Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCoherent shuttle of electron-spin states
We demonstrate a coherent spin shuttle through a GaAs/AlGaAs quadruple-quantum-dot array. Starting with two electrons in a spin-singlet state in the first dot, we shuttle one electron over to either the second, third or fourth dot. We observe that the separated spin-singlet evolves periodically into the m=0 spin-triplet and back before it dephases due to nuclear spin noise. We attribute the time evolution to differences in the local Zeeman splitting between the respective dots. With the help of numerical simulations, we analyse and discuss the visibility of the singlet-triplet oscillations and connect it to the requirements for coherent spin shuttling in terms of the inter-dot tunnel coupling strength and rise time of the pulses. The distribution of entangled spin pairs through tunnel coupled structures may be of great utility for connecting distant qubit registers on a chip.
A photonic cluster state machine gun
We present a method to convert certain single photon sources into devices capable of emitting large strings of photonic cluster state in a controlled and pulsed "on demand" manner. Such sources would greatly reduce the resources required to achieve linear optical quantum computation. Standard spin errors, such as dephasing, are shown to affect only 1 or 2 of the emitted photons at a time. This allows for the use of standard fault tolerance techniques, and shows that the photonic machine gun can be fired for arbitrarily long times. Using realistic parameters for current quantum dot sources, we conclude high entangled-photon emission rates are achievable, with Pauli-error rates per photon of less than 0.2%. For quantum dot sources the method has the added advantage of alleviating the problematic issues of obtaining identical photons from independent, non-identical quantum dots, and of exciton dephasing.
Subgap spectroscopy along hybrid nanowires by nm-thick tunnel barriers
Tunneling spectroscopy is widely used to examine the subgap spectra in semiconductor-superconductor nanostructures when searching for Majorana zero modes (MZMs). Typically, semiconductor sections controlled by local gates at the ends of hybrids serve as tunnel barriers. Besides detecting states only at the hybrid ends, such gate-defined tunnel probes can cause the formation of non-topological subgap states that mimic MZMs. Here, we develop an alternative type of tunnel probes to overcome these limitations. After the growth of an InSb-Al hybrid nanowire, a precisely controlled in-situ oxidation of the Al shell is performed to yield a nm-thick Al oxide layer. In such thin isolating layer, tunnel probes can be arbitrarily defined at any position along the hybrid nanowire by shadow-wall angle-deposition of metallic leads. This allows us to make multiple tunnel probes along single nanowire hybrids and to successfully identify Andreev bound states (ABSs) of various spatial extension residing along the hybrids.
A unified diagrammatic approach to quantum transport in few-level junctions for bosonic and fermionic reservoirs: Application to the quantum Rabi model
We apply the Nakajima-Zwanzig approach to open quantum systems to study steady-state transport across generic multi-level junctions coupled to bosonic or fermionic reservoirs. The method allows for a unified diagrammatic formulation in Liouville space, with diagrams being classified according to an expansion in the coupling strength between the reservoirs and the junction. Analytical, approximate expressions are provided up to fourth order for the steady-state boson transport that generalize to multi-level systems the known results for the low-temperature thermal conductance in the spin-boson model. The formalism is applied to the problem of heat transport in a qubit-resonator junction modeled by the quantum Rabi model. Nontrivial transport features emerge as a result of the interplay between the qubit-oscillator detuning and coupling strength. For quasi-degenerate spectra, nonvanishing steady-state coherences cause a suppression of the thermal conductance.
Proposal for room-temperature quantum repeaters with nitrogen-vacancy centers and optomechanics
We propose a quantum repeater architecture that can operate under ambient conditions. Our proposal builds on recent progress towards non-cryogenic spin-photon interfaces based on nitrogen-vacancy centers, which have excellent spin coherence times even at room temperature, and optomechanics, which allows to avoid phonon-related decoherence and also allows the emitted photons to be in the telecom band. We apply the photon number decomposition method to quantify the fidelity and the efficiency of entanglement established between two remote electron spins. We describe how the entanglement can be stored in nuclear spins and extended to long distances via quasi-deterministic entanglement swapping operations involving the electron and nuclear spins. We furthermore propose schemes to achieve high-fidelity readout of the spin states at room temperature using the spin-optomechanics interface. Our work shows that long-distance quantum networks made of solid-state components that operate at room temperature are within reach of current technological capabilities.
Entanglement-verified time distribution in a metropolitan network
The precise synchronization of distant clocks is a fundamental requirement for a wide range of applications. Here, we experimentally demonstrate a novel approach of quantum clock synchronization utilizing entangled and correlated photon pairs generated by a quantum dot at telecom wavelength. By distributing these entangled photons through a metropolitan fiber network in the Stockholm area and measuring the remote correlations, we achieve a synchronization accuracy of tens of picoseconds by leveraging the tight time correlation between the entangled photons. We show that our synchronization scheme is secure against spoofing attacks by performing a remote quantum state tomography to verify the origin of the entangled photons. We measured a distributed maximum entanglement fidelity of 0.817 pm 0.040 to the |Phi^+rangle Bell state and a concurrence of 0.660 pm 0.086. These results highlight the potential of quantum dot-generated entangled pairs as a shared resource for secure time synchronization and quantum key distribution in real-world quantum networks.
Driving Enhanced Exciton Transfer by Automatic Differentiation
We model and study the processes of excitation, absorption, and transfer in various networks. The model consists of a harmonic oscillator representing a single-mode radiation field, a qubit acting as an antenna, a network through which the excitation propagates, and a qubit at the end serving as a sink. We investigate how off-resonant excitations can be optimally absorbed and transmitted through the network. Three strategies are considered: optimising network energies, adjusting the couplings between the radiation field, the antenna, and the network, or introducing and optimising driving fields at the start and end of the network. These strategies are tested on three different types of network with increasing complexity: nearest-neighbour and star configurations, and one associated with the Fenna-Matthews-Olson complex. The results show that, among the various strategies, the introduction of driving fields is the most effective, leading to a significant increase in the probability of reaching the sink in a given time. This result remains stable across networks of varying dimensionalities and types, and the driving process requires only a few parameters to be effective.
Experimental demonstration of memory-enhanced quantum communication
The ability to communicate quantum information over long distances is of central importance in quantum science and engineering. For example, it enables secure quantum key distribution (QKD) relying on fundamental principles that prohibit the "cloning" of unknown quantum states. While QKD is being successfully deployed, its range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising its unconditional security. Alternatively, quantum repeaters, which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge, requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we report the experimental realization of memory-enhanced quantum communication. We use a single solid-state spin memory integrated in a nanophotonic diamond resonator to implement asynchronous Bell-state measurements. This enables a four-fold increase in the secret key rate of measurement device independent (MDI)-QKD over the loss-equivalent direct-transmission method while operating megahertz clock rates. Our results represent a significant step towards practical quantum repeaters and large-scale quantum networks.
From two dimensions to wire networks in a dice-lattice Josephson array
We investigate Josephson arrays consisting of a dice-lattice network of superconducting weak links surrounding rhombic plaquettes of proximitized semiconductor. Josephson coupling of the weak links and electron density in the plaquettes are independently controlled by separate electrostatic gates. Applied magnetic flux results in an intricate pattern of switching currents associated with frustration, f. For depleted plaquettes, the switching current is nearly periodic in f, expected for a phase-only description, while occupied plaquettes yield a decreasing envelope of switching currents with increasing f. A model of flux dependence based on ballistic small-area junctions and diffusive large-area plaquettes yields excellent agreement with experiment.
Multiplexed quantum repeaters based on dual-species trapped-ion systems
Trapped ions form an advanced technology platform for quantum information processing with long qubit coherence times, high-fidelity quantum logic gates, optically active qubits, and a potential to scale up in size while preserving a high level of connectivity between qubits. These traits make them attractive not only for quantum computing but also for quantum networking. Dedicated, special-purpose trapped-ion processors in conjunction with suitable interconnecting hardware can be used to form quantum repeaters that enable high-rate quantum communications between distant trapped-ion quantum computers in a network. In this regard, hybrid traps with two distinct species of ions, where one ion species can generate ion-photon entanglement that is useful for optically interfacing with the network and the other has long memory lifetimes, useful for qubit storage, have been proposed for entanglement distribution. We consider an architecture for a repeater based on such dual-species trapped-ion systems. We propose and analyze a protocol based on spatial and temporal mode multiplexing for entanglement distribution across a line network of such repeaters. Our protocol offers enhanced rates compared to rates previously reported for such repeaters. We determine the ion resources required at the repeaters to attain the enhanced rates, and the best rates attainable when constraints are placed on the number of repeaters and the number of ions per repeater. Our results bolster the case for near-term trapped-ion systems as quantum repeaters for long-distance quantum communications.
Minimal evolution times for fast, pulse-based state preparation in silicon spin qubits
Standing as one of the most significant barriers to reaching quantum advantage, state-preparation fidelities on noisy intermediate-scale quantum processors suffer from quantum-gate errors, which accumulate over time. A potential remedy is pulse-based state preparation. We numerically investigate the minimal evolution times (METs) attainable by optimizing (microwave and exchange) pulses on silicon hardware. We investigate two state preparation tasks. First, we consider the preparation of molecular ground states and find the METs for H_2, HeH^+, and LiH to be 2.4 ns, 4.4 ns, and 27.2 ns, respectively. Second, we consider transitions between arbitrary states and find the METs for transitions between arbitrary four-qubit states to be below 50 ns. For comparison, connecting arbitrary two-qubit states via one- and two-qubit gates on the same silicon processor requires approximately 200 ns. This comparison indicates that pulse-based state preparation is likely to utilize the coherence times of silicon hardware more efficiently than gate-based state preparation. Finally, we quantify the effect of silicon device parameters on the MET. We show that increasing the maximal exchange amplitude from 10 MHz to 1 GHz accelerates the METs, e.g., for H_2 from 84.3 ns to 2.4 ns. This demonstrates the importance of fast exchange. We also show that increasing the maximal amplitude of the microwave drive from 884 kHz to 56.6 MHz shortens state transitions, e.g., for two-qubit states from 1000 ns to 25 ns. Our results bound both the state-preparation times for general quantum algorithms and the execution times of variational quantum algorithms with silicon spin qubits.
Enhanced Spectral Density of a Single Germanium Vacancy Center in a Nanodiamond by Cavity-Integration
Color centers in diamond, among them the negatively-charged germanium vacancy (GeV^-), are promising candidates for many applications of quantum optics such as a quantum network. For efficient implementation, the optical transitions need to be coupled to a single optical mode. Here, we demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P\'erot microcavity by nanomanipulation utilizing an atomic force microscope. Coupling of the GeV- defect to the cavity mode is achieved, while the optical resonator maintains a high finesse of F = 7,700 and a 48-fold spectral density enhancement is observed. This article demonstrates the integration of a GeV- defect with a Fabry-P\'erot microcavity under ambient conditions with the potential to extend the experiments to cryogenic temperatures towards an efficient spin-photon platform.
Tunable WS_2 Micro-Dome Open Cavity Single Photon Source
Versatile, tunable, and potentially scalable single-photon sources are a key asset in emergent photonic quantum technologies. In this work, a single-photon source based on WS_2 micro-domes, created via hydrogen ion irradiation, is realized and integrated into an open, tunable optical microcavity. Single-photon emission from the coupled emitter-cavity system is verified via the second-order correlation measurement, revealing a g^{(2)}(τ=0) value of 0.3. A detailed analysis of the spectrally selective, cavity enhanced emission features shows the impact of a pronounced acoustic phonon emission sideband, which contributes specifically to the non-resonant emitter-cavity coupling in this system. The achieved level of cavity-emitter control highlights the potential of open-cavity systems to tailor the emission properties of atomically thin quantum emitters, advancing their suitability for real-world quantum technology applications.
Are queries and keys always relevant? A case study on Transformer wave functions
The dot product attention mechanism, originally designed for natural language processing tasks, is a cornerstone of modern Transformers. It adeptly captures semantic relationships between word pairs in sentences by computing a similarity overlap between queries and keys. In this work, we explore the suitability of Transformers, focusing on their attention mechanisms, in the specific domain of the parametrization of variational wave functions to approximate ground states of quantum many-body spin Hamiltonians. Specifically, we perform numerical simulations on the two-dimensional J_1-J_2 Heisenberg model, a common benchmark in the field of quantum many-body systems on lattice. By comparing the performance of standard attention mechanisms with a simplified version that excludes queries and keys, relying solely on positions, we achieve competitive results while reducing computational cost and parameter usage. Furthermore, through the analysis of the attention maps generated by standard attention mechanisms, we show that the attention weights become effectively input-independent at the end of the optimization. We support the numerical results with analytical calculations, providing physical insights of why queries and keys should be, in principle, omitted from the attention mechanism when studying large systems.
