approach showcases high validity, uniqueness, and novelty in generated structures, as well as the ability to generate materials with properties beyond the training data distribution. This work represents a significant step forward in computational materials discovery, offering a powerful and open tool for designing materials with tailored properties for various applications in energy, electronics, and beyond.

  • 8 authors
·
Aug 14, 2024

FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping

Autoregressive Large Language Models (e.g., LLaMa, GPTs) are omnipresent achieving remarkable success in language understanding and generation. However, such impressive capability typically comes with a substantial model size, which presents significant challenges for autoregressive token-by-token generation. To mitigate computation overload incurred during generation, several early-exit and layer-dropping strategies have been proposed. Despite some promising success due to the redundancy across LLMs layers on metrics like Rough-L/BLUE, our careful knowledge-intensive evaluation unveils issues such as generation collapse, hallucination of wrong facts, and noticeable performance drop even at the trivial exit ratio of 10-15% of layers. We attribute these errors primarily to ineffective handling of the KV cache through state copying during early-exit. In this work, we observed the saturation of computationally expensive feed-forward blocks of LLM layers and proposed FFN-SkipLLM, which is a novel fine-grained skip strategy of autoregressive LLMs. More specifically, FFN-SkipLLM is an input-adaptive feed-forward skipping strategy that can skip 25-30% of FFN blocks of LLMs with marginal change in performance on knowledge-intensive generation tasks without any requirement to handle KV cache. Our extensive experiments and ablation across benchmarks like MT-Bench, Factoid-QA, and variable-length text summarization illustrate how our simple and ease-at-use method can facilitate faster autoregressive decoding.

  • 7 authors
·
Apr 4, 2024

Fcaformer: Forward Cross Attention in Hybrid Vision Transformer

Currently, one main research line in designing a more efficient vision transformer is reducing the computational cost of self attention modules by adopting sparse attention or using local attention windows. In contrast, we propose a different approach that aims to improve the performance of transformer-based architectures by densifying the attention pattern. Specifically, we proposed forward cross attention for hybrid vision transformer (FcaFormer), where tokens from previous blocks in the same stage are secondary used. To achieve this, the FcaFormer leverages two innovative components: learnable scale factors (LSFs) and a token merge and enhancement module (TME). The LSFs enable efficient processing of cross tokens, while the TME generates representative cross tokens. By integrating these components, the proposed FcaFormer enhances the interactions of tokens across blocks with potentially different semantics, and encourages more information flows to the lower levels. Based on the forward cross attention (Fca), we have designed a series of FcaFormer models that achieve the best trade-off between model size, computational cost, memory cost, and accuracy. For example, without the need for knowledge distillation to strengthen training, our FcaFormer achieves 83.1% top-1 accuracy on Imagenet with only 16.3 million parameters and about 3.6 billion MACs. This saves almost half of the parameters and a few computational costs while achieving 0.7% higher accuracy compared to distilled EfficientFormer.

  • 3 authors
·
Nov 14, 2022

Prefix Grouper: Efficient GRPO Training through Shared-Prefix Forward

Group Relative Policy Optimization (GRPO) enhances policy learning by computing gradients from relative comparisons among candidate outputs that share a common input prefix. Despite its effectiveness, GRPO introduces substantial computational overhead when processing long shared prefixes, which must be redundantly encoded for each group member. This inefficiency becomes a major scalability bottleneck in long-context learning scenarios. We propose Prefix Grouper, an efficient GRPO training algorithm that eliminates redundant prefix computation via a Shared-Prefix Forward strategy. In particular, by restructuring self-attention into two parts, our method enables the shared prefix to be encoded only once, while preserving full differentiability and compatibility with end-to-end training. We provide both theoretical and empirical evidence that Prefix Grouper is training-equivalent to standard GRPO: it yields identical forward outputs and backward gradients, ensuring that the optimization dynamics and final policy performance remain unchanged. Empirically, our experiments confirm that Prefix Grouper achieves consistent results while significantly reducing the computational cost of training, particularly in long-prefix scenarios. The proposed method is fully plug-and-play: it is compatible with existing GRPO-based architectures and can be seamlessly integrated into current training pipelines as a drop-in replacement, requiring no structural modifications and only minimal changes to input construction and attention computation. Prefix Grouper enables the use of larger group sizes under the same computational budget, thereby improving the scalability of GRPO to more complex tasks and larger models. Code is now available at https://github.com/johncaged/PrefixGrouper

A Unified Framework for Forward and Inverse Problems in Subsurface Imaging using Latent Space Translations

In subsurface imaging, learning the mapping from velocity maps to seismic waveforms (forward problem) and waveforms to velocity (inverse problem) is important for several applications. While traditional techniques for solving forward and inverse problems are computationally prohibitive, there is a growing interest in leveraging recent advances in deep learning to learn the mapping between velocity maps and seismic waveform images directly from data. Despite the variety of architectures explored in previous works, several open questions still remain unanswered such as the effect of latent space sizes, the importance of manifold learning, the complexity of translation models, and the value of jointly solving forward and inverse problems. We propose a unified framework to systematically characterize prior research in this area termed the Generalized Forward-Inverse (GFI) framework, building on the assumption of manifolds and latent space translations. We show that GFI encompasses previous works in deep learning for subsurface imaging, which can be viewed as specific instantiations of GFI. We also propose two new model architectures within the framework of GFI: Latent U-Net and Invertible X-Net, leveraging the power of U-Nets for domain translation and the ability of IU-Nets to simultaneously learn forward and inverse translations, respectively. We show that our proposed models achieve state-of-the-art (SOTA) performance for forward and inverse problems on a wide range of synthetic datasets, and also investigate their zero-shot effectiveness on two real-world-like datasets. Our code is available at https://github.com/KGML-lab/Generalized-Forward-Inverse-Framework-for-DL4SI

  • 5 authors
·
Oct 15, 2024

EchoGen: Generating Visual Echoes in Any Scene via Feed-Forward Subject-Driven Auto-Regressive Model

Subject-driven generation is a critical task in creative AI; yet current state-of-the-art methods present a stark trade-off. They either rely on computationally expensive, per-subject fine-tuning, sacrificing efficiency and zero-shot capability, or employ feed-forward architectures built on diffusion models, which are inherently plagued by slow inference speeds. Visual Auto-Regressive (VAR) models are renowned for their rapid sampling speeds and strong generative quality, making them an ideal yet underexplored foundation for resolving this tension. To bridge this gap, we introduce EchoGen, a pioneering framework that empowers VAR models with subject-driven generation capabilities. The core design of EchoGen is an effective dual-path injection strategy that disentangles a subject's high-level semantic identity from its low-level fine-grained details, enabling enhanced controllability and fidelity. We employ a semantic encoder to extract the subject's abstract identity, which is injected through decoupled cross-attention to guide the overall composition. Concurrently, a content encoder captures intricate visual details, which are integrated via a multi-modal attention mechanism to ensure high-fidelity texture and structural preservation. To the best of our knowledge, EchoGen is the first feed-forward subject-driven framework built upon VAR models. Both quantitative and qualitative results substantiate our design, demonstrating that EchoGen achieves subject fidelity and image quality comparable to state-of-the-art diffusion-based methods with significantly lower sampling latency. Code and models will be released soon.

