1 From Task Executors to Research Partners: Evaluating AI Co-Pilots Through Workflow Integration in Biomedical Research Artificial intelligence systems are increasingly deployed in biomedical research. However, current evaluation frameworks may inadequately assess their effectiveness as research collaborators. This rapid review examines benchmarking practices for AI systems in preclinical biomedical research. Three major databases and two preprint servers were searched from January 1, 2018 to October 31, 2025, identifying 14 benchmarks that assess AI capabilities in literature understanding, experimental design, and hypothesis generation. The results revealed that all current benchmarks assess isolated component capabilities, including data analysis quality, hypothesis validity, and experimental protocol design. However, authentic research collaboration requires integrated workflows spanning multiple sessions, with contextual memory, adaptive dialogue, and constraint propagation. This gap implies that systems excelling on component benchmarks may fail as practical research co-pilots. A process-oriented evaluation framework is proposed that addresses four critical dimensions absent from current benchmarks: dialogue quality, workflow orchestration, session continuity, and researcher experience. These dimensions are essential for evaluating AI systems as research co-pilots rather than as isolated task executors. 10 authors · Dec 4
- Exploring Personality and Online Social Engagement: An Investigation of MBTI Users on Twitter Text-based personality prediction by computational models is an emerging field with the potential to significantly improve on key weaknesses of survey-based personality assessment. We investigate 3848 profiles from Twitter with self-labeled Myers-Briggs personality traits (MBTI) - a framework closely related to the Five Factor Model of personality - to better understand how text-based digital traces from social engagement online can be used to predict user personality traits. We leverage BERT, a state-of-the-art NLP architecture based on deep learning, to analyze various sources of text that hold most predictive power for our task. We find that biographies, statuses, and liked tweets contain significant predictive power for all dimensions of the MBTI system. We discuss our findings and their implications for the validity of the MBTI and the lexical hypothesis, a foundational theory underlying the Five Factor Model that links language use and behavior. Our results hold optimistic implications for personality psychologists, computational linguists, and other social scientists aiming to predict personality from observational text data and explore the links between language and core behavioral traits. 1 authors · Sep 13, 2021
- Preserving Statistical Validity in Adaptive Data Analysis A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question. 6 authors · Nov 10, 2014
- Language models show human-like content effects on reasoning Abstract reasoning is a key ability for an intelligent system. Large language models achieve above-chance performance on abstract reasoning tasks, but exhibit many imperfections. However, human abstract reasoning is also imperfect, and depends on our knowledge and beliefs about the content of the reasoning problem. For example, humans reason much more reliably about logical rules that are grounded in everyday situations than arbitrary rules about abstract attributes. The training experiences of language models similarly endow them with prior expectations that reflect human knowledge and beliefs. We therefore hypothesized that language models would show human-like content effects on abstract reasoning problems. We explored this hypothesis across three logical reasoning tasks: natural language inference, judging the logical validity of syllogisms, and the Wason selection task (Wason, 1968). We find that state of the art large language models (with 7 or 70 billion parameters; Hoffman et al., 2022) reflect many of the same patterns observed in humans across these tasks -- like humans, models reason more effectively about believable situations than unrealistic or abstract ones. Our findings have implications for understanding both these cognitive effects, and the factors that contribute to language model performance. 7 authors · Jul 14, 2022
1 Resolving Discrepancies in Compute-Optimal Scaling of Language Models Kaplan et al. and Hoffmann et al. developed influential scaling laws for the optimal model size as a function of the compute budget, but these laws yield substantially different predictions. We explain the discrepancy by reproducing the Kaplan scaling law on two datasets (OpenWebText2 and RefinedWeb) and identifying three factors causing the difference: last layer computational cost, warmup duration, and scale-dependent optimizer tuning. With these factors corrected, we obtain excellent agreement with the Hoffmann et al. (i.e., "Chinchilla") scaling law. Counter to a hypothesis of Hoffmann et al., we find that careful learning rate decay is not essential for the validity of their scaling law. As a secondary result, we derive scaling laws for the optimal learning rate and batch size, finding that tuning the AdamW beta_2 parameter is essential at lower batch sizes. 5 authors · Jun 27, 2024