Hertz-rate metropolitan quantum teleportation
Quantum teleportation can transfer an unknown quantum state between distant quantum nodes, which holds great promise in enabling large-scale quantum networks. To advance the full potential of quantum teleportation, quantum states must be faithfully transferred at a high rate over long distance. Despite recent impressive advances, a high-rate quantum teleportation system across metropolitan fiber networks is extremely desired. Here, we demonstrate a quantum teleportation system which transfers quantum states carried by independent photons at a rate of 7.1pm0.4 Hz over 64-km-long fiber channel. An average single-photon fidelity of geqslant 90.6pm2.6% is achieved, which exceeds the maximum fidelity of 2/3 in classical regime. Our result marks an important milestone towards quantum networks and opens the door to exploring quantum entanglement based informatic applications for the future quantum internet.
Programmable Heisenberg interactions between Floquet qubits
The fundamental trade-off between robustness and tunability is a central challenge in the pursuit of quantum simulation and fault-tolerant quantum computation. In particular, many emerging quantum architectures are designed to achieve high coherence at the expense of having fixed spectra and consequently limited types of controllable interactions. Here, by adiabatically transforming fixed-frequency superconducting circuits into modifiable Floquet qubits, we demonstrate an XXZ Heisenberg interaction with fully adjustable anisotropy. This interaction model is on one hand the basis for many-body quantum simulation of spin systems, and on the other hand the primitive for an expressive quantum gate set. To illustrate the robustness and versatility of our Floquet protocol, we tailor the Heisenberg Hamiltonian and implement two-qubit iSWAP, CZ, and SWAP gates with estimated fidelities of 99.32(3)%, 99.72(2)%, and 98.93(5)%, respectively. In addition, we implement a Heisenberg interaction between higher energy levels and employ it to construct a three-qubit CCZ gate with a fidelity of 96.18(5)%. Importantly, the protocol is applicable to various fixed-frequency high-coherence platforms, thereby unlocking a suite of essential interactions for high-performance quantum information processing. From a broader perspective, our work provides compelling avenues for future exploration of quantum electrodynamics and optimal control using the Floquet framework.
Tutorial: Remote entanglement protocols for stationary qubits with photonic interfaces
Generating entanglement between distant quantum systems is at the core of quantum networking. In recent years, numerous theoretical protocols for remote entanglement generation have been proposed, of which many have been experimentally realized. Here, we provide a modular theoretical framework to elucidate the general mechanisms of photon-mediated entanglement generation between single spins in atomic or solid-state systems. Our framework categorizes existing protocols at various levels of abstraction and allows for combining the elements of different schemes in new ways. These abstraction layers make it possible to readily compare protocols for different quantum hardware. To enable the practical evaluation of protocols tailored to specific experimental parameters, we have devised numerical simulations based on the framework with our codes available online.
An Architecture for Meeting Quality-of-Service Requirements in Multi-User Quantum Networks
Quantum communication can enhance internet technology by enabling novel applications that are provably impossible classically. The successful execution of such applications relies on the generation of quantum entanglement between different users of the network which meets stringent performance requirements. Alongside traditional metrics such as throughput and jitter, one must ensure the generated entanglement is of sufficiently high quality. Meeting such performance requirements demands a careful orchestration of many devices in the network, giving rise to a fundamentally new scheduling problem. Furthermore, technological limitations of near-term quantum devices impose significant constraints on scheduling methods hoping to meet performance requirements. In this work, we propose the first end-to-end design of a centralized quantum network with multiple users that orchestrates the delivery of entanglement which meets quality-of-service (QoS) requirements of applications. We achieve this by using a centrally constructed schedule that manages usage of devices and ensures the coordinated execution of different quantum operations throughout the network. We use periodic task scheduling and resource-constrained project scheduling techniques, including a novel heuristic, to construct the schedules. Our simulations of four small networks using hardware-validated network parameters, and of a real-world fiber topology using futuristic parameters, illustrate trade-offs between traditional and quantum performance metrics.
Impact of Static Disorder and Dephasing on Quantum Transport in LH1-RC Models
We numerically study excitation transfer in an artificial LH1-RC complex -- an N-site donor ring coupled to a central acceptor -- driven by a narrowband optical mode and evolved under a Lindblad master equation with loss and dephasing. In the absence of disorder, the light-driven system exhibits a tall, narrow on-resonance efficiency peak (near unity for our parameters); dephasing lowers and narrows this peak without shifting its position. Off resonance, the efficiency shows environmentally assisted transport with a clear non-monotonic dependence on dephasing and a finite optimum. Under static disorder, two regimes emerge: photon-ring coupling and diagonal energetic disorder mix the drive into dark ring modes, activate dissipative channels, and depress efficiency over a detuning window, whereas intra-ring coupling disorder has a much smaller impact in the tested range; increasing the intra-ring coupling g moves dark-mode crossings away from the operating detuning and restores near-peak performance. In the ordered, symmetric, single-excitation, narrowband limit we analytically derive closed-form transfer efficiencies by projecting onto the k{=}0 bright mode and solving the photon--bright mode--acceptor trimer via a Laplace/linear-algebra (determinant) formula; these expressions include a probability-conservation identity eta + sum_k L_k = 1 that benchmarks the simulations and quantitatively predicts the resonant line shape and its dephasing-induced narrowing. A minimal ring toy model further reproduces coherent trapping and its relief by moderate dephasing (ENAQT). These analytics are exact in the ordered limit and serve as mechanistic guides outside this limit, yielding practical design rules for robust, bio-inspired light-harvesting devices.
Quantum simulation of generic spin exchange models in Floquet-engineered Rydberg atom arrays
Although quantum simulation can give insight into elusive or intractable physical phenomena, many quantum simulators are unavoidably limited in the models they mimic. Such is also the case for atom arrays interacting via Rydberg states - a platform potentially capable of simulating any kind of spin exchange model, albeit with currently unattainable experimental capabilities. Here, we propose a new route towards simulating generic spin exchange Hamiltonians in atom arrays, using Floquet engineering with both global and local control. To demonstrate the versatility and applicability of our approach, we numerically investigate the generation of several spin exchange models which have yet to be realized in atom arrays, using only previously-demonstrated experimental capabilities. Our proposed scheme can be readily explored in many existing setups, providing a path to investigate a large class of exotic quantum spin models.
Electrical Tuning of Neutral and Charged Excitons with 1-nm Gate
Electrical control of individual spins and photons in solids is key for quantum technologies, but scaling down to small, static systems remains challenging. Here, we demonstrate nanoscale electrical tuning of neutral and charged excitons in monolayer WSe2 using 1-nm carbon nanotube gates. Electrostatic simulations reveal a confinement radius below 15 nm, reaching the exciton Bohr radius limit for few-layer dielectric spacing. In situ photoluminescence spectroscopy shows gate-controlled conversion between neutral excitons, negatively charged trions, and biexcitons at 4 K. Important for quantum information processing applications, our measurements indicate gating of a local 2D electron gas in the WSe2 layer, coupled to photons via trion transitions with binding energies exceeding 20 meV. The ability to deterministically tune and address quantum emitters using nanoscale gates provides a pathway towards large-scale quantum optoelectronic circuits and spin-photon interfaces for quantum networking.
Strong pairing and symmetric pseudogap metal in double Kondo lattice model: from nickelate superconductor to tetralayer optical lattice
In this work, we propose and study a double Kondo lattice model which hosts robust superconductivity. The system consists of two identical Kondo lattice model, each with Kondo coupling J_K within each layer, while the localized spin moments are coupled together via an inter-layer on-site antiferromagnetic spin coupling J_perp. We consider the strong J_perp limit, wherein the local moments tend to form rung singlets and are thus gapped. However, the Kondo coupling J_K transmits the inter-layer entanglement between the local moments to the itinerant electrons. Consequently, the itinerant electrons experience a strong inter-layer antiferromangetic spin coupling and form strong inter-layer pairing, which is confirmed through numerical simulation in one dimensional system. Experimentally, the J_K rightarrow -infty limits of the model describes the recently found bilayer nickelate La_3Ni_2O_7, while the J_K>0 side can be realized in tetralayer optical lattice of cold atoms. Two extreme limits, J_K rightarrow -infty and J_K rightarrow +infty limit are shown to be simplified to a bilayer type II t-J model and a bilayer one-orbital t-J model, respectively. Thus, our double Kondo lattice model offers a unified framework for nickelate superconductor and tetralayer optical lattice quantum simulator upon changing the sign of J_K. We highlight both the qualitative similarity and the quantitative difference in the two sides of J_K. Finally, we discuss the possibility of a symmetric Kondo breakdown transition in the model with a symmetric pseudogap metal corresponding to the usual heavy Fermi liquid.
A quantum walk control plane for distributed quantum computing in quantum networks
Quantum networks are complex systems formed by the interaction among quantum processors through quantum channels. Analogous to classical computer networks, quantum networks allow for the distribution of quantum computation among quantum computers. In this work, we describe a quantum walk protocol to perform distributed quantum computing in a quantum network. The protocol uses a quantum walk as a quantum control signal to perform distributed quantum operations. We consider a generalization of the discrete-time coined quantum walk model that accounts for the interaction between a quantum walker system in the network graph with quantum registers inside the network nodes. The protocol logically captures distributed quantum computing, abstracting hardware implementation and the transmission of quantum information through channels. Control signal transmission is mapped to the propagation of the walker system across the network, while interactions between the control layer and the quantum registers are embedded into the application of coin operators. We demonstrate how to use the quantum walker system to perform a distributed CNOT operation, which shows the universality of the protocol for distributed quantum computing. Furthermore, we apply the protocol to the task of entanglement distribution in a quantum network.
Quantum Internet Protocol Stack: a Comprehensive Survey
Classical Internet evolved exceptionally during the last five decades, from a network comprising a few static nodes in the early days to a leviathan interconnecting billions of devices. This has been possible by the separation of concern principle, for which the network functionalities are organized as a stack of layers, each providing some communication functionalities through specific network protocols. In this survey, we aim at highlighting the impossibility of adapting the classical Internet protocol stack to the Quantum Internet, due to the marvels of quantum mechanics. Indeed, the design of the Quantum Internet requires a major paradigm shift of the whole protocol stack for harnessing the peculiarities of quantum entanglement and quantum information. In this context, we first overview the relevant literature about Quantum Internet protocol stack. Then, stemming from this, we sheds the light on the open problems and required efforts toward the design of an effective and complete Quantum Internet protocol stack. To the best of authors' knowledge, a survey of this type is the first of its own. What emerges from this analysis is that the Quantum Internet, though still in its infancy, is a disruptive technology whose design requires an inter-disciplinary effort at the border between quantum physics, computer and telecommunications engineering.
Simulation of integrated nonlinear quantum optics: from nonlinear interferometer to temporal walk-off compensator
Nonlinear quantum photonics serves as a cornerstone in photonic quantum technologies, such as universal quantum computing and quantum communications. The emergence of integrated photonics platform not only offers the advantage of large-scale manufacturing but also provides a variety of engineering methods. Given the complexity of integrated photonics engineering, a comprehensive simulation framework is essential to fully harness the potential of the platform. In this context, we introduce a nonlinear quantum photonics simulation framework which can accurately model a variety of features such as adiabatic waveguide, material anisotropy, linear optics components, photon losses, and detectors. Furthermore, utilizing the framework, we have developed a device scheme, chip-scale temporal walk-off compensation, that is useful for various quantum information processing tasks. Applying the simulation framework, we show that the proposed device scheme can enhance the squeezing parameter of photon-pair sources and the conversion efficiency of quantum frequency converters without relying on higher pump power.
Long-Range Neural Atom Learning for Molecular Graphs
Graph Neural Networks (GNNs) have been widely adopted for drug discovery with molecular graphs. Nevertheless, current GNNs are mainly good at leveraging short-range interactions (SRI) but struggle to capture long-range interactions (LRI), both of which are crucial for determining molecular properties. To tackle this issue, we propose a method that implicitly projects all original atoms into a few Neural Atoms, which abstracts the collective information of atomic groups within a molecule. Specifically, we explicitly exchange the information among neural atoms and project them back to the atoms' representations as an enhancement. With this mechanism, neural atoms establish the communication channels among distant nodes, effectively reducing the interaction scope of arbitrary node pairs into a single hop. To provide an inspection of our method from a physical perspective, we reveal its connection with the traditional LRI calculation method, Ewald Summation. We conduct extensive experiments on three long-range graph benchmarks, covering both graph-level and link-level tasks on molecular graphs. We empirically justify that our method can be equipped with an arbitrary GNN and help to capture LRI.