  • 8 authors
·
Sep 30

Duo-LLM: A Framework for Studying Adaptive Computation in Large Language Models

Large Language Models (LLMs) typically generate outputs token by token using a fixed compute budget, leading to inefficient resource utilization. To address this shortcoming, recent advancements in mixture of expert (MoE) models, speculative decoding, and early exit strategies leverage the insight that computational demands can vary significantly based on the complexity and nature of the input. However, identifying optimal routing patterns for dynamic execution remains an open challenge, limiting the full potential of these adaptive methods. To address this need, we study adaptive computation in LLMs more systematically. We propose a novel framework that integrates smaller auxiliary modules within each Feed-Forward Network layer of the LLM. This design enables dynamic routing of tokens based on task complexity: tokens can be processed by either the small or big modules at each layer, or even bypass certain layers entirely. This allows us to introduce a novel notion of a token's difficulty, defined by its potential to benefit from additional computational resources. Importantly, by employing oracles to identify optimal patterns of adaptive computations, we gain valuable insights into the internal workings of LLMs and the routing processes in a simplified heterogeneous MoE setup. We show that trained routers operate differently from oracles and often yield suboptimal solutions. Notably, activating a large module in just one layer outperforms models that use large modules across all layers, underscoring the gap between practical implementations of routing in MoE models and theoretical optima for adaptive computation.

  • 9 authors
·
Oct 1, 2024

MoE++: Accelerating Mixture-of-Experts Methods with Zero-Computation Experts

In this work, we aim to simultaneously enhance the effectiveness and efficiency of Mixture-of-Experts (MoE) methods. To achieve this, we propose MoE++, a general and heterogeneous MoE framework that integrates both Feed-Forward Network~(FFN) and zero-computation experts. Specifically, we introduce three types of zero-computation experts: the zero expert, copy expert, and constant expert, which correspond to discard, skip, and replace operations, respectively. This design offers three key advantages: (i) Low Computing Overhead: Unlike the uniform mixing mechanism for all tokens within vanilla MoE, MoE++ allows each token to engage with a dynamic number of FFNs, be adjusted by constant vectors, or even skip the MoE layer entirely. (ii) High Performance: By enabling simple tokens to utilize fewer FFN experts, MoE++ allows more experts to focus on challenging tokens, thereby unlocking greater performance potential than vanilla MoE. (iii) Deployment Friendly: Given that zero-computation experts have negligible parameters, we can deploy all zero-computation experts on each GPU, eliminating the significant communication overhead and expert load imbalance associated with FFN experts distributed across different GPUs. Moreover, we leverage gating residuals, enabling each token to consider the pathway taken in the previous layer when selecting the appropriate experts. Extensive experimental results demonstrate that MoE++ achieves better performance while delivering 1.1-2.1x expert forward throughput compared to a vanilla MoE model of the same size, which lays a solid foundation for developing advanced and efficient MoE-related models.

  • 4 authors
·
Oct 9, 2024

Taming Feed-forward Reconstruction Models as Latent Encoders for 3D Generative Models

Recent AI-based 3D content creation has largely evolved along two paths: feed-forward image-to-3D reconstruction approaches and 3D generative models trained with 2D or 3D supervision. In this work, we show that existing feed-forward reconstruction methods can serve as effective latent encoders for training 3D generative models, thereby bridging these two paradigms. By reusing powerful pre-trained reconstruction models, we avoid computationally expensive encoder network training and obtain rich 3D latent features for generative modeling for free. However, the latent spaces of reconstruction models are not well-suited for generative modeling due to their unstructured nature. To enable flow-based model training on these latent features, we develop post-processing pipelines, including protocols to standardize the features and spatial weighting to concentrate on important regions. We further incorporate a 2D image space perceptual rendering loss to handle the high-dimensional latent spaces. Finally, we propose a multi-stream transformer-based rectified flow architecture to achieve linear scaling and high-quality text-conditioned 3D generation. Our framework leverages the advancements of feed-forward reconstruction models to enhance the scalability of 3D generative modeling, achieving both high computational efficiency and state-of-the-art performance in text-to-3D generation.

  • 4 authors
·
Dec 31, 2024

ZeroQuant-FP: A Leap Forward in LLMs Post-Training W4A8 Quantization Using Floating-Point Formats

In the complex domain of large language models (LLMs), striking a balance between computational efficiency and maintaining model quality is a formidable challenge. Navigating the inherent limitations of uniform quantization, particularly when dealing with outliers, and motivated by the launch of NVIDIA's H100 hardware, this study delves into the viability of floating-point (FP) quantization, particularly focusing on FP8 and FP4, as a potential solution. Our comprehensive investigation reveals that for LLMs, FP8 activation consistently outshines its integer (INT8) equivalent, with the performance edge becoming more noticeable in models possessing parameters beyond one billion. For weight quantization, our findings indicate that FP4 exhibits comparable, if not superior, performance to INT4, simplifying deployment on FP-supported hardware like H100. To mitigate the overhead from precision alignment caused by the disparity between weights and activations, we propose two scaling constraints for weight quantization that negligibly impact the performance compared to the standard W4A8 model. We additionally enhance our quantization methods by integrating the Low Rank Compensation (LoRC) strategy, yielding improvements especially in smaller models. The results of our investigation emphasize the immense potential of FP quantization for LLMs, paving the way for high-efficiency deployment in resource-limited settings.

  • 3 authors
·
Jul 19, 2023

Review of Feed-forward 3D Reconstruction: From DUSt3R to VGGT

3D reconstruction, which aims to recover the dense three-dimensional structure of a scene, is a cornerstone technology for numerous applications, including augmented/virtual reality, autonomous driving, and robotics. While traditional pipelines like Structure from Motion (SfM) and Multi-View Stereo (MVS) achieve high precision through iterative optimization, they are limited by complex workflows, high computational cost, and poor robustness in challenging scenarios like texture-less regions. Recently, deep learning has catalyzed a paradigm shift in 3D reconstruction. A new family of models, exemplified by DUSt3R, has pioneered a feed-forward approach. These models employ a unified deep network to jointly infer camera poses and dense geometry directly from an Unconstrained set of images in a single forward pass. This survey provides a systematic review of this emerging domain. We begin by dissecting the technical framework of these feed-forward models, including their Transformer-based correspondence modeling, joint pose and geometry regression mechanisms, and strategies for scaling from two-view to multi-view scenarios. To highlight the disruptive nature of this new paradigm, we contrast it with both traditional pipelines and earlier learning-based methods like MVSNet. Furthermore, we provide an overview of relevant datasets and evaluation metrics. Finally, we discuss the technology's broad application prospects and identify key future challenges and opportunities, such as model accuracy and scalability, and handling dynamic scenes.