Microwave Quantum Memcapacitor Effect
Developing the field of neuromorphic quantum computing necessitates designing scalable quantum memory devices. Here, we propose a superconducting quantum memory device in the microwave regime, termed as a microwave quantum memcapacitor. It comprises two linked resonators, the primary one is coupled to a Superconducting Quantum Interference Device, which allows for the modulation of the resonator properties through external magnetic flux. The auxiliary resonator, operated through weak measurements, provides feedback to the primary resonator, ensuring stable memory behaviour. This device operates with a classical input in one cavity while reading the response in the other, serving as a fundamental building block toward arrays of microwave quantum memcapacitors. We observe that a bipartite setup can retain its memory behaviour and gains entanglement and quantum correlations. Our findings pave the way for the experimental implementation of memcapacitive superconducting quantum devices and memory device arrays for neuromorphic quantum computing.
Clustered Geometries Exploiting Quantum Coherence Effects for Efficient Energy Transfer in Light Harvesting
Elucidating quantum coherence effects and geometrical factors for efficient energy transfer in photosynthesis has the potential to uncover non-classical design principles for advanced organic materials. We study energy transfer in a linear light-harvesting model to reveal that dimerized geometries with strong electronic coherences within donor and acceptor pairs exhibit significantly improved efficiency, which is in marked contrast to predictions of the classical F\"orster theory. We reveal that energy tuning due to coherent delocalization of photoexcitations is mainly responsible for the efficiency optimization. This coherence-assisted energy-tuning mechanism also explains the energetics and chlorophyll arrangements in the widely-studied Fenna-Matthews-Olson complex. We argue that a clustered network with rapid energy relaxation among donors and resonant energy transfer from donor to acceptor states provides a basic formula for constructing efficient light-harvesting systems, and the general principles revealed here can be generalized to larger systems and benefit future innovation of efficient molecular light-harvesting materials.
Less Quantum, More Advantage: An End-to-End Quantum Algorithm for the Jones Polynomial
We present an end-to-end reconfigurable algorithmic pipeline for solving a famous problem in knot theory using a noisy digital quantum computer, namely computing the value of the Jones polynomial at the fifth root of unity within additive error for any input link, i.e. a closed braid. This problem is DQC1-complete for Markov-closed braids and BQP-complete for Plat-closed braids, and we accommodate both versions of the problem. Even though it is widely believed that DQC1 is strictly contained in BQP, and so is 'less quantum', the resource requirements of classical algorithms for the DQC1 version are at least as high as for the BQP version, and so we potentially gain 'more advantage' by focusing on Markov-closed braids in our exposition. We demonstrate our quantum algorithm on Quantinuum's H2-2 quantum computer and show the effect of problem-tailored error-mitigation techniques. Further, leveraging that the Jones polynomial is a link invariant, we construct an efficiently verifiable benchmark to characterise the effect of noise present in a given quantum processor. In parallel, we implement and benchmark the state-of-the-art tensor-network-based classical algorithms for computing the Jones polynomial. The practical tools provided in this work allow for precise resource estimation to identify near-term quantum advantage for a meaningful quantum-native problem in knot theory.
Entanglement Purification in Quantum Networks: Guaranteed Improvement and Optimal Time
While the concept of entanglement purification protocols (EPPs) is straightforward, the integration of EPPs in network architectures requires careful performance evaluations and optimizations that take into account realistic conditions and imperfections, especially probabilistic entanglement generation and quantum memory decoherence. It is important to understand what is guaranteed to be improved from successful EPP with arbitrary non-identical input, which determines whether we want to perform the EPP at all. When successful EPP can offer improvement, the time to perform the EPP should also be optimized to maximize the improvement. In this work, we study the guaranteed improvement and optimal time for the CNOT-based recurrence EPP, previously shown to be optimal in various scenarios. We firstly prove guaranteed improvement for multiple figures of merit, including fidelity and several entanglement measures when compared to practical baselines as functions of input states. However, it is noteworthy that the guaranteed improvement we prove does not imply the universality of the EPP as introduced in arXiv:2407.21760. Then we prove robust, parameter-independent optimal time for typical error models and figures of merit. We further explore memory decoherence described by continuous-time Pauli channels, and demonstrate the phenomenon of optimal time transition when the memory decoherence error pattern changes. Our work deepens the understanding of EPP performance in realistic scenarios and offers insights into optimizing quantum networks that integrate EPPs.
Polariton Enhanced Free Charge Carrier Generation in Donor-Acceptor Cavity Systems by a Second-Hybridization Mechanism
Cavity quantum electrodynamics has been studied as a potential approach to modify free charge carrier generation in donor-acceptor heterojunctions because of the delocalization and controllable energy level properties of hybridized light-matter states known as polaritons. However, in many experimental systems, cavity coupling decreases charge separation. Here, we theoretically study the quantum dynamics of a coherent and dissipative donor-acceptor cavity system, to investigate the dynamical mechanism and further discover the conditions under which polaritons may enhance free charge carrier generation. We use open quantum system methods based on single-pulse pumping to find that polaritons have the potential to connect excitonic states and charge separated states, further enhancing free charge generation on an ultrafast timescale of several hundred femtoseconds. The mechanism involves that polaritons with proper energy levels allow the exciton to overcome the high Coulomb barrier induced by electron-hole attraction. Moreover, we propose that a second-hybridization between a polariton state and dark states with similar energy enables the formation of the hybrid charge separated states that are optically active. These two mechanisms lead to a maximum of 50% enhancement of free charge carrier generation on a short timescale. However, our simulation reveals that on the longer timescale of picoseconds, internal conversion and cavity loss dominate and suppress free charge carrier generation, reproducing the experimental results. Thus, our work shows that polaritons can affect the charge separation mechanism and promote free charge carrier generation efficiency, but predominantly on a short timescale after photoexcitation.
Large-scale optical characterization of solid-state quantum emitters
Solid-state quantum emitters have emerged as a leading quantum memory for quantum networking applications. However, standard optical characterization techniques are neither efficient nor repeatable at scale. In this work, we introduce and demonstrate spectroscopic techniques that enable large-scale, automated characterization of color centers. We first demonstrate the ability to track color centers by registering them to a fabricated machine-readable global coordinate system, enabling systematic comparison of the same color center sites over many experiments. We then implement resonant photoluminescence excitation in a widefield cryogenic microscope to parallelize resonant spectroscopy, achieving two orders of magnitude speed-up over confocal microscopy. Finally, we demonstrate automated chip-scale characterization of color centers and devices at room temperature, imaging thousands of microscope fields of view. These tools will enable accelerated identification of useful quantum emitters at chip-scale, enabling advances in scaling up color center platforms for quantum information applications, materials science, and device design and characterization.
Designing a Quantum Network Protocol
The second quantum revolution brings with it the promise of a quantum internet. As the first quantum network hardware prototypes near completion new challenges emerge. A functional network is more than just the physical hardware, yet work on scalable quantum network systems is in its infancy. In this paper we present a quantum network protocol designed to enable end-to-end quantum communication in the face of the new fundamental and technical challenges brought by quantum mechanics. We develop a quantum data plane protocol that enables end-to-end quantum communication and can serve as a building block for more complex services. One of the key challenges in near-term quantum technology is decoherence -- the gradual decay of quantum information -- which imposes extremely stringent limits on storage times. Our protocol is designed to be efficient in the face of short quantum memory lifetimes. We demonstrate this using a simulator for quantum networks and show that the protocol is able to deliver its service even in the face of significant losses due to decoherence. Finally, we conclude by showing that the protocol remains functional on the extremely resource limited hardware that is being developed today underlining the timeliness of this work.
Deep Neuromorphic Networks with Superconducting Single Flux Quanta
Conventional semiconductor-based integrated circuits are gradually approaching fundamental scaling limits. Many prospective solutions have recently emerged to supplement or replace both the technology on which basic devices are built and the architecture of data processing. Neuromorphic circuits are a promising approach to computing where techniques used by the brain to achieve high efficiency are exploited. Many existing neuromorphic circuits rely on unconventional and useful properties of novel technologies to better mimic the operation of the brain. One such technology is single flux quantum (SFQ) logic -- a cryogenic superconductive technology in which the data are represented by quanta of magnetic flux (fluxons) produced and processed by Josephson junctions embedded within inductive loops. The movement of a fluxon within a circuit produces a quantized voltage pulse (SFQ pulse), resembling a neuronal spiking event. These circuits routinely operate at clock frequencies of tens to hundreds of gigahertz, making SFQ a natural technology for processing high frequency pulse trains. Prior proposals for SFQ neural networks often require energy-expensive fluxon conversions, involve heterogeneous technologies, or exclusively focus on device level behavior. In this paper, a design methodology for deep single flux quantum neuromorphic networks is presented. Synaptic and neuronal circuits based on SFQ technology are presented and characterized. Based on these primitives, a deep neuromorphic XOR network is evaluated as a case study, both at the architectural and circuit levels, achieving wide classification margins. The proposed methodology does not employ unconventional superconductive devices or semiconductor transistors. The resulting networks are tunable by an external current, making this proposed system an effective approach for scalable cryogenic neuromorphic computing.
Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation via Neural Networks
In the emergent realm of quantum computing, the Variational Quantum Eigensolver (VQE) stands out as a promising algorithm for solving complex quantum problems, especially in the noisy intermediate-scale quantum (NISQ) era. However, the ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes. This research introduces a novel approach to ameliorate this challenge by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations. By employing the Qiskit framework, we crafted parameterized quantum circuits using the RY-RZ ansatz and examined their behavior under varying levels of depolarizing noise. Our investigations spanned from determining the expectation values of a Hamiltonian, defined as a tensor product of Z operators, under different noise intensities to extracting the ground state energy. To bridge the observed outcomes under noise with the ideal noise-free scenario, we trained a Feed Forward Neural Network on the error probabilities and their associated expectation values. Remarkably, our model proficiently predicted the VQE outcome under hypothetical noise-free conditions. By juxtaposing the simulation results with real quantum device executions, we unveiled the discrepancies induced by noise and showcased the efficacy of our neural network-based ZNE technique in rectifying them. This integrative approach not only paves the way for enhanced accuracy in VQE computations on NISQ devices but also underlines the immense potential of hybrid quantum-classical paradigms in circumventing the challenges posed by quantum noise. Through this research, we envision a future where quantum algorithms can be reliably executed on noisy devices, bringing us one step closer to realizing the full potential of quantum computing.
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
Scaling has been critical in improving model performance and generalization in machine learning. It involves how a model's performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in other areas, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as surrogate models for ab initio quantum mechanical calculations. The dominant paradigm here is to incorporate many physical domain constraints into the model, such as rotational equivariance. We contend that these complex constraints inhibit the scaling ability of NNIPs, and are likely to lead to performance plateaus in the long run. In this work, we take an alternative approach and start by systematically studying NNIP scaling strategies. Our findings indicate that scaling the model through attention mechanisms is efficient and improves model expressivity. These insights motivate us to develop an NNIP architecture designed for scalability: the Efficiently Scaled Attention Interatomic Potential (EScAIP). EScAIP leverages a multi-head self-attention formulation within graph neural networks, applying attention at the neighbor-level representations. Implemented with highly-optimized attention GPU kernels, EScAIP achieves substantial gains in efficiency--at least 10x faster inference, 5x less memory usage--compared to existing NNIPs. EScAIP also achieves state-of-the-art performance on a wide range of datasets including catalysts (OC20 and OC22), molecules (SPICE), and materials (MPTrj). We emphasize that our approach should be thought of as a philosophy rather than a specific model, representing a proof-of-concept for developing general-purpose NNIPs that achieve better expressivity through scaling, and continue to scale efficiently with increased computational resources and training data.
SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks
Recent advances in quantum information science enabled the development of quantum communication network prototypes and created an opportunity to study full-stack quantum network architectures. This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator. Our simulator consists of five modules: Hardware models, Entanglement Management protocols, Resource Management, Network Management, and Application. This framework is suitable for simulation of quantum network prototypes that capture the breadth of current and future hardware technologies and protocols. We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories. The simulation capabilities are illustrated in three use cases. We show the dependence of quantum network throughput on several key hardware parameters and study the impact of classical control message latency. We also investigate quantum memory usage efficiency in routers and demonstrate that redistributing memory according to anticipated load increases network capacity by 69.1% and throughput by 6.8%. We design SeQUeNCe to enable comparisons of alternative quantum network technologies, experiment planning, and validation and to aid with new protocol design. We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
Multi-marginal temporal Schrödinger Bridge Matching for video generation from unpaired data
Many natural dynamic processes -- such as in vivo cellular differentiation or disease progression -- can only be observed through the lens of static sample snapshots. While challenging, reconstructing their temporal evolution to decipher underlying dynamic properties is of major interest to scientific research. Existing approaches enable data transport along a temporal axis but are poorly scalable in high dimension and require restrictive assumptions to be met. To address these issues, we propose \textbf{Multi-Marginal temporal Schr\"odinger Bridge Matching} (MMtSBM) for video generation from unpaired data, extending the theoretical guarantees and empirical efficiency of Diffusion Schr\"odinger Bridge Matching (arXiv:archive/2303.16852) by deriving the Iterative Markovian Fitting algorithm to multiple marginals in a novel factorized fashion. Experiments show that MMtSBM retains theoretical properties on toy examples, achieves state-of-the-art performance on real world datasets such as transcriptomic trajectory inference in 100 dimensions, and for the first time recovers couplings and dynamics in very high dimensional image settings. Our work establishes multi-marginal Schr\"odinger bridges as a practical and principled approach for recovering hidden dynamics from static data.