  • 7 authors
·
Jul 11

Generative Adapter: Contextualizing Language Models in Parameters with A Single Forward Pass

Large language models (LMs) are typically adapted to improve performance on new contexts (\eg text prompts that define new tasks or domains) through fine-tuning or prompting. However, there is an accuracy compute tradeoff -- fine-tuning incurs significant training cost and prompting increases inference overhead. We introduce GenerativeAdapter, an effective and efficient adaptation method that directly maps new contexts to low-rank LM adapters, thereby significantly reducing inference overhead with no need for finetuning. The adapter generator is trained via self-supervised learning, and can be used to adapt a single frozen LM for any new task simply by mapping the associated task or domain context to a new adapter. We apply GenerativeAdapter to two pretrained LMs (Mistral-7B-Instruct and Llama2-7B-Chat) and evaluate the adapted models in three adaption scenarios: knowledge acquisition from documents, learning from demonstrations, and personalization for users. In StreamingQA, our approach is effective in injecting knowledge into the LM's parameters, achieving a 63.5% improvement in F1 score over the model with supervised fine-tuning (from 19.5 to 31.5) for contexts as long as 32K tokens. In the MetaICL in-context learning evaluation, our method achieves an average accuracy of 44.9 across 26 tasks, outperforming the base model. On MSC, our method proves to be highly competitive in memorizing user information from conversations with a 4x reduction in computation and memory costs compared to prompting with full conversation history. Together, these results suggest that GenerativeAdapter should allow for general adaption to a wide range of different contexts.

  • 8 authors
·
Nov 7, 2024

NoProp: Training Neural Networks without Back-propagation or Forward-propagation

The canonical deep learning approach for learning requires computing a gradient term at each layer by back-propagating the error signal from the output towards each learnable parameter. Given the stacked structure of neural networks, where each layer builds on the representation of the layer below, this approach leads to hierarchical representations. More abstract features live on the top layers of the model, while features on lower layers are expected to be less abstract. In contrast to this, we introduce a new learning method named NoProp, which does not rely on either forward or backwards propagation. Instead, NoProp takes inspiration from diffusion and flow matching methods, where each layer independently learns to denoise a noisy target. We believe this work takes a first step towards introducing a new family of gradient-free learning methods, that does not learn hierarchical representations -- at least not in the usual sense. NoProp needs to fix the representation at each layer beforehand to a noised version of the target, learning a local denoising process that can then be exploited at inference. We demonstrate the effectiveness of our method on MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks. Our results show that NoProp is a viable learning algorithm which achieves superior accuracy, is easier to use and computationally more efficient compared to other existing back-propagation-free methods. By departing from the traditional gradient based learning paradigm, NoProp alters how credit assignment is done within the network, enabling more efficient distributed learning as well as potentially impacting other characteristics of the learning process.

  • 3 authors
·
Mar 31

Learning meters of Arabic and English poems with Recurrent Neural Networks: a step forward for language understanding and synthesis

Recognizing a piece of writing as a poem or prose is usually easy for the majority of people; however, only specialists can determine which meter a poem belongs to. In this paper, we build Recurrent Neural Network (RNN) models that can classify poems according to their meters from plain text. The input text is encoded at the character level and directly fed to the models without feature handcrafting. This is a step forward for machine understanding and synthesis of languages in general, and Arabic language in particular. Among the 16 poem meters of Arabic and the 4 meters of English the networks were able to correctly classify poem with an overall accuracy of 96.38\% and 82.31\% respectively. The poem datasets used to conduct this research were massive, over 1.5 million of verses, and were crawled from different nontechnical sources, almost Arabic and English literature sites, and in different heterogeneous and unstructured formats. These datasets are now made publicly available in clean, structured, and documented format for other future research. To the best of the authors' knowledge, this research is the first to address classifying poem meters in a machine learning approach, in general, and in RNN featureless based approach, in particular. In addition, the dataset is the first publicly available dataset ready for the purpose of future computational research.

  • 4 authors
·
May 7, 2019

Softmax-free Linear Transformers

Vision transformers (ViTs) have pushed the state-of-the-art for visual perception tasks. The self-attention mechanism underpinning the strength of ViTs has a quadratic complexity in both computation and memory usage. This motivates the development of approximating the self-attention at linear complexity. However, an in-depth analysis in this work reveals that existing methods are either theoretically flawed or empirically ineffective for visual recognition. We identify that their limitations are rooted in the inheritance of softmax-based self-attention during approximations, that is, normalizing the scaled dot-product between token feature vectors using the softmax function. As preserving the softmax operation challenges any subsequent linearization efforts. By this insight, a family of Softmax-Free Transformers (SOFT) are proposed. Specifically, a Gaussian kernel function is adopted to replace the dot-product similarity, enabling a full self-attention matrix to be approximated under low-rank matrix decomposition. For computational robustness, we estimate the Moore-Penrose inverse using an iterative Newton-Raphson method in the forward process only, while calculating its theoretical gradients only once in the backward process. To further expand applicability (e.g., dense prediction tasks), an efficient symmetric normalization technique is introduced. Extensive experiments on ImageNet, COCO, and ADE20K show that our SOFT significantly improves the computational efficiency of existing ViT variants. With linear complexity, much longer token sequences are permitted by SOFT, resulting in superior trade-off between accuracy and complexity. Code and models are available at https://github.com/fudan-zvg/SOFT.

  • 6 authors
·
Jul 4, 2022

End-to-End On-Device Quantization-Aware Training for LLMs at Inference Cost

Quantization is an effective technique to reduce the deployment cost of large language models (LLMs), and post-training quantization (PTQ) has been widely studied due to its efficiency. However, existing PTQ methods are limited by their inability to fine-tune model parameters and often suffer significant accuracy loss in low-bit scenarios. Quantization-aware training (QAT) provides a more principled solution, but its reliance on backpropagation incurs prohibitive memory costs, limiting its practicality for LLM deployment. To address these challenges, we propose ZeroQAT, a zeroth-order optimization-based QAT framework that supports both weight and activation quantization. ZeroQAT leverages forward-only gradient estimation to eliminate backpropagation, substantially reducing computational and memory overhead while retaining the benefits of end-to-end optimization. We further introduce a lightweight variant of ZeroQAT for quantized fine-tuning, which freezes and pre-quantizes most parameters to further cut memory usage. Experiments show that ZeroQAT consistently outperforms representative PTQ and QAT baselines while requiring significantly less memory. For example, ZeroQAT enables fine-tuning of a 13B model at extremely low bit-widths (e.g., 2-4 bits) on a single 8GB GPU, and even allows fine-tuning a 6.7B model on a OnePlus 12 smartphone, demonstrating its practicality for end-to-end QAT on resource-limited edge devices.

  • 12 authors
·
Aug 20

SLA: Beyond Sparsity in Diffusion Transformers via Fine-Tunable Sparse-Linear Attention

In Diffusion Transformer (DiT) models, particularly for video generation, attention latency is a major bottleneck due to the long sequence length and the quadratic complexity. We find that attention weights can be separated into two parts: a small fraction of large weights with high rank and the remaining weights with very low rank. This naturally suggests applying sparse acceleration to the first part and low-rank acceleration to the second. Based on this finding, we propose SLA (Sparse-Linear Attention), a trainable attention method that fuses sparse and linear attention to accelerate diffusion models. SLA classifies attention weights into critical, marginal, and negligible categories, applying O(N^2) attention to critical weights, O(N) attention to marginal weights, and skipping negligible ones. SLA combines these computations into a single GPU kernel and supports both forward and backward passes. With only a few fine-tuning steps using SLA, DiT models achieve a 20x reduction in attention computation, resulting in significant acceleration without loss of generation quality. Experiments show that SLA reduces attention computation by 95% without degrading end-to-end generation quality, outperforming baseline methods. In addition, we implement an efficient GPU kernel for SLA, which yields a 13.7x speedup in attention computation and a 2.2x end-to-end speedup in video generation on Wan2.1-1.3B.

Training Long-Context LLMs Efficiently via Chunk-wise Optimization

While long-context large language models (LLMs) exhibit remarkable document processing capabilities, their prohibitively high training costs often hinder customized applications. To mitigate this issue, we propose Sequential Chunk-wise Optimization (SeCO), a memory-efficient training paradigm that partitions lengthy inputs into manageable chunks. Each chunk independently constructs its computational graph and performs localized backpropagation, ensuring that only one chunk's forward activations are stored in memory. Building on SeCO, we further introduce Sparse Chunk-wise Optimization (SpaCO), which reduces computational overhead by selectively propagating gradients to specific chunks and incorporates a carefully designed compensation factor to ensure unbiased gradient estimation. SpaCO decouples the computational cost of backpropagation from the context length, enabling training time to gradually converge to inference time as sequences become longer. Implemented as lightweight training wrappers, both SeCO and SpaCO offer substantial practical benefits. For example, when fine-tuning an 8B model with LoRA on a single RTX 3090 GPU, SeCO expands maximum sequence length from 1K to 16K tokens, while SpaCO demonstrates accelerated training speed -- achieving up to 3x faster than SeCO under the same experimental setup. These innovations provide new insights into optimizing long-context models, making them more accessible for practical applications. We have open-sourced the code at https://github.com/wenhaoli-xmu/seco{here}.

  • 5 authors
·
May 22

Activator: GLU Activations as The Core Functions of a Vision Transformer

Transformer architecture currently represents the main driver behind many successes in a variety of tasks addressed by deep learning, especially the recent advances in natural language processing (NLP) culminating with large language models (LLM). In addition, transformer architecture has found a wide spread of interest from computer vision (CV) researchers and practitioners, allowing for many advancements in vision-related tasks and opening the door for multi-task and multi-modal deep learning architectures that share the same principle of operation. One drawback to these architectures is their reliance on the scaled dot product attention mechanism with the softmax activation function, which is computationally expensive and requires large compute capabilities both for training and inference. This paper investigates substituting the attention mechanism usually adopted for transformer architecture with an architecture incorporating gated linear unit (GLU) activation within a multi-layer perceptron (MLP) structure in conjunction with the default MLP incorporated in the traditional transformer design. Another step forward taken by this paper is to eliminate the second non-gated MLP to further reduce the computational cost. Experimental assessments conducted by this research show that both proposed modifications and reductions offer competitive performance in relation to baseline architectures, in support of the aims of this work in establishing a more efficient yet capable alternative to the traditional attention mechanism as the core component in designing transformer architectures.

  • 2 authors
·
May 24, 2024

FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models

Recent research has demonstrated that Feed-Forward Networks (FFNs) in Large Language Models (LLMs) play a pivotal role in storing diverse linguistic and factual knowledge. Conventional methods frequently face challenges due to knowledge confusion stemming from their monolithic and redundant architectures, which calls for more efficient solutions with minimal computational overhead, particularly for LLMs. In this paper, we explore the FFN computation paradigm in LLMs and introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications, while maintaining the same level of performance. Furthermore, we embed a router from the Mixture-of-Experts (MoE), combined with our devised Prior-Approximate (PA) loss term that facilitates the dynamic activation of experts and knowledge adaptation, thereby accelerating computational processes and enhancing performance using minimal training data and fine-tuning steps. FactorLLM thus enables efficient knowledge factorization and activates select groups of experts specifically tailored to designated tasks, emulating the interactive functional segmentation of the human brain. Extensive experiments across various benchmarks demonstrate the effectiveness of our proposed FactorLLM which achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed. Code: https://github.com/zhenwuweihe/FactorLLM.

  • 9 authors
·
Aug 15, 2024

Transform Once: Efficient Operator Learning in Frequency Domain

Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance-preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in average predictive error across tasks.

  • 7 authors
·
Nov 25, 2022

Efficiently Training 7B LLM with 1 Million Sequence Length on 8 GPUs

Nowadays, Large Language Models (LLMs) have been trained using extended context lengths to foster more creative applications. However, long context training poses great challenges considering the constraint of GPU memory. It not only leads to substantial activation memory consumption during training, but also incurs considerable memory fragmentation. To facilitate long context training, existing frameworks have adopted strategies such as recomputation and various forms of parallelisms. Nevertheless, these techniques rely on redundant computation or extensive communication, resulting in low Model FLOPS Utilization (MFU). In this paper, we propose MEMO, a novel LLM training framework designed for fine-grained activation memory management. Given the quadratic scaling of computation and linear scaling of memory with sequence lengths when using FlashAttention, we offload memory-consuming activations to CPU memory after each layer's forward pass and fetch them during the backward pass. To maximize the swapping of activations without hindering computation, and to avoid exhausting limited CPU memory, we implement a token-wise activation recomputation and swapping mechanism. Furthermore, we tackle the memory fragmentation issue by employing a bi-level Mixed Integer Programming (MIP) approach, optimizing the reuse of memory across transformer layers. Empirical results demonstrate that MEMO achieves an average of 2.42x and 2.26x MFU compared to Megatron-LM and DeepSpeed, respectively. This improvement is attributed to MEMO's ability to minimize memory fragmentation, reduce recomputation and intensive communication, and circumvent the delays associated with the memory reorganization process due to fragmentation. By leveraging fine-grained activation memory management, MEMO facilitates efficient training of 7B LLM with 1 million sequence length on just 8 A800 GPUs, achieving an MFU of 52.30%.