The Unconventional Photon Blockade
We review the unconventional photon blockade mechanism. This quantum effect remarkably enables a strongly sub-Poissonian light statistics, even from a system characterized by a weak single photon nonlinearity. We revisit the past results, which can be interpreted in terms of quantum interferences or optimal squeezing, and show how recent developments on input-output field mixing can overcome the limitations of the original schemes towards passive and integrable single photon sources. We finally present some valuable alternative schemes for which the unconventional blockade can be directly adapted.
Curriculum reinforcement learning for quantum architecture search under hardware errors
The key challenge in the noisy intermediate-scale quantum era is finding useful circuits compatible with current device limitations. Variational quantum algorithms (VQAs) offer a potential solution by fixing the circuit architecture and optimizing individual gate parameters in an external loop. However, parameter optimization can become intractable, and the overall performance of the algorithm depends heavily on the initially chosen circuit architecture. Several quantum architecture search (QAS) algorithms have been developed to design useful circuit architectures automatically. In the case of parameter optimization alone, noise effects have been observed to dramatically influence the performance of the optimizer and final outcomes, which is a key line of study. However, the effects of noise on the architecture search, which could be just as critical, are poorly understood. This work addresses this gap by introducing a curriculum-based reinforcement learning QAS (CRLQAS) algorithm designed to tackle challenges in realistic VQA deployment. The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently, (ii) an episode halting scheme to steer the agent to find shorter circuits, and (iii) a novel variant of simultaneous perturbation stochastic approximation as an optimizer for faster convergence. To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in simulating noisy quantum circuits by employing the Pauli-transfer matrix formalism in the Pauli-Liouville basis. Numerical experiments focusing on quantum chemistry tasks demonstrate that CRLQAS outperforms existing QAS algorithms across several metrics in both noiseless and noisy environments.
First Order Quantum Phase Transition in the Hybrid Metal-Mott Insulator Transition Metal Dichalcogenide 4Hb-TaS2
Coupling together distinct correlated and topologically non-trivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here we investigate the compound 4Hb-TaS_2 that interleaves the Mott-insulating state of 1T-TaS_2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS_2 and the low temperature superconducting phase it harbors. We reveal a thermodynamic phase diagram that hosts a first order quantum phase transition between a correlated Kondo cluster state and a flat band state in which the Kondo cluster becomes depleted. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo cluster and the flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott-metal transitions and strongly correlated phases and quantum phase transitions therein.
Assembly and coherent control of a register of nuclear spin qubits
We introduce an optical tweezer platform for assembling and individually manipulating a two-dimensional register of nuclear spin qubits. Each nuclear spin qubit is encoded in the ground ^{1}S_{0} manifold of ^{87}Sr and is individually manipulated by site-selective addressing beams. We observe that spin relaxation is negligible after 5 seconds, indicating that T_1gg5 s. Furthermore, utilizing simultaneous manipulation of subsets of qubits, we demonstrate significant phase coherence over the entire register, estimating T_2^star = left(21pm7right) s and measuring T_2^echo=left(42pm6right) s.
Bootstrap Embedding on a Quantum Computer
We extend molecular bootstrap embedding to make it appropriate for implementation on a quantum computer. This enables solution of the electronic structure problem of a large molecule as an optimization problem for a composite Lagrangian governing fragments of the total system, in such a way that fragment solutions can harness the capabilities of quantum computers. By employing state-of-art quantum subroutines including the quantum SWAP test and quantum amplitude amplification, we show how a quadratic speedup can be obtained over the classical algorithm, in principle. Utilization of quantum computation also allows the algorithm to match -- at little additional computational cost -- full density matrices at fragment boundaries, instead of being limited to 1-RDMs. Current quantum computers are small, but quantum bootstrap embedding provides a potentially generalizable strategy for harnessing such small machines through quantum fragment matching.
Stochastic interpolants with data-dependent couplings
Generative models inspired by dynamical transport of measure -- such as flows and diffusions -- construct a continuous-time map between two probability densities. Conventionally, one of these is the target density, only accessible through samples, while the other is taken as a simple base density that is data-agnostic. In this work, using the framework of stochastic interpolants, we formalize how to couple the base and the target densities. This enables us to incorporate information about class labels or continuous embeddings to construct dynamical transport maps that serve as conditional generative models. We show that these transport maps can be learned by solving a simple square loss regression problem analogous to the standard independent setting. We demonstrate the usefulness of constructing dependent couplings in practice through experiments in super-resolution and in-painting.
Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer
Photonics is the platform of choice to build a modular, easy-to-network quantum computer operating at room temperature. However, no concrete architecture has been presented so far that exploits both the advantages of qubits encoded into states of light and the modern tools for their generation. Here we propose such a design for a scalable and fault-tolerant photonic quantum computer informed by the latest developments in theory and technology. Central to our architecture is the generation and manipulation of three-dimensional hybrid resource states comprising both bosonic qubits and squeezed vacuum states. The proposal enables exploiting state-of-the-art procedures for the non-deterministic generation of bosonic qubits combined with the strengths of continuous-variable quantum computation, namely the implementation of Clifford gates using easy-to-generate squeezed states. Moreover, the architecture is based on two-dimensional integrated photonic chips used to produce a qubit cluster state in one temporal and two spatial dimensions. By reducing the experimental challenges as compared to existing architectures and by enabling room-temperature quantum computation, our design opens the door to scalable fabrication and operation, which may allow photonics to leap-frog other platforms on the path to a quantum computer with millions of qubits.
Designing High-Fidelity Zeno Gates for Dissipative Cat Qubits
Bosonic cat qubits stabilized with a driven two-photon dissipation are systems with exponentially biased noise, opening the door to low-overhead, fault-tolerant and universal quantum computing. However, current gate proposals for such qubits induce substantial noise of the unprotected type, whose poor scaling with the relevant experimental parameters limits their practical use. In this work, we provide a new perspective on dissipative cat qubits by reconsidering the reservoir mode used to engineer the tailored two-photon dissipation, and show how it can be leveraged to mitigate gate-induced errors. Doing so, we introduce four new designs of high-fidelity and bias-preserving cat qubit gates, and compare them to the prevalent gate methods. These four designs should give a broad overview of gate engineering for dissipative systems with different and complementary ideas. In particular, we propose both already achievable low-error gate designs and longer-term implementations.
Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach
We introduce AQCtensor, a novel algorithm to produce short-depth quantum circuits from Matrix Product States (MPS). Our approach is specifically tailored to the preparation of quantum states generated from the time evolution of quantum many-body Hamiltonians. This tailored approach has two clear advantages over previous algorithms that were designed to map a generic MPS to a quantum circuit. First, we optimize all parameters of a parametric circuit at once using Approximate Quantum Compiling (AQC) - this is to be contrasted with other approaches based on locally optimizing a subset of circuit parameters and "sweeping" across the system. We introduce an optimization scheme to avoid the so-called ``orthogonality catastrophe" - i.e. the fact that the fidelity of two arbitrary quantum states decays exponentially with the number of qubits - that would otherwise render a global optimization of the circuit impractical. Second, the depth of our parametric circuit is constant in the number of qubits for a fixed simulation time and fixed error tolerance. This is to be contrasted with the linear circuit Ansatz used in generic algorithms whose depth scales linearly in the number of qubits. For simulation problems on 100 qubits, we show that AQCtensor thus achieves at least an order of magnitude reduction in the depth of the resulting optimized circuit, as compared with the best generic MPS to quantum circuit algorithms. We demonstrate our approach on simulation problems on Heisenberg-like Hamiltonians on up to 100 qubits and find optimized quantum circuits that have significantly reduced depth as compared to standard Trotterized circuits.
On the Electron Pairing Mechanism of Copper-Oxide High Temperature Superconductivity
The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/{hbar} and across the charge-transfer energy gap E, generate 'superexchange' spin-spin interactions of energy Japprox4t^4/E^3 in an antiferromagnetic correlated-insulator state. However, Hole doping the CuO2 plane converts this into a very high temperature superconducting state whose electron-pairing is exceptional. A leading proposal for the mechanism of this intense electron-pairing is that, while hole doping destroys magnetic order it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale E. To explore this hypothesis directly at atomic-scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of E and the electron-pair density nP in {Bi_2Sr_2CaCu_2O_{8+x}}. The responses of both E and nP to alterations in the distance {\delta} between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO2, the response of the electron-pair condensate to varying the charge transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations, indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive {Bi_2Sr_2CaCu_2O_{8+x}}.
Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the Race to Practical Quantum Advantage
While recent breakthroughs have proven the ability of noisy intermediate-scale quantum (NISQ) devices to achieve quantum advantage in classically-intractable sampling tasks, the use of these devices for solving more practically relevant computational problems remains a challenge. Proposals for attaining practical quantum advantage typically involve parametrized quantum circuits (PQCs), whose parameters can be optimized to find solutions to diverse problems throughout quantum simulation and machine learning. However, training PQCs for real-world problems remains a significant practical challenge, largely due to the phenomenon of barren plateaus in the optimization landscapes of randomly-initialized quantum circuits. In this work, we introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for PQCs, which we show significantly improves the trainability and performance of PQCs on a variety of problems. Given a specific optimization task, this method first utilizes tensor network (TN) simulations to identify a promising quantum state, which is then converted into gate parameters of a PQC by means of a high-performance decomposition procedure. We show that this learned initialization avoids barren plateaus, and effectively translates increases in classical resources to enhanced performance and speed in training quantum circuits. By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing, and opens up new avenues to harness the power of modern quantum hardware for realizing practical quantum advantage.
Quantum limit for two-dimensional resolution of two incoherent optical point sources
We obtain the multiple-parameter quantum Cram\'er-Rao bound for estimating the transverse Cartesian components of the centroid and separation of two incoherent optical point sources using an imaging system with finite spatial bandwidth. Under quite general and realistic assumptions on the point-spread function of the imaging system, and for weak source strengths, we show that the Cram\'er-Rao bounds for the x and y components of the separation are independent of the values of those components, which may be well below the conventional Rayleigh resolution limit. We also propose two linear optics-based measurement methods that approach the quantum bound for the estimation of the Cartesian components of the separation once the centroid has been located. One of the methods is an interferometric scheme that approaches the quantum bound for sub-Rayleigh separations. The other method using fiber coupling can in principle attain the bound regardless of the distance between the two sources.
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
A class of generative models that unifies flow-based and diffusion-based methods is introduced. These models extend the framework proposed in Albergo & Vanden-Eijnden (2023), enabling the use of a broad class of continuous-time stochastic processes called `stochastic interpolants' to bridge any two arbitrary probability density functions exactly in finite time. These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way. The time-dependent probability density function of the stochastic interpolant is shown to satisfy a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion coefficient. Upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with an adjustable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. We show that minimization of these quadratic objectives leads to control of the likelihood for generative models built upon stochastic dynamics, while likelihood control for deterministic dynamics is more stringent. We also discuss connections with other methods such as score-based diffusion models, stochastic localization processes, probabilistic denoising techniques, and rectifying flows. In addition, we demonstrate that stochastic interpolants recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant. Finally, algorithmic aspects are discussed and the approach is illustrated on numerical examples.
Stim: a fast stabilizer circuit simulator
This paper presents ``Stim", a fast simulator for quantum stabilizer circuits. The paper explains how Stim works and compares it to existing tools. With no foreknowledge, Stim can analyze a distance 100 surface code circuit (20 thousand qubits, 8 million gates, 1 million measurements) in 15 seconds and then begin sampling full circuit shots at a rate of 1 kHz. Stim uses a stabilizer tableau representation, similar to Aaronson and Gottesman's CHP simulator, but with three main improvements. First, Stim improves the asymptotic complexity of deterministic measurement from quadratic to linear by tracking the {\em inverse} of the circuit's stabilizer tableau. Second, Stim improves the constant factors of the algorithm by using a cache-friendly data layout and 256 bit wide SIMD instructions. Third, Stim only uses expensive stabilizer tableau simulation to create an initial reference sample. Further samples are collected in bulk by using that sample as a reference for batches of Pauli frames propagating through the circuit.
A Compact Dual-Beam Zeeman Slower for High-Flux Cold Atoms
We present a compact design of dual-beam Zeeman slower optimized for efficient production of cold atom applications. Traditional single-beam configurations face challenges from substantial residual atomic flux impacting downstream optical windows, resulting in increased system size, atomic deposition contamination, and a reduced operational lifetime. Our approach employs two oblique laser beams and a capillary-array collimation system to address these challenges while maintaining efficient deceleration. For rubidium (^{87}Rb), simulations demonstrate a significant increase in the fraction of atoms captured by a two-dimensional magneto-optical trap (2D-MOT) and nearly eliminate atom-induced contamination probability at optical windows, all within a compact Zeeman slower length of 44 cm. Experimental validation with Rb and Yb demonstrates highly efficient atomic loading within the same compact design. This advancement represents a substantial improvement for high-flux cold atom applications, providing reliable performance for high-precision metrology, quantum computation and simulation.
Comparing coherent and incoherent models for quantum homogenization
Here we investigate the role of quantum interference in the quantum homogenizer, whose convergence properties model a thermalization process. In the original quantum homogenizer protocol, a system qubit converges to the state of identical reservoir qubits through partial-swap interactions, that allow interference between reservoir qubits. We design an alternative, incoherent quantum homogenizer, where each system-reservoir interaction is moderated by a control qubit using a controlled-swap interaction. We show that our incoherent homogenizer satisfies the essential conditions for homogenization, being able to transform a qubit from any state to any other state to arbitrary accuracy, with negligible impact on the reservoir qubits' states. Our results show that the convergence properties of homogenization machines that are important for modelling thermalization are not dependent on coherence between qubits in the homogenization protocol. We then derive bounds on the resources required to re-use the homogenizers for performing state transformations. This demonstrates that both homogenizers are universal for any number of homogenizations, for an increased resource cost.
NetSquid, a NETwork Simulator for QUantum Information using Discrete events
In order to bring quantum networks into the real world, we would like to determine the requirements of quantum network protocols including the underlying quantum hardware. Because detailed architecture proposals are generally too complex for mathematical analysis, it is natural to employ numerical simulation. Here we introduce NetSquid, the NETwork Simulator for QUantum Information using Discrete events, a discrete-event based platform for simulating all aspects of quantum networks and modular quantum computing systems, ranging from the physical layer and its control plane up to the application level. We study several use cases to showcase NetSquid's power, including detailed physical layer simulations of repeater chains based on nitrogen vacancy centres in diamond as well as atomic ensembles. We also study the control plane of a quantum switch beyond its analytically known regime, and showcase NetSquid's ability to investigate large networks by simulating entanglement distribution over a chain of up to one thousand nodes.
Optimal fidelity in implementing Grover's search algorithm on open quantum system
We investigate the fidelity of Grover's search algorithm by implementing it on an open quantum system. In particular, we study with what accuracy one can estimate that the algorithm would deliver the searched state. In reality, every system has some influence of its environment. We include the environmental effects on the system dynamics by using a recently reported fluctuation-regulated quantum master equation (FRQME). The FRQME indicates that in addition to the regular relaxation due to system-environment coupling, the applied drive also causes dissipation in the system dynamics. As a result, the fidelity is found to depend on both the drive-induced dissipative terms and the relaxation terms and we find that there exists a competition between them, leading to an optimum value of the drive amplitude for which the fidelity becomes maximum. For efficient implementation of the search algorithm, precise knowledge of this optimum drive amplitude is essential.
Quantum Switch for the Quantum Internet: Noiseless Communications through Noisy Channels
Counter-intuitively, quantum mechanics enables quantum particles to propagate simultaneously among multiple space-time trajectories. Hence, a quantum information carrier can travel through different communication channels in a quantum superposition of different orders, so that the relative time-order of the communication channels becomes indefinite. This is realized by utilizing a quantum device known as quantum switch. In this paper, we investigate, from a communication-engineering perspective, the use of the quantum switch within the quantum teleportation process, one of the key functionalities of the Quantum Internet. Specifically, a theoretical analysis is conducted to quantify the performance gain that can be achieved by employing a quantum switch for the entanglement distribution process within the quantum teleportation with respect to the case of absence of quantum switch. This analysis reveals that, by utilizing the quantum switch, the quantum teleportation is heralded as a noiseless communication process with a probability that, remarkably and counter-intuitively, increases with the noise levels affecting the communication channels considered in the indefinite-order time combination.
Toward Automated Quantum Variational Machine Learning
In this work, we address the problem of automating quantum variational machine learning. We develop a multi-locality parallelizable search algorithm, called MUSE, to find the initial points and the sets of parameters that achieve the best performance for quantum variational circuit learning. Simulations with five real-world classification datasets indicate that on average, MUSE improves the detection accuracy of quantum variational classifiers 2.3 times with respect to the observed lowest scores. Moreover, when applied to two real-world regression datasets, MUSE improves the quality of the predictions from negative coefficients of determination to positive ones. Furthermore, the classification and regression scores of the quantum variational models trained with MUSE are on par with the classical counterparts.
SQuADDS: A validated design database and simulation workflow for superconducting qubit design
We present an open-source database of superconducting quantum device designs that may be used as the starting point for customized devices. Each design can be generated programmatically using the open-source Qiskit Metal package, and simulated using finite-element electromagnetic solvers. We present a robust workflow for achieving high accuracy on design simulations. Many designs in the database are experimentally validated, showing excellent agreement between simulated and measured parameters. Our database includes a front-end interface that allows users to generate ``best-guess'' designs based on desired circuit parameters. This project lowers the barrier to entry for research groups seeking to make a new class of devices by providing them a well-characterized starting point from which to refine their designs.
Real-time Threat Detection Strategies for Resource-constrained Devices
As more devices connect to the internet, it becomes crucial to address their limitations and basic security needs. While much research focuses on utilizing ML and DL to tackle security challenges, there is often a tendency to overlook the practicality and feasibility of implementing these methods in real-time settings. This oversight stems from the constrained processing power and memory of certain devices (IoT devices), as well as concerns about the generalizability of these approaches. Focusing on the detection of DNS-tunneling attacks in a router as a case study, we present an end-to-end process designed to effectively address these challenges. The process spans from developing a lightweight DNS-tunneling detection model to integrating it into a resource-constrained device for real-time detection. Through our experiments, we demonstrate that utilizing stateless features for training the ML model, along with features chosen to be independent of the network configuration, leads to highly accurate results. The deployment of this carefully crafted model, optimized for embedded devices across diverse environments, resulted in high DNS-tunneling attack detection with minimal latency. With this work, we aim to encourage solutions that strike a balance between theoretical advancements and the practical applicability of ML approaches in the ever-evolving landscape of device security.
Efficient Self-Consistent Quantum Comb Tomography on the Product Stiefel Manifold
Characterizing non-Markovian quantum dynamics is currently hindered by the self-inconsistency and high computational complexity of existing quantum comb tomography (QCT) methods. In this work, we propose a self-consistent framework that unifies the quantum comb, instrument set, and initial states into a single geometric entity, termed as the Comb-Instrument-State (CIS) set. We demonstrate that the CIS set naturally resides on a product Stiefel manifold, allowing the tomography problem to be solved via efficient unconstrained Riemannian optimization while automatically preserving physical constraints. Numerical simulations confirm that our approach is computationally scalable and robust against gate definition errors, significantly outperforming conventional isometry-based QCT methods. Our work indicates the potential to efficiently learn quantum comb with fewer computational resources.
Quantum computing with Qiskit
We describe Qiskit, a software development kit for quantum information science. We discuss the key design decisions that have shaped its development, and examine the software architecture and its core components. We demonstrate an end-to-end workflow for solving a problem in condensed matter physics on a quantum computer that serves to highlight some of Qiskit's capabilities, for example the representation and optimization of circuits at various abstraction levels, its scalability and retargetability to new gates, and the use of quantum-classical computations via dynamic circuits. Lastly, we discuss some of the ecosystem of tools and plugins that extend Qiskit for various tasks, and the future ahead.
Quantum-Enhanced Conformal Methods for Multi-Output Uncertainty: A Holistic Exploration and Experimental Analysis
In this paper, we propose a unified approach to harness quantum conformal methods for multi-output distributions, with a particular emphasis on two experimental paradigms: (i) a standard 2-qubit circuit scenario producing a four-dimensional outcome distribution, and (ii) a multi-basis measurement setting that concatenates measurement probabilities in different bases (Z, X, Y) into a twelve-dimensional output space. By combining a multioutput regression model (e.g., random forests) with distributional conformal prediction, we validate coverage and interval-set sizes on both simulated quantum data and multi-basis measurement data. Our results confirm that classical conformal prediction can effectively provide coverage guarantees even when the target probabilities derive from inherently quantum processes. Such synergy opens the door to next-generation quantum-classical hybrid frameworks, providing both improved interpretability and rigorous coverage for quantum machine learning tasks. All codes and full reproducible Colab notebooks are made available at https://github.com/detasar/QECMMOU.
All photonic quantum repeaters
Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories at the repeater nodes. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all photonic quantum repeaters based on flying qubits. As an example of the realization of this concept, we present a protocol based on photonic cluster state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such an all photonic quantum repeater, the communication efficiency still scales polynomially with the channel distance. Our result paves a new route toward quantum repeaters with efficient single-photon sources rather than matter quantum memories.
Enhancing T_{c} in a composite superconductor/metal bilayer system: a dynamical cluster approximation study
It has been proposed that the superconducting transition temperature T_{c} of an unconventional superconductor with a large pairing scale but strong phase fluctuations can be enhanced by coupling it to a metal. However, the general efficacy of this approach across different parameter regimes remains an open question. Using the dynamical cluster approximation, we study this question in a system composed of an attractive Hubbard layer in the intermediate coupling regime, where the magnitude of the attractive Coulomb interaction |U| is slightly larger than the bandwidth W, hybridized with a noninteracting metallic layer. We find that while the superconducting transition becomes more mean-field-like with increasing interlayer hopping, the superconducting transition temperature T_{c} exhibits a nonmonotonic dependence on the strength of the hybridization t_{perp}. This behavior arises from a reduction of the effective pairing interaction in the correlated layer that out-competes the growth in the intrinsic pair-field susceptibility induced by the coupling to the metallic layer. We find that the largest T_{c} inferred here for the composite system is below the maximum value currently estimated for the isolated negative-U Hubbard model.
Quantum Theory and Application of Contextual Optimal Transport
Optimal Transport (OT) has fueled machine learning (ML) across many domains. When paired data measurements (mu, nu) are coupled to covariates, a challenging conditional distribution learning setting arises. Existing approaches for learning a global transport map parameterized through a potentially unseen context utilize Neural OT and largely rely on Brenier's theorem. Here, we propose a first-of-its-kind quantum computing formulation for amortized optimization of contextualized transportation plans. We exploit a direct link between doubly stochastic matrices and unitary operators thus unravelling a natural connection between OT and quantum computation. We verify our method (QontOT) on synthetic and real data by predicting variations in cell type distributions conditioned on drug dosage. Importantly we conduct a 24-qubit hardware experiment on a task challenging for classical computers and report a performance that cannot be matched with our classical neural OT approach. In sum, this is a first step toward learning to predict contextualized transportation plans through quantum computing.
Measuring Casimir Force Across a Superconducting Transition
The Casimir effect and superconductivity are foundational quantum phenomena whose interaction remains an open question in physics. How Casimir forces behave across a superconducting transition remains unresolved, owing to the experimental difficulty of achieving alignment, cryogenic environments, and isolating small changes from competing effects. This question carries implications for electron physics, quantum gravity, and high-temperature superconductivity. Here we demonstrate an on-chip superconducting platform that overcomes these challenges, achieving one of the most parallel Casimir configurations to date. Our microchip-based cavities achieve unprecedented area-to-separation ratio between plates, exceeding previous Casimir experiments by orders of magnitude and generating the strongest Casimir forces yet between compliant surfaces. Scanning tunneling microscopy (STM) is used for the first time to directly detect the resonant motion of a suspended membrane, with subatomic precision in both lateral positioning and displacement. Such precision measurements across a superconducting transition allow for the suppression of all van der Waals, electrostatic, and thermal effects. Preliminary measurements suggest superconductivity-dependent shifts in the Casimir force, motivating further investigation and comparison with theories. By uniting extreme parallelism, nanomechanics, and STM readout, our platform opens a new experimental frontier at the intersection of Casimir physics and superconductivity.
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Molecular dynamics (MD) simulations play a crucial role in scientific research. Yet their computational cost often limits the timescales and system sizes that can be explored. Most data-driven efforts have been focused on reducing the computational cost of accurate interatomic forces required for solving the equations of motion. Despite their success, however, these machine learning interatomic potentials (MLIPs) are still bound to small time-steps. In this work, we introduce TrajCast, a transferable and data-efficient framework based on autoregressive equivariant message passing networks that directly updates atomic positions and velocities lifting the constraints imposed by traditional numerical integration. We benchmark our framework across various systems, including a small molecule, crystalline material, and bulk liquid, demonstrating excellent agreement with reference MD simulations for structural, dynamical, and energetic properties. Depending on the system, TrajCast allows for forecast intervals up to 30times larger than traditional MD time-steps, generating over 15 ns of trajectory data per day for a solid with more than 4,000 atoms. By enabling efficient large-scale simulations over extended timescales, TrajCast can accelerate materials discovery and explore physical phenomena beyond the reach of traditional simulations and experiments. An open-source implementation of TrajCast is accessible under https://github.com/IBM/trajcast.