  • 12 authors
·
Jul 16, 2024

Q-Sched: Pushing the Boundaries of Few-Step Diffusion Models with Quantization-Aware Scheduling

Text-to-image diffusion models are computationally intensive, often requiring dozens of forward passes through large transformer backbones. For instance, Stable Diffusion XL generates high-quality images with 50 evaluations of a 2.6B-parameter model, an expensive process even for a single batch. Few-step diffusion models reduce this cost to 2-8 denoising steps but still depend on large, uncompressed U-Net or diffusion transformer backbones, which are often too costly for full-precision inference without datacenter GPUs. These requirements also limit existing post-training quantization methods that rely on full-precision calibration. We introduce Q-Sched, a new paradigm for post-training quantization that modifies the diffusion model scheduler rather than model weights. By adjusting the few-step sampling trajectory, Q-Sched achieves full-precision accuracy with a 4x reduction in model size. To learn quantization-aware pre-conditioning coefficients, we propose the JAQ loss, which combines text-image compatibility with an image quality metric for fine-grained optimization. JAQ is reference-free and requires only a handful of calibration prompts, avoiding full-precision inference during calibration. Q-Sched delivers substantial gains: a 15.5% FID improvement over the FP16 4-step Latent Consistency Model and a 16.6% improvement over the FP16 8-step Phased Consistency Model, showing that quantization and few-step distillation are complementary for high-fidelity generation. A large-scale user study with more than 80,000 annotations further confirms Q-Sched's effectiveness on both FLUX.1[schnell] and SDXL-Turbo.

ReAGent: Towards A Model-agnostic Feature Attribution Method for Generative Language Models

Feature attribution methods (FAs), such as gradients and attention, are widely employed approaches to derive the importance of all input features to the model predictions. Existing work in natural language processing has mostly focused on developing and testing FAs for encoder-only language models (LMs) in classification tasks. However, it is unknown if it is faithful to use these FAs for decoder-only models on text generation, due to the inherent differences between model architectures and task settings respectively. Moreover, previous work has demonstrated that there is no `one-wins-all' FA across models and tasks. This makes the selection of a FA computationally expensive for large LMs since input importance derivation often requires multiple forward and backward passes including gradient computations that might be prohibitive even with access to large compute. To address these issues, we present a model-agnostic FA for generative LMs called Recursive Attribution Generator (ReAGent). Our method updates the token importance distribution in a recursive manner. For each update, we compute the difference in the probability distribution over the vocabulary for predicting the next token between using the original input and using a modified version where a part of the input is replaced with RoBERTa predictions. Our intuition is that replacing an important token in the context should have resulted in a larger change in the model's confidence in predicting the token than replacing an unimportant token. Our method can be universally applied to any generative LM without accessing internal model weights or additional training and fine-tuning, as most other FAs require. We extensively compare the faithfulness of ReAGent with seven popular FAs across six decoder-only LMs of various sizes. The results show that our method consistently provides more faithful token importance distributions.

  • 2 authors
·
Feb 1, 2024

Masked Autoencoders Enable Efficient Knowledge Distillers

This paper studies the potential of distilling knowledge from pre-trained models, especially Masked Autoencoders. Our approach is simple: in addition to optimizing the pixel reconstruction loss on masked inputs, we minimize the distance between the intermediate feature map of the teacher model and that of the student model. This design leads to a computationally efficient knowledge distillation framework, given 1) only a small visible subset of patches is used, and 2) the (cumbersome) teacher model only needs to be partially executed, ie, forward propagate inputs through the first few layers, for obtaining intermediate feature maps. Compared to directly distilling fine-tuned models, distilling pre-trained models substantially improves downstream performance. For example, by distilling the knowledge from an MAE pre-trained ViT-L into a ViT-B, our method achieves 84.0% ImageNet top-1 accuracy, outperforming the baseline of directly distilling a fine-tuned ViT-L by 1.2%. More intriguingly, our method can robustly distill knowledge from teacher models even with extremely high masking ratios: e.g., with 95% masking ratio where merely TEN patches are visible during distillation, our ViT-B competitively attains a top-1 ImageNet accuracy of 83.6%; surprisingly, it can still secure 82.4% top-1 ImageNet accuracy by aggressively training with just FOUR visible patches (98% masking ratio). The code and models are publicly available at https://github.com/UCSC-VLAA/DMAE.

  • 8 authors
·
Aug 25, 2022

Opening the Blackbox: Accelerating Neural Differential Equations by Regularizing Internal Solver Heuristics

Democratization of machine learning requires architectures that automatically adapt to new problems. Neural Differential Equations (NDEs) have emerged as a popular modeling framework by removing the need for ML practitioners to choose the number of layers in a recurrent model. While we can control the computational cost by choosing the number of layers in standard architectures, in NDEs the number of neural network evaluations for a forward pass can depend on the number of steps of the adaptive ODE solver. But, can we force the NDE to learn the version with the least steps while not increasing the training cost? Current strategies to overcome slow prediction require high order automatic differentiation, leading to significantly higher training time. We describe a novel regularization method that uses the internal cost heuristics of adaptive differential equation solvers combined with discrete adjoint sensitivities to guide the training process towards learning NDEs that are easier to solve. This approach opens up the blackbox numerical analysis behind the differential equation solver's algorithm and directly uses its local error estimates and stiffness heuristics as cheap and accurate cost estimates. We incorporate our method without any change in the underlying NDE framework and show that our method extends beyond Ordinary Differential Equations to accommodate Neural Stochastic Differential Equations. We demonstrate how our approach can halve the prediction time and, unlike other methods which can increase the training time by an order of magnitude, we demonstrate similar reduction in training times. Together this showcases how the knowledge embedded within state-of-the-art equation solvers can be used to enhance machine learning.

  • 4 authors
·
May 9, 2021

Robust Attentional Aggregation of Deep Feature Sets for Multi-view 3D Reconstruction

We study the problem of recovering an underlying 3D shape from a set of images. Existing learning based approaches usually resort to recurrent neural nets, e.g., GRU, or intuitive pooling operations, e.g., max/mean poolings, to fuse multiple deep features encoded from input images. However, GRU based approaches are unable to consistently estimate 3D shapes given different permutations of the same set of input images as the recurrent unit is permutation variant. It is also unlikely to refine the 3D shape given more images due to the long-term memory loss of GRU. Commonly used pooling approaches are limited to capturing partial information, e.g., max/mean values, ignoring other valuable features. In this paper, we present a new feed-forward neural module, named AttSets, together with a dedicated training algorithm, named FASet, to attentively aggregate an arbitrarily sized deep feature set for multi-view 3D reconstruction. The AttSets module is permutation invariant, computationally efficient and flexible to implement, while the FASet algorithm enables the AttSets based network to be remarkably robust and generalize to an arbitrary number of input images. We thoroughly evaluate FASet and the properties of AttSets on multiple large public datasets. Extensive experiments show that AttSets together with FASet algorithm significantly outperforms existing aggregation approaches.