Condensed matter and AdS/CFT
I review two classes of strong coupling problems in condensed matter physics, and describe insights gained by application of the AdS/CFT correspondence. The first class concerns non-zero temperature dynamics and transport in the vicinity of quantum critical points described by relativistic field theories. I describe how relativistic structures arise in models of physical interest, present results for their quantum critical crossover functions and magneto-thermoelectric hydrodynamics. The second class concerns symmetry breaking transitions of two-dimensional systems in the presence of gapless electronic excitations at isolated points or along lines (i.e. Fermi surfaces) in the Brillouin zone. I describe the scaling structure of a recent theory of the Ising-nematic transition in metals, and discuss its possible connection to theories of Fermi surfaces obtained from simple AdS duals.
Computational metrics and parameters of an injection-locked large area semiconductor laser for neural network computing
Artificial neural networks have become a staple computing technique in many fields. Yet, they present fundamental differences with classical computing hardware in the way they process information. Photonic implementations of neural network architectures potentially offer fundamental advantages over their electronic counterparts in terms of speed, processing parallelism, scalability and energy efficiency. Scalable and high performance photonic neural networks (PNNs) have been demonstrated, yet they remain scarce. In this work, we study the performance of such a scalable, fully parallel and autonomous PNN based on a large area vertical-cavity surface-emitting laser (LA-VCSEL). We show how the performance varies with different physical parameters, namely, injection wavelength, injection power, and bias current. Furthermore, we link these physical parameters to the general computational measures of consistency and dimensionality. We present a general method of gauging dimensionality in high dimensional nonlinear systems subject to noise, which could be applied to many systems in the context of neuromorphic computing. Our work will inform future implementations of spatially multiplexed VCSEL PNNs.
Quantum-enhanced data classification with a variational entangled sensor network
Variational quantum circuits (VQCs) built upon noisy intermediate-scale quantum (NISQ) hardware, in conjunction with classical processing, constitute a promising architecture for quantum simulations, classical optimization, and machine learning. However, the required VQC depth to demonstrate a quantum advantage over classical schemes is beyond the reach of available NISQ devices. Supervised learning assisted by an entangled sensor network (SLAEN) is a distinct paradigm that harnesses VQCs trained by classical machine-learning algorithms to tailor multipartite entanglement shared by sensors for solving practically useful data-processing problems. Here, we report the first experimental demonstration of SLAEN and show an entanglement-enabled reduction in the error probability for classification of multidimensional radio-frequency signals. Our work paves a new route for quantum-enhanced data processing and its applications in the NISQ era.
Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing
A large amount of effort has recently been put into understanding the barren plateau phenomenon. In this perspective article, we face the increasingly loud elephant in the room and ask a question that has been hinted at by many but not explicitly addressed: Can the structure that allows one to avoid barren plateaus also be leveraged to efficiently simulate the loss classically? We present strong evidence that commonly used models with provable absence of barren plateaus are also classically simulable, provided that one can collect some classical data from quantum devices during an initial data acquisition phase. This follows from the observation that barren plateaus result from a curse of dimensionality, and that current approaches for solving them end up encoding the problem into some small, classically simulable, subspaces. Thus, while stressing quantum computers can be essential for collecting data, our analysis sheds serious doubt on the non-classicality of the information processing capabilities of parametrized quantum circuits for barren plateau-free landscapes. We end by discussing caveats in our arguments, the role of smart initializations and the possibility of provably superpolynomial, or simply practical, advantages from running parametrized quantum circuits.
Spin pumping by a moving domain wall at the interface of an antiferromagnetic insulator and a two-dimensional metal
A domain wall (DW) which moves parallel to a magnetically compensated interface between an antiferromagnetic insulator (AFMI) and a two-dimensional (2D) metal can pump spin polarization into the metal. It is assumed that localized spins of a collinear AFMI interact with itinerant electrons through their exchange interaction on the interface. We employed the formalism of Keldysh Green's functions for electrons which experience potential and spin-orbit scattering on random impurities. This formalism allows a unified analysis of spin pumping, spin diffusion and spin relaxation effects on a 2D electron gas. It is shown that the pumping of a nonstaggered magnetization into the metal film takes place in the second order with respect to the interface exchange interaction. At sufficiently weak spin relaxation this pumping effect can be much stronger than the first-order effect of the Pauli magnetism which is produced by the small nonstaggered exchange field of the DW. It is shown that the pumped polarization is sensitive to the geometry of the electron's Fermi surface and increases when the wave vector of the staggered magnetization approaches the nesting vector of the Fermi surface. In a disordered diffusive electron gas the induced spin polarization follows the motion of the domain wall. It is distributed asymmetrically around the DW over a distance which can be much larger than the DW width.
Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
We consider the prediction of the Hamiltonian matrix, which finds use in quantum chemistry and condensed matter physics. Efficiency and equivariance are two important, but conflicting factors. In this work, we propose a SE(3)-equivariant network, named QHNet, that achieves efficiency and equivariance. Our key advance lies at the innovative design of QHNet architecture, which not only obeys the underlying symmetries, but also enables the reduction of number of tensor products by 92\%. In addition, QHNet prevents the exponential growth of channel dimension when more atom types are involved. We perform experiments on MD17 datasets, including four molecular systems. Experimental results show that our QHNet can achieve comparable performance to the state of the art methods at a significantly faster speed. Besides, our QHNet consumes 50\% less memory due to its streamlined architecture. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).
Quantum Monte Carlo simulations in the restricted Hilbert space of Rydberg atom arrays
Rydberg atom arrays have emerged as a powerful platform to simulate a number of exotic quantum ground states and phase transitions. To verify these capabilities numerically, we develop a versatile quantum Monte Carlo sampling technique which operates in the reduced Hilbert space generated by enforcing the constraint of a Rydberg blockade. We use the framework of stochastic series expansion and show that in the restricted space, the configuration space of operator strings can be understood as a hard rod gas in d+1 dimensions. We use this mapping to develop cluster algorithms which can be visualized as various non-local movements of rods. We study the efficiency of each of our updates individually and collectively. To elucidate the utility of the algorithm, we show that it can efficiently generate the phase diagram of a Rydberg atom array, to temperatures much smaller than all energy scales involved, on a Kagom\'e link lattice. This is of broad interest as the presence of a Z_2 spin liquid has been hypothesized recently.
Single-shot Quantum Signal Processing Interferometry
Quantum systems of infinite dimension, such as bosonic oscillators, provide vast resources for quantum sensing. Yet, a general theory on how to manipulate such bosonic modes for sensing beyond parameter estimation is unknown. We present a general algorithmic framework, quantum signal processing interferometry (QSPI), for quantum sensing at the fundamental limits of quantum mechanics by generalizing Ramsey-type interferometry. Our QSPI sensing protocol relies on performing nonlinear polynomial transformations on the oscillator's quadrature operators by generalizing quantum signal processing (QSP) from qubits to hybrid qubit-oscillator systems. We use our QSPI sensing framework to make efficient binary decisions on a displacement channel in the single-shot limit. Theoretical analysis suggests the sensing accuracy, given a single-shot qubit measurement, scales inversely with the sensing time or circuit depth of the algorithm. We further concatenate a series of such binary decisions to perform parameter estimation in a bit-by-bit fashion. Numerical simulations are performed to support these statements. Our QSPI protocol offers a unified framework for quantum sensing using continuous-variable bosonic systems beyond parameter estimation and establishes a promising avenue toward efficient and scalable quantum control and quantum sensing schemes beyond the NISQ era.
Sharp electromagnetically induced absorption via balanced interferometric excitation in a microwave resonator
A cylindrical TM_{0,1,0} mode microwave cavity resonator was excited using a balanced interferometric configuration that allowed manipulation of the electric field and potential within the resonator by adjusting the phase and amplitude of the interferometer arms driving the resonator. With precise tuning of the phase and amplitude, 25 dB suppression of the electric field at the resonance frequency was achieved while simultaneously resonantly enhancing the time-varying electric-scalar potential. Under these conditions, the system demonstrated electromagnetically induced absorption in the cavity response due to the annulment of the electric field at the resonance frequency. This phenomena can be regarded as a form of extreme dispersion, and led to a sharp increase in the cavity phase versus frequency response by an order of magnitude when compared to the cavity Q-factor. This work presents an experimental setup that will allow the electric-scalar Aharonov-Bohm effect to be tested under conditions involving a time-varying electric-scalar potential, without the presence of an electric field or magnetic vector potential, an experiment that has not yet been realised.
Can photonic heterostructures provably outperform single-material geometries?
Recent advances in photonic optimization have enabled calculation of performance bounds for a wide range of electromagnetic objectives, albeit restricted to single-material systems. Motivated by growing theoretical interest and fabrication advances, we present a framework to bound the performance of photonic heterostructures and apply it to investigate maximum absorption characteristics of multilayer films and compact, free-form multi-material scatterers. Limits predict trends seen in topology-optimized geometries -- often coming within factors of two of specific designs -- and may be exploited in conjunction with inverse designs to predict when heterostructures are expected to outperform their optimal single-material counterparts.
Surface codes: Towards practical large-scale quantum computation
This article provides an introduction to surface code quantum computing. We first estimate the size and speed of a surface code quantum computer. We then introduce the concept of the stabilizer, using two qubits, and extend this concept to stabilizers acting on a two-dimensional array of physical qubits, on which we implement the surface code. We next describe how logical qubits are formed in the surface code array and give numerical estimates of their fault-tolerance. We outline how logical qubits are physically moved on the array, how qubit braid transformations are constructed, and how a braid between two logical qubits is equivalent to a controlled-NOT. We then describe the single-qubit Hadamard, S and T operators, completing the set of required gates for a universal quantum computer. We conclude by briefly discussing physical implementations of the surface code. We include a number of appendices in which we provide supplementary information to the main text.
Unconventional Electromechanical Response in Ferrocene Assisted Gold Atomic Chain
Atomically thin metallic chains serve as pivotal systems for studying quantum transport, with their conductance strongly linked to the orbital picture. Here, we report a non-monotonic electro-mechanical response in a gold-ferrocene junction, characterized by an unexpected conductance increase over a factor of ten upon stretching. This response is detected in the formation of ferrocene-assisted atomic gold chain in a mechanically controllable break junction at a cryogenic temperature. DFT based calculations show that tilting of molecules inside the chain modifies the orbital overlap and the transmission spectra, leading to such non-monotonic conductance evolution with stretching. This behavior, unlike typical flat conductance plateaus observed in metal atomic chains, pinpoints the unique role of conformational rearrangements during chain elongation. Our findings provide a deeper understanding of the role of orbital hybridization in transport properties and offer new opportunities for designing nanoscale devices with tailored electro-mechanical characteristics.
Cross Learning between Electronic Structure Theories for Unifying Molecular, Surface, and Inorganic Crystal Foundation Force Fields
Creating a single unified interatomic potential capable of attaining ab initio accuracy across all chemistry remains a long-standing challenge in computational chemistry and materials science. This work introduces a training protocol for foundation machine-learning interatomic potentials (MLIPs) that bridge molecular, surface, and materials chemistry through cross-domain learning. First, we introduce enhancements to the MACE architecture that improve its performance on chemically diverse databases by increasing weight sharing across chemical elements and introducing non-linear factors into the tensor decomposition of the product basis. Second, we develop a multi-head replay post-training methodology that enables efficient knowledge transfer across diverse chemical domains. By fine-tuning on datasets at different levels of electronic structure theory, including inorganic crystals, molecular systems, surface chemistry, and reactive organic chemistry, we demonstrate that a single unified model achieves state-of-the-art performance across several chemical domains. Comprehensive benchmarking reveals superior cross-domain transferability compared with existing specialised and multi-task models, with notable improvements in molecular and surface properties while maintaining state-of-the-art performance in materials-property prediction.
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Connecting optimal transport and variational inference, we present a principled and systematic framework for sampling and generative modelling centred around divergences on path space. Our work culminates in the development of the Controlled Monte Carlo Diffusion sampler (CMCD) for Bayesian computation, a score-based annealing technique that crucially adapts both forward and backward dynamics in a diffusion model. On the way, we clarify the relationship between the EM-algorithm and iterative proportional fitting (IPF) for Schr{\"o}dinger bridges, deriving as well a regularised objective that bypasses the iterative bottleneck of standard IPF-updates. Finally, we show that CMCD has a strong foundation in the Jarzinsky and Crooks identities from statistical physics, and that it convincingly outperforms competing approaches across a wide array of experiments.