  • 4 authors
·
Aug 2, 2018

Backpropagation-free Training of Deep Physical Neural Networks

Recent years have witnessed the outstanding success of deep learning in various fields such as vision and natural language processing. This success is largely indebted to the massive size of deep learning models that is expected to increase unceasingly. This growth of the deep learning models is accompanied by issues related to their considerable energy consumption, both during the training and inference phases, as well as their scalability. Although a number of work based on unconventional physical systems have been proposed which addresses the issue of energy efficiency in the inference phase, efficient training of deep learning models has remained unaddressed. So far, training of digital deep learning models mainly relies on backpropagation, which is not suitable for physical implementation as it requires perfect knowledge of the computation performed in the so-called forward pass of the neural network. Here, we tackle this issue by proposing a simple deep neural network architecture augmented by a biologically plausible learning algorithm, referred to as "model-free forward-forward training". The proposed architecture enables training deep physical neural networks consisting of layers of physical nonlinear systems, without requiring detailed knowledge of the nonlinear physical layers' properties. We show that our method outperforms state-of-the-art hardware-aware training methods by improving training speed, decreasing digital computations, and reducing power consumption in physical systems. We demonstrate the adaptability of the proposed method, even in systems exposed to dynamic or unpredictable external perturbations. To showcase the universality of our approach, we train diverse wave-based physical neural networks that vary in the underlying wave phenomenon and the type of non-linearity they use, to perform vowel and image classification tasks experimentally.

  • 5 authors
·
Apr 20, 2023

Adaptive Draft-Verification for Efficient Large Language Model Decoding

Large language model (LLM) decoding involves generating a sequence of tokens based on a given context, where each token is predicted one at a time using the model's learned probabilities. The typical autoregressive decoding method requires a separate forward pass through the model for each token generated, which is computationally inefficient and poses challenges for deploying LLMs in latency-sensitive scenarios. The main limitations of current decoding methods stem from their inefficiencies and resource demands. Existing approaches either necessitate fine-tuning smaller models, which is resource-intensive, or rely on fixed retrieval schemes to construct drafts for the next tokens, which lack adaptability and fail to generalize across different models and contexts. To address these issues, we introduce a novel methodology called ADED, which accelerates LLM decoding without requiring fine-tuning. Our approach involves an adaptive draft-verification process that evolves over time to improve efficiency. We utilize a tri-gram matrix-based LLM representation to dynamically approximate the output distribution of the LLM, allowing the model to adjust to changing token probabilities during the decoding process. Additionally, we implement a draft construction mechanism that effectively balances exploration and exploitation, ensuring that the drafts generated are both diverse and close to the true output distribution of the LLM. The importance of this design lies in its ability to optimize the draft distribution adaptively, leading to faster and more accurate decoding. Through extensive experiments on various benchmark datasets and LLM architectures, we demonstrate that ADED significantly accelerates the decoding process while maintaining high accuracy, making it suitable for deployment in a wide range of practical applications.

  • 4 authors
·
Jun 27, 2024 2

Global Knowledge Calibration for Fast Open-Vocabulary Segmentation

Recent advancements in pre-trained vision-language models, such as CLIP, have enabled the segmentation of arbitrary concepts solely from textual inputs, a process commonly referred to as open-vocabulary semantic segmentation (OVS). However, existing OVS techniques confront a fundamental challenge: the trained classifier tends to overfit on the base classes observed during training, resulting in suboptimal generalization performance to unseen classes. To mitigate this issue, recent studies have proposed the use of an additional frozen pre-trained CLIP for classification. Nonetheless, this approach incurs heavy computational overheads as the CLIP vision encoder must be repeatedly forward-passed for each mask, rendering it impractical for real-world applications. To address this challenge, our objective is to develop a fast OVS model that can perform comparably or better without the extra computational burden of the CLIP image encoder during inference. To this end, we propose a core idea of preserving the generalizable representation when fine-tuning on known classes. Specifically, we introduce a text diversification strategy that generates a set of synonyms for each training category, which prevents the learned representation from collapsing onto specific known category names. Additionally, we employ a text-guided knowledge distillation method to preserve the generalizable knowledge of CLIP. Extensive experiments demonstrate that our proposed model achieves robust generalization performance across various datasets. Furthermore, we perform a preliminary exploration of open-vocabulary video segmentation and present a benchmark that can facilitate future open-vocabulary research in the video domain.

  • 11 authors
·
Mar 16, 2023

Hierarchical Reasoning Model

Reasoning, the process of devising and executing complex goal-oriented action sequences, remains a critical challenge in AI. Current large language models (LLMs) primarily employ Chain-of-Thought (CoT) techniques, which suffer from brittle task decomposition, extensive data requirements, and high latency. Inspired by the hierarchical and multi-timescale processing in the human brain, we propose the Hierarchical Reasoning Model (HRM), a novel recurrent architecture that attains significant computational depth while maintaining both training stability and efficiency. HRM executes sequential reasoning tasks in a single forward pass without explicit supervision of the intermediate process, through two interdependent recurrent modules: a high-level module responsible for slow, abstract planning, and a low-level module handling rapid, detailed computations. With only 27 million parameters, HRM achieves exceptional performance on complex reasoning tasks using only 1000 training samples. The model operates without pre-training or CoT data, yet achieves nearly perfect performance on challenging tasks including complex Sudoku puzzles and optimal path finding in large mazes. Furthermore, HRM outperforms much larger models with significantly longer context windows on the Abstraction and Reasoning Corpus (ARC), a key benchmark for measuring artificial general intelligence capabilities. These results underscore HRM's potential as a transformative advancement toward universal computation and general-purpose reasoning systems.

  • 9 authors
·
Jun 26 4

ARTDECO: Towards Efficient and High-Fidelity On-the-Fly 3D Reconstruction with Structured Scene Representation

On-the-fly 3D reconstruction from monocular image sequences is a long-standing challenge in computer vision, critical for applications such as real-to-sim, AR/VR, and robotics. Existing methods face a major tradeoff: per-scene optimization yields high fidelity but is computationally expensive, whereas feed-forward foundation models enable real-time inference but struggle with accuracy and robustness. In this work, we propose ARTDECO, a unified framework that combines the efficiency of feed-forward models with the reliability of SLAM-based pipelines. ARTDECO uses 3D foundation models for pose estimation and point prediction, coupled with a Gaussian decoder that transforms multi-scale features into structured 3D Gaussians. To sustain both fidelity and efficiency at scale, we design a hierarchical Gaussian representation with a LoD-aware rendering strategy, which improves rendering fidelity while reducing redundancy. Experiments on eight diverse indoor and outdoor benchmarks show that ARTDECO delivers interactive performance comparable to SLAM, robustness similar to feed-forward systems, and reconstruction quality close to per-scene optimization, providing a practical path toward on-the-fly digitization of real-world environments with both accurate geometry and high visual fidelity. Explore more demos on our project page: https://city-super.github.io/artdeco/.

iLRM: An Iterative Large 3D Reconstruction Model

Feed-forward 3D modeling has emerged as a promising approach for rapid and high-quality 3D reconstruction. In particular, directly generating explicit 3D representations, such as 3D Gaussian splatting, has attracted significant attention due to its fast and high-quality rendering, as well as numerous applications. However, many state-of-the-art methods, primarily based on transformer architectures, suffer from severe scalability issues because they rely on full attention across image tokens from multiple input views, resulting in prohibitive computational costs as the number of views or image resolution increases. Toward a scalable and efficient feed-forward 3D reconstruction, we introduce an iterative Large 3D Reconstruction Model (iLRM) that generates 3D Gaussian representations through an iterative refinement mechanism, guided by three core principles: (1) decoupling the scene representation from input-view images to enable compact 3D representations; (2) decomposing fully-attentional multi-view interactions into a two-stage attention scheme to reduce computational costs; and (3) injecting high-resolution information at every layer to achieve high-fidelity reconstruction. Experimental results on widely used datasets, such as RE10K and DL3DV, demonstrate that iLRM outperforms existing methods in both reconstruction quality and speed. Notably, iLRM exhibits superior scalability, delivering significantly higher reconstruction quality under comparable computational cost by efficiently leveraging a larger number of input views.

  • 6 authors
·
Jul 31 2

Evolution Strategies at the Hyperscale

We introduce Evolution Guided General Optimization via Low-rank Learning (EGGROLL), an evolution strategies (ES) algorithm designed to scale backprop-free optimization to large population sizes for modern large neural network architectures with billions of parameters. ES is a set of powerful blackbox optimisation methods that can handle non-differentiable or noisy objectives with excellent scaling potential through parallelisation. Na{ï}ve ES becomes prohibitively expensive at scale due to the computational and memory costs associated with generating matrix perturbations EinR^{mtimes n} and the batched matrix multiplications needed to compute per-member forward passes. EGGROLL overcomes these bottlenecks by generating random matrices Ain R^{mtimes r}, Bin R^{ntimes r} with rll min(m,n) to form a low-rank matrix perturbation A B^top that are used in place of the full-rank perturbation E. As the overall update is an average across a population of N workers, this still results in a high-rank update but with significant memory and computation savings, reducing the auxiliary storage from mn to r(m+n) per layer and the cost of a forward pass from O(mn) to O(r(m+n)) when compared to full-rank ES. A theoretical analysis reveals our low-rank update converges to the full-rank update at a fast Oleft(1{r}right) rate. Our experiments show that (1) EGGROLL does not compromise the performance of ES in tabula-rasa RL settings, despite being faster, (2) it is competitive with GRPO as a technique for improving LLM reasoning, and (3) EGGROLL enables stable pre-training of nonlinear recurrent language models that operate purely in integer datatypes.

  • 16 authors
·
Nov 20

Spark Transformer: Reactivating Sparsity in FFN and Attention

The discovery of the lazy neuron phenomenon in trained Transformers, where the vast majority of neurons in their feed-forward networks (FFN) are inactive for each token, has spurred tremendous interests in activation sparsity for enhancing large model efficiency. While notable progress has been made in translating such sparsity to wall-time benefits, modern Transformers have moved away from the ReLU activation function crucial to this phenomenon. Existing efforts on re-introducing activation sparsity often degrade model quality, increase parameter count, complicate or slow down training. Sparse attention, the application of sparse activation to the attention mechanism, often faces similar challenges. This paper introduces the Spark Transformer, a novel architecture that achieves a high level of activation sparsity in both FFN and the attention mechanism while maintaining model quality, parameter count, and standard training procedures. Our method realizes sparsity via top-k masking for explicit control over sparsity level. Crucially, we introduce statistical top-k, a hardware-accelerator-friendly, linear-time approximate algorithm that avoids costly sorting and mitigates significant training slowdown from standard top-k operators. Furthermore, Spark Transformer reallocates existing FFN parameters and attention key embeddings to form a low-cost predictor for identifying activated entries. This design not only mitigates quality loss from enforced sparsity, but also enhances wall-time benefit. Pretrained with the Gemma-2 recipe, Spark Transformer demonstrates competitive performance on standard benchmarks while exhibiting significant sparsity: only 8% of FFN neurons are activated, and each token attends to a maximum of 256 tokens. This sparsity translates to a 2.5x reduction in FLOPs, leading to decoding wall-time speedups of up to 1.79x on CPU and 1.40x on GPU.

  • 19 authors
·
Jun 6

Noise Consistency Training: A Native Approach for One-Step Generator in Learning Additional Controls

The pursuit of efficient and controllable high-quality content generation remains a central challenge in artificial intelligence-generated content (AIGC). While one-step generators, enabled by diffusion distillation techniques, offer excellent generation quality and computational efficiency, adapting them to new control conditions--such as structural constraints, semantic guidelines, or external inputs--poses a significant challenge. Conventional approaches often necessitate computationally expensive modifications to the base model and subsequent diffusion distillation. This paper introduces Noise Consistency Training (NCT), a novel and lightweight approach to directly integrate new control signals into pre-trained one-step generators without requiring access to original training images or retraining the base diffusion model. NCT operates by introducing an adapter module and employs a noise consistency loss in the noise space of the generator. This loss aligns the adapted model's generation behavior across noises that are conditionally dependent to varying degrees, implicitly guiding it to adhere to the new control. Theoretically, this training objective can be understood as minimizing the distributional distance between the adapted generator and the conditional distribution induced by the new conditions. NCT is modular, data-efficient, and easily deployable, relying only on the pre-trained one-step generator and a control signal model. Extensive experiments demonstrate that NCT achieves state-of-the-art controllable generation in a single forward pass, surpassing existing multi-step and distillation-based methods in both generation quality and computational efficiency. Code is available at https://github.com/Luo-Yihong/NCT

  • 4 authors
·
Jun 24 1

RelP: Faithful and Efficient Circuit Discovery via Relevance Patching

Activation patching is a standard method in mechanistic interpretability for localizing the components of a model responsible for specific behaviors, but it is computationally expensive to apply at scale. Attribution patching offers a faster, gradient-based approximation, yet suffers from noise and reduced reliability in deep, highly non-linear networks. In this work, we introduce Relevance Patching (RelP), which replaces the local gradients in attribution patching with propagation coefficients derived from Layer-wise Relevance Propagation (LRP). LRP propagates the network's output backward through the layers, redistributing relevance to lower-level components according to local propagation rules that ensure properties such as relevance conservation or improved signal-to-noise ratio. Like attribution patching, RelP requires only two forward passes and one backward pass, maintaining computational efficiency while improving faithfulness. We validate RelP across a range of models and tasks, showing that it more accurately approximates activation patching than standard attribution patching, particularly when analyzing residual stream and MLP outputs in the Indirect Object Identification (IOI) task. For instance, for MLP outputs in GPT-2 Large, attribution patching achieves a Pearson correlation of 0.006, whereas RelP reaches 0.956, highlighting the improvement offered by RelP. Additionally, we compare the faithfulness of sparse feature circuits identified by RelP and Integrated Gradients (IG), showing that RelP achieves comparable faithfulness without the extra computational cost associated with IG.