Quantum Reservoir Computing for Corrosion Prediction in Aerospace: A Hybrid Approach for Enhanced Material Degradation Forecasting
The prediction of material degradation is an important problem to solve in many industries. Environmental conditions, such as humidity and temperature, are important drivers of degradation processes, with corrosion being one of the most prominent ones. Quantum machine learning is a promising research field but suffers from well known deficits such as barren plateaus and measurement overheads. To address this problem, recent research has examined quantum reservoir computing to address time-series prediction tasks. Although a promising idea, developing circuits that are expressive enough while respecting the limited depths available on current devices is challenging. In classical reservoir computing, the onion echo state network model (ESN) [https://doi.org/10.1007/978-3-031-72359-9_9] was introduced to increase the interpretability of the representation structure of the embeddings. This onion ESN model utilizes a concatenation of smaller reservoirs that describe different time scales by covering different regions of the eigenvalue spectrum. Here, we use the same idea in the realm of quantum reservoir computing by simultaneously evolving smaller quantum reservoirs to better capture all the relevant time-scales while keeping the circuit depth small. We do this by modifying the rotation angles which we show alters the eigenvalues of the quantum evolution, but also note that modifying the number of mid-circuit measurements accomplishes the same goals of changing the long-term or short-term memory. This onion QRC outperforms a simple model and a single classical reservoir for predicting the degradation of aluminum alloys in different environmental conditions. By combining the onion QRC with an additional classical reservoir layer, the prediction accuracy is further improved.
Rearrangement of single atoms in a 2000-site optical tweezers array at cryogenic temperatures
We report on the trapping of single rubidium atoms in large arrays of optical tweezers comprising up to 2088 sites in a cryogenic environment at 6 K. Our approach relies on the use of microscope objectives that are in-vacuum but at room temperature, in combination with windowless thermal shields into which the objectives are protruding to ensure a cryogenic environment for the trapped atoms. To achieve enough optical power for efficient trapping, we combine two lasers at slightly different wavelengths. We discuss the performance and limitations of our design. Finally, we demonstrate atom-by-atom rearrangement of an 828-atom target array using moving optical tweezers controlled by a field-programmable gate array.
Ultra-sensitive solid-state organic molecular microwave quantum receiver
High-accuracy microwave sensing is widely demanded in various fields, ranging from cosmology to microwave quantum technology. Quantum receivers based on inorganic solid-state spin systems are promising candidates for such purpose because of the stability and compatibility, but their best sensitivity is currently limited to a few pT/rm{Hz}. Here, by utilising an enhanced readout scheme with the state-of-the-art solid-state maser technology, we develop a robust microwave quantum receiver functioned by organic molecular spins at ambient conditions. Owing to the maser amplification, the sensitivity of the receiver achieves 6.14 pm 0.17 fT/rm{Hz} which exceeds three orders of magnitude than that of the inorganic solid-state quantum receivers. The heterodyne detection without additional local oscillators improves bandwidth of the receiver and allows frequency detection. The scheme can be extended to other solid-state spin systems without complicated control pulses and thus enables practical applications such as electron spin resonance spectroscopy, dark matter searches, and astronomical observations.
Phase sensitivity at the Heisenberg limit in an SU(1,1) interferometer via parity detection
We theoretically investigate the phase sensitivity with parity detection on an SU(1,1) interferometer with a coherent state combined with a squeezed vacuum state. This interferometer is formed with two parametric amplifiers for beam splitting and recombination instead of beam splitters. We show that the sensitivity of estimation phase approaches Heisenberg limit and give the corresponding optimal condition. Moreover, we derive the quantum Cram\'er-Rao bound of the SU(1,1) interferometer.
Paving the Way towards 800 Gbps Quantum-Secured Optical Channel Deployment in Mission-Critical Environments
This article describes experimental research studies conducted towards understanding the implementation aspects of high-capacity quantum-secured optical channels in mission-critical metro-scale operational environments using Quantum Key Distribution (QKD) technology. To the best of our knowledge, this is the first time that an 800 Gbps quantum-secured optical channel -- along with several other Dense Wavelength Division Multiplexed (DWDM) channels on the C-band and multiplexed with the QKD channel on the O-band -- was established at distances up to 100 km, with secret key-rates relevant for practical industry use cases. In addition, during the course of these trials, transporting a blockchain application over this established channel was utilized as a demonstration of securing a financial transaction in transit over a quantum-secured optical channel. The findings of this research pave the way towards the deployment of QKD-secured optical channels in high-capacity, metro-scale, mission-critical operational environments, such as Inter-Data Center Interconnects.
Deep UV Silicon Polaritonic Metasurfaces for Enhancing Biomolecule Autofluorescence and Two-Dimensional Material Double-Resonance Raman Scattering
High-performance DUV spectroscopy drives advancements in biomedical research, clinical diagnosis, and material science. Existing DUV resonant nanostructures face instability and photoluminescent noise challenges. We propose robust Si metasurfaces leveraging polaritonic resonances, a unique property driven by interband transitions, for enhanced nanophotonic sensing. Our polaritonic Kerker-type void metasurface enables double-resonance Raman scattering to analyze 2D semiconductors, improves biomolecule autofluorescence, and offers superior stability. This scalable platform unlocks versatile applications in interdisciplinary DUV spectroscopy and emerging nanomaterials research.
Entropic Neural Optimal Transport via Diffusion Processes
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions which are accessible by samples. Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr\"odinger Bridge problem. In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step, has fast inference procedure, and allows handling small values of the entropy regularization coefficient which is of particular importance in some applied problems. Empirically, we show the performance of the method on several large-scale EOT tasks. https://github.com/ngushchin/EntropicNeuralOptimalTransport
Variational Quantum Harmonizer: Generating Chord Progressions and Other Sonification Methods with the VQE Algorithm
This work investigates a case study of using physical-based sonification of Quadratic Unconstrained Binary Optimization (QUBO) problems, optimized by the Variational Quantum Eigensolver (VQE) algorithm. The VQE approximates the solution of the problem by using an iterative loop between the quantum computer and a classical optimization routine. This work explores the intermediary statevectors found in each VQE iteration as the means of sonifying the optimization process itself. The implementation was realised in the form of a musical interface prototype named Variational Quantum Harmonizer (VQH), providing potential design strategies for musical applications, focusing on chords, chord progressions, and arpeggios. The VQH can be used both to enhance data visualization or to create artistic pieces. The methodology is also relevant in terms of how an artist would gain intuition towards achieving a desired musical sound by carefully designing QUBO cost functions. Flexible mapping strategies could supply a broad portfolio of sounds for QUBO and quantum-inspired musical compositions, as demonstrated in a case study composition, "Dependent Origination" by Peter Thomas and Paulo Itaborai.
Simplified Diffusion Schrödinger Bridge
This paper introduces a novel theoretical simplification of the Diffusion Schr\"odinger Bridge (DSB) that facilitates its unification with Score-based Generative Models (SGMs), addressing the limitations of DSB in complex data generation and enabling faster convergence and enhanced performance. By employing SGMs as an initial solution for DSB, our approach capitalizes on the strengths of both frameworks, ensuring a more efficient training process and improving the performance of SGM. We also propose a reparameterization technique that, despite theoretical approximations, practically improves the network's fitting capabilities. Our extensive experimental evaluations confirm the effectiveness of the simplified DSB, demonstrating its significant improvements. We believe the contributions of this work pave the way for advanced generative modeling. The code is available at https://github.com/checkcrab/SDSB.
The Computational and Latency Advantage of Quantum Communication Networks
This article summarises the current status of classical communication networks and identifies some critical open research challenges that can only be solved by leveraging quantum technologies. By now, the main goal of quantum communication networks has been security. However, quantum networks can do more than just exchange secure keys or serve the needs of quantum computers. In fact, the scientific community is still investigating on the possible use cases/benefits that quantum communication networks can bring. Thus, this article aims at pointing out and clearly describing how quantum communication networks can enhance in-network distributed computing and reduce the overall end-to-end latency, beyond the intrinsic limits of classical technologies. Furthermore, we also explain how entanglement can reduce the communication complexity (overhead) that future classical virtualised networks will experience.
Magic State Injection on IBM Quantum Processors Above the Distillation Threshold
The surface code family is a promising approach to implementing fault-tolerant quantum computations. Universal fault-tolerance requires error-corrected non-Clifford operations, in addition to Clifford gates, and for the former, it is imperative to experimentally demonstrate additional resources known as magic states. Another challenge is to efficiently embed surface codes into quantum hardware with connectivity constraints. This work simultaneously addresses both challenges by employing a qubit-efficient rotated heavy-hexagonal surface code for IBM quantum processors (ibm\_fez) and implementing the magic state injection protocol. Our work reports error thresholds for both logical bit- and phase-flip errors, of approx0.37% and approx0.31%, respectively, which are higher than the threshold values previously reported with traditional embedding. The post-selection-based preparation of logical magic states |H_Lrangle and |T_Lrangle achieve fidelities of 0.8806pm0.0002 and 0.8665pm0.0003, respectively, which are both above the magic state distillation threshold. Additionally, we report the minimum fidelity among injected arbitrary single logical qubit states as 0.8356pm0.0003. Our work demonstrates the potential for realising non-Clifford logical gates by producing high-fidelity logical magic states on IBM quantum devices.
Quantum control of a cat-qubit with bit-flip times exceeding ten seconds
Binary classical information is routinely encoded in the two metastable states of a dynamical system. Since these states may exhibit macroscopic lifetimes, the encoded information inherits a strong protection against bit-flips. A recent qubit - the cat-qubit - is encoded in the manifold of metastable states of a quantum dynamical system, thereby acquiring bit-flip protection. An outstanding challenge is to gain quantum control over such a system without breaking its protection. If this challenge is met, significant shortcuts in hardware overhead are forecast for quantum computing. In this experiment, we implement a cat-qubit with bit-flip times exceeding ten seconds. This is a four order of magnitude improvement over previous cat-qubit implementations, and six orders of magnitude enhancement over the single photon lifetime that compose this dynamical qubit. This was achieved by introducing a quantum tomography protocol that does not break bit-flip protection. We prepare and image quantum superposition states, and measure phase-flip times above 490 nanoseconds. Most importantly, we control the phase of these superpositions while maintaining the bit-flip time above ten seconds. This work demonstrates quantum operations that preserve macroscopic bit-flip times, a necessary step to scale these dynamical qubits into fully protected hardware-efficient architectures.
Gradient-Based Optimization of Core-Shell Particles with Discrete Materials for Directional Scattering
Designing nanophotonic structures traditionally grapples with the complexities of discrete parameters, such as real materials, often resorting to costly global optimization methods. This paper introduces an approach that leverages generative deep learning to map discrete parameter sets into a continuous latent space, enabling direct gradient-based optimization. For scenarios with non-differentiable physics evaluation functions, a neural network is employed as a differentiable surrogate model. The efficacy of this methodology is demonstrated by optimizing the directional scattering properties of core-shell nanoparticles composed of a selection of realistic materials. We derive suggestions for core-shell geometries with strong forward scattering and minimized backscattering. Our findings reveal significant improvements in computational efficiency and performance when compared to global optimization techniques. Beyond nanophotonics design problems, this framework holds promise for broad applications across all types of inverse problems constrained by discrete variables.
Hybridization Gap and Edge States in Strain-layer InAs/In0.5Ga0.5Sb Quantum Spin Hall Insulator
The hybridization gap in strained-layer InAs/InxGa1-xSb quantum spin Hall insulators (QSHIs) is significantly enhanced compared to binary InAs/GaSb QSHI structures, where the typical indium composition, x, ranges between 0.2 and 0.4. This enhancement prompts a critical question: to what extent can quantum wells (QWs) be strained while still preserving the fundamental QSHI phase? In this study, we demonstrate the controlled molecular beam epitaxial (MBE) growth of highly strained-layer QWs with an indium composition of x = 0.5. These structures possess a substantial compressive strain within the In0.5Ga0.5Sb QW. Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films, indicating coherent lattice structures and the absence of visible dislocations. Transport measurements further reveal that the QSHI phase in InAs/In0.5Ga0.5Sb QWs is robust and protected by time-reversal symmetry. Notably, the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field. This behavior is in agreement with the Z2 topological property predicted by the Bernevig-Hughes-Zhang (BHZ) model, confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.
Stability of Superconducting Strings
We investigate the stability of superconducting strings as bound states of strings and fermion zero modes at both the classical and quantum levels. The dynamics of these superconducting strings can result in a stable configuration, known as a vorton. We mainly focus on global strings, but the majority of the discussion can be applied to local strings. Using lattice simulations, we study the classical dynamics of superconducting strings and confirm that they relax to the vorton configuration through Nambu-Goldstone boson radiation, with no evidence of over-shooting that would destabilize the vorton. We explore the tunneling of fermion zero modes out of the strings. Both our classical analysis and quantum calculations yield consistent results: the maximum energy of the zero mode significantly exceeds the fermion mass, in contrast to previous literature. Additionally, we introduce a world-sheet formalism to evaluate the decay rate of zero modes into other particles, which constitute the dominant decay channel. We also identify additional processes that trigger zero-mode decay due to non-adiabatic changes of the string configuration. In these decay processes, the rates are suppressed by the curvature of string loops, with exponential suppression for large masses of the final states. We further study the scattering with light charged particles surrounding the string core produced by the zero-mode current and find that a wide zero-mode wavefunction can enhance vorton stability.
Frequency-domain multiplexing of SNSPDs with tunable superconducting resonators
This work culminates in a demonstration of an alternative Frequency Domain Multiplexing (FDM) scheme for Superconducting Nanowire Single-Photon Detectors (SNSPDs) using the Kinetic inductance Parametric UP-converter (KPUP) made out of NbTiN. There are multiple multiplexing architectures for SNSPDs that are already in use, but FDM could prove superior in applications where the operational bias currents are very low, especially for mid- and far-infrared SNSPDs. Previous FDM schemes integrated the SNSPD within the resonator, while in this work we use an external resonator, which gives more flexibility to optimize the SNSPD architecture. The KPUP is a DC-biased superconducting resonator in which a nanowire is used as its inductive element to enable sensitivity to current perturbations. When coupled to an SNSPD, the KPUP can be used to read out current pulses on the few μA scale. The KPUP is made out of NbTiN, which has high non-linear kinetic inductance for increased sensitivity at higher current bias and high operating temperature. Meanwhile, the SNSPD is made from WSi, which is a popular material for broadband SNSPDs. To read out the KPUP and SNSPD array, a software-defined radio platform and a graphics processing unit are used. Frequency Domain Multiplexed SNSPDs have applications in astronomy, remote sensing, exoplanet science, dark matter detection, and quantum sensing.
Subsystem codes with high thresholds by gauge fixing and reduced qubit overhead
We introduce a technique that uses gauge fixing to significantly improve the quantum error correcting performance of subsystem codes. By changing the order in which check operators are measured, valuable additional information can be gained, and we introduce a new method for decoding which uses this information to improve performance. Applied to the subsystem toric code with three-qubit check operators, we increase the threshold under circuit-level depolarising noise from 0.67% to 0.81%. The threshold increases further under a circuit-level noise model with small finite bias, up to 2.22% for infinite bias. Furthermore, we construct families of finite-rate subsystem LDPC codes with three-qubit check operators and optimal-depth parity-check measurement schedules. To the best of our knowledge, these finite-rate subsystem codes outperform all known codes at circuit-level depolarising error rates as high as 0.2%, where they have a qubit overhead that is 4.3times lower than the most efficient version of the surface code and 5.1times lower than the subsystem toric code. Their threshold and pseudo-threshold exceeds 0.42% for circuit-level depolarising noise, increasing to 2.4% under infinite bias using gauge fixing.
Degradation Prediction of Semiconductor Lasers using Conditional Variational Autoencoder
Semiconductor lasers have been rapidly evolving to meet the demands of next-generation optical networks. This imposes much more stringent requirements on the laser reliability, which are dominated by degradation mechanisms (e.g., sudden degradation) limiting the semiconductor laser lifetime. Physics-based approaches are often used to characterize the degradation behavior analytically, yet explicit domain knowledge and accurate mathematical models are required. Building such models can be very challenging due to a lack of a full understanding of the complex physical processes inducing the degradation under various operating conditions. To overcome the aforementioned limitations, we propose a new data-driven approach, extracting useful insights from the operational monitored data to predict the degradation trend without requiring any specific knowledge or using any physical model. The proposed approach is based on an unsupervised technique, a conditional variational autoencoder, and validated using vertical-cavity surface-emitting laser (VCSEL) and tunable edge emitting laser reliability data. The experimental results confirm that our model (i) achieves a good degradation prediction and generalization performance by yielding an F1 score of 95.3%, (ii) outperforms several baseline ML based anomaly detection techniques, and (iii) helps to shorten the aging tests by early predicting the failed devices before the end of the test and thereby saving costs
Ergotropy and Capacity Optimization in Heisenberg Spin Chain Quantum Batteries
This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions. The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting. We derive analytical expressions for the maximal extractable work, ergotropy and the capacity of QBs, as recently examined by Yang et al. [Phys. Rev. Lett. 131, 030402 (2023)]. These quantities are analytically linked through certain quantum correlations, as posited in the aforementioned study. Different Heisenberg spin chain models exhibit distinct behaviors under varying conditions, emphasizing the importance of model selection for optimizing QB performance. In antiferromagnetic (AFM) systems, maximum ergotropy occurs with a Zeeman splitting field applied to either spin, while ferromagnetic (FM) systems benefit from a uniform Zeeman field. Temperature significantly impacts QB performance, with ergotropy in the AFM case being generally more robust against temperature increases compared to the FM case. Incorporating DM and KSEA couplings can significantly enhance the capacity and ergotropy extraction of QBs. However, there exists a threshold beyond which additional increases in these interactions cause a sharp decline in capacity and ergotropy. This behavior is influenced by temperature and quantum coherence, which signal the occurrence of a sudden phase transition. The resource theory of quantum coherence proposed by Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014)] plays a crucial role in enhancing ergotropy and capacity. However, ergotropy is limited by both the system's capacity and the amount of coherence. These findings support the theoretical framework of spin-based QBs and may benefit future research on quantum energy storage devices.
Quantum thermophoresis
Thermophoresis is the migration of a particle due to a thermal gradient. Here, we theoretically uncover the quantum version of thermophoresis. As a proof of principle, we analytically find a thermophoretic force on a trapped quantum particle having three energy levels in Lambda configuration. We then consider a model of N sites, each coupled to its first neighbors and subjected to a local bath at a certain temperature, so as to show numerically how quantum thermophoresis behaves with increasing delocalization of the quantum particle. We discuss how negative thermophoresis and the Dufour effect appear in the quantum regime.
Improving Convergence and Generalization Using Parameter Symmetries
In many neural networks, different values of the parameters may result in the same loss value. Parameter space symmetries are loss-invariant transformations that change the model parameters. Teleportation applies such transformations to accelerate optimization. However, the exact mechanism behind this algorithm's success is not well understood. In this paper, we show that teleportation not only speeds up optimization in the short-term, but gives overall faster time to convergence. Additionally, teleporting to minima with different curvatures improves generalization, which suggests a connection between the curvature of the minimum and generalization ability. Finally, we show that integrating teleportation into a wide range of optimization algorithms and optimization-based meta-learning improves convergence. Our results showcase the versatility of teleportation and demonstrate the potential of incorporating symmetry in optimization.
Sub-second spin and lifetime-limited optical coherences in ^{171}Yb^{3+}:CaWO_4
Optically addressable solid-state spins have been extensively studied for quantum technologies, offering unique advantages for quantum computing, communication, and sensing. Advancing these applications is generally limited by finding materials that simultaneously provide lifetime-limited optical and long spin coherences. Here, we introduce ^{171}Yb^{3+} ions doped into a CaWO_4 crystal. We perform high-resolution spectroscopy of the excited state, and demonstrate all-optical coherent control of the electron-nuclear spin ensemble. We find narrow inhomogeneous broadening of the optical transitions of 185 MHz and radiative-lifetime-limited coherence time up to 0.75 ms. Next to this, we measure a spin-transition ensemble line width of 5 kHz and electron-nuclear spin coherence time reaching 0.15 seconds at zero magnetic field between 50 mK and 1 K temperatures. These results demonstrate the potential of ^{171}Yb^{3+}:CaWO_4 as a low-noise platform for building quantum technologies with ensemble-based memories, microwave-to-optical transducers, and optically addressable single-ion spin qubits.
Physics-Informed Neural Networks for One-Dimensional Quantum Well Problems
We implement physics-informed neural networks (PINNs) to solve the time-independent Schr\"odinger equation for three canonical one-dimensional quantum potentials: an infinite square well, a finite square well, and a finite barrier. The PINN models incorporate trial wavefunctions that exactly satisfy boundary conditions (Dirichlet zeros at domain boundaries), and they optimize a loss functional combining the PDE residual with a normalization constraint. For the infinite well, the ground-state energy is known (E = pi^2 in dimensionless units) and held fixed in training, whereas for the finite well and barrier, the eigenenergy is treated as a trainable parameter. We use fully-connected neural networks with smooth activation functions to represent the wavefunction and demonstrate that PINNs can learn the ground-state eigenfunctions and eigenvalues for these quantum systems. The results show that the PINN-predicted wavefunctions closely match analytical solutions or expected behaviors, and the learned eigenenergies converge to known values. We present training logs and convergence of the energy parameter, as well as figures comparing the PINN solutions to exact results. The discussion addresses the performance of PINNs relative to traditional numerical methods, highlighting challenges such as convergence to the correct eigenvalue, sensitivity to initialization, and the difficulty of modeling discontinuous potentials. We also discuss the importance of the normalization term to resolve the scaling ambiguity of the wavefunction. Finally, we conclude that PINNs are a viable approach for quantum eigenvalue problems, and we outline future directions including extensions to higher-dimensional and time-dependent Schr\"odinger equations.
ON-OFF Neuromorphic ISING Machines using Fowler-Nordheim Annealers
We introduce NeuroSA, a neuromorphic architecture specifically designed to ensure asymptotic convergence to the ground state of an Ising problem using an annealing process that is governed by the physics of quantum mechanical tunneling using Fowler-Nordheim (FN). The core component of NeuroSA consists of a pair of asynchronous ON-OFF neurons, which effectively map classical simulated annealing (SA) dynamics onto a network of integrate-and-fire (IF) neurons. The threshold of each ON-OFF neuron pair is adaptively adjusted by an FN annealer which replicates the optimal escape mechanism and convergence of SA, particularly at low temperatures. To validate the effectiveness of our neuromorphic Ising machine, we systematically solved various benchmark MAX-CUT combinatorial optimization problems. Across multiple runs, NeuroSA consistently generates solutions that approach the state-of-the-art level with high accuracy (greater than 99%), and without any graph-specific hyperparameter tuning. For practical illustration, we present results from an implementation of NeuroSA on the SpiNNaker2 platform, highlighting the feasibility of mapping our proposed architecture onto a standard neuromorphic accelerator platform.
Multi-Controlled Quantum Gates in Linear Nearest Neighbor
Multi-controlled single-target (MC) gates are some of the most crucial building blocks for varied quantum algorithms. How to implement them optimally is thus a pivotal question. To answer this question in an architecture-independent manner, and to get a worst-case estimate, we should look at a linear nearest-neighbor (LNN) architecture, as this can be embedded in almost any qubit connectivity. Motivated by the above, here we describe a method which implements MC gates using no more than sim 4k+8n CNOT gates -- up-to 60% reduction over state-of-the-art -- while allowing for complete flexibility to choose the locations of n controls, the target, and a dirty ancilla out of k qubits. More strikingly, in case k approx n, our upper bound is sim 12n -- the best known for unrestricted connectivity -- and if n = 1, our upper bound is sim 4k -- the best known for a single long-range CNOT gate over k qubits -- therefore, if our upper bound can be reduced, then the cost of one or both of these simpler versions of MC gates will be immediately reduced accordingly. In practice, our method provides circuits that tend to require fewer CNOT gates than our upper bound for almost any given instance of MC gates.
Hyperentanglement in Nanophotonic Systems with Discrete Rotational Symmetry
We propose a scheme to generate hyperentanglement between photons carrying angular momentum in nanophotonic systems with discrete rotational symmetry. Coupling free-space photons into surface plasmon polaritons by a polygonal-shaped grating restricts the basis of the generated near-field modes to a finite set, thus creating a new mechanism for spatial mode entanglement. By encoding the incoming photons with spin and orbital angular momenta, we find that the system preserves the high-dimensional Hilbert space, in contrast to rotationally symmetric nanophotonic platforms, where the inseparability of spin and orbital degrees of freedom results in loss of information. We further show that by properly engineering the phase of the photons to conform to the polygonal boundary conditions, we achieve a new scheme for generating hyperentangled states, utilizing both the vector-field nature of the nanophotonic modes and the finite basis of states in polygonal boundary conditions. Our approach paves the way for on-chip quantum communication by expanding the Hilbert space used in computation.
Teleportation of entanglement over 143 km
As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e. entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 standard deviations beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Since our results already allow for efficient implementation of entanglement purification, we anticipate our assay to lay the ground for a fully-fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.
Imaging and controlling electron motion and chemical structural dynamics of