  • 4 authors
·
Aug 28

Efficient Deweather Mixture-of-Experts with Uncertainty-aware Feature-wise Linear Modulation

The Mixture-of-Experts (MoE) approach has demonstrated outstanding scalability in multi-task learning including low-level upstream tasks such as concurrent removal of multiple adverse weather effects. However, the conventional MoE architecture with parallel Feed Forward Network (FFN) experts leads to significant parameter and computational overheads that hinder its efficient deployment. In addition, the naive MoE linear router is suboptimal in assigning task-specific features to multiple experts which limits its further scalability. In this work, we propose an efficient MoE architecture with weight sharing across the experts. Inspired by the idea of linear feature modulation (FM), our architecture implicitly instantiates multiple experts via learnable activation modulations on a single shared expert block. The proposed Feature Modulated Expert (FME) serves as a building block for the novel Mixture-of-Feature-Modulation-Experts (MoFME) architecture, which can scale up the number of experts with low overhead. We further propose an Uncertainty-aware Router (UaR) to assign task-specific features to different FM modules with well-calibrated weights. This enables MoFME to effectively learn diverse expert functions for multiple tasks. The conducted experiments on the multi-deweather task show that our MoFME outperforms the baselines in the image restoration quality by 0.1-0.2 dB and achieves SOTA-compatible performance while saving more than 72% of parameters and 39% inference time over the conventional MoE counterpart. Experiments on the downstream segmentation and classification tasks further demonstrate the generalizability of MoFME to real open-world applications.

  • 11 authors
·
Dec 27, 2023

Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation

The conventional deep learning paradigm often involves training a deep model on a server and then deploying the model or its distilled ones to resource-limited edge devices. Usually, the models shall remain fixed once deployed (at least for some period) due to the potential high cost of model adaptation for both the server and edge sides. However, in many real-world scenarios, the test environments may change dynamically (known as distribution shifts), which often results in degraded performance. Thus, one has to adapt the edge models promptly to attain promising performance. Moreover, with the increasing data collected at the edge, this paradigm also fails to further adapt the cloud model for better performance. To address these, we encounter two primary challenges: 1) the edge model has limited computation power and may only support forward propagation; 2) the data transmission budget between cloud and edge devices is limited in latency-sensitive scenarios. In this paper, we establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation and the edge models can be adapted online. In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud, i.e., dynamic unreliable and low-informative sample exclusion. Based on the uploaded samples, we update and distribute the affine parameters of normalization layers by distilling from the stronger foundation model to the edge model with a sample replay strategy. Extensive experimental results on ImageNet-C and ImageNet-R verify the effectiveness of our CEMA.

  • 6 authors
·
Feb 27, 2024

HyperFormer: Enhancing Entity and Relation Interaction for Hyper-Relational Knowledge Graph Completion

Hyper-relational knowledge graphs (HKGs) extend standard knowledge graphs by associating attribute-value qualifiers to triples, which effectively represent additional fine-grained information about its associated triple. Hyper-relational knowledge graph completion (HKGC) aims at inferring unknown triples while considering its qualifiers. Most existing approaches to HKGC exploit a global-level graph structure to encode hyper-relational knowledge into the graph convolution message passing process. However, the addition of multi-hop information might bring noise into the triple prediction process. To address this problem, we propose HyperFormer, a model that considers local-level sequential information, which encodes the content of the entities, relations and qualifiers of a triple. More precisely, HyperFormer is composed of three different modules: an entity neighbor aggregator module allowing to integrate the information of the neighbors of an entity to capture different perspectives of it; a relation qualifier aggregator module to integrate hyper-relational knowledge into the corresponding relation to refine the representation of relational content; a convolution-based bidirectional interaction module based on a convolutional operation, capturing pairwise bidirectional interactions of entity-relation, entity-qualifier, and relation-qualifier. realize the depth perception of the content related to the current statement. Furthermore, we introduce a Mixture-of-Experts strategy into the feed-forward layers of HyperFormer to strengthen its representation capabilities while reducing the amount of model parameters and computation. Extensive experiments on three well-known datasets with four different conditions demonstrate HyperFormer's effectiveness. Datasets and code are available at https://github.com/zhiweihu1103/HKGC-HyperFormer.

  • 5 authors
·
Aug 12, 2023

Build a Robust QA System with Transformer-based Mixture of Experts

In this paper, we aim to build a robust question answering system that can adapt to out-of-domain datasets. A single network may overfit to the superficial correlation in the training distribution, but with a meaningful number of expert sub-networks, a gating network that selects a sparse combination of experts for each input, and careful balance on the importance of expert sub-networks, the Mixture-of-Experts (MoE) model allows us to train a multi-task learner that can be generalized to out-of-domain datasets. We also explore the possibility of bringing the MoE layers up to the middle of the DistilBERT and replacing the dense feed-forward network with a sparsely-activated switch FFN layers, similar to the Switch Transformer architecture, which simplifies the MoE routing algorithm with reduced communication and computational costs. In addition to model architectures, we explore techniques of data augmentation including Easy Data Augmentation (EDA) and back translation, to create more meaningful variance among the small out-of-domain training data, therefore boosting the performance and robustness of our models. In this paper, we show that our combination of best architecture and data augmentation techniques achieves a 53.477 F1 score in the out-of-domain evaluation, which is a 9.52% performance gain over the baseline. On the final test set, we reported a higher 59.506 F1 and 41.651 EM. We successfully demonstrate the effectiveness of Mixture-of-Expert architecture in a Robust QA task.

  • 3 authors
·
Mar 19, 2022

Toward smart composites: small-scale, untethered prediction and control for soft sensor/actuator systems

We present formulation and open-source tools to achieve in-material model predictive control of sensor/actuator systems using learned forward kinematics and on-device computation. Microcontroller units (MCUs) that compute the prediction and control task while colocated with the sensors and actuators enable in-material untethered behaviors. In this approach, small parameter size neural network models learn forward kinematics offline. Our open-source compiler, nn4mc, generates code to offload these predictions onto MCUs. A Newton-Raphson solver then computes the control input in real time. We first benchmark this nonlinear control approach against a PID controller on a mass-spring-damper simulation. We then study experimental results on two experimental rigs with different sensing, actuation and computational hardware: a tendon-based platform with embedded LightLace sensors and a HASEL-based platform with magnetic sensors. Experimental results indicate effective high-bandwidth tracking of reference paths (greater than or equal to 120 Hz) with a small memory footprint (less than or equal to 6.4% of flash memory). The measured path following error does not exceed 2mm in the tendon-based platform. The simulated path following error does not exceed 1mm in the HASEL-based platform. The mean power consumption of this approach in an ARM Cortex-M4f device is 45.4 mW. This control approach is also compatible with Tensorflow Lite models and equivalent on-device code. In-material intelligence enables a new class of composites that infuse autonomy into structures and systems with refined artificial proprioception.

  • 7 authors
·
May 22, 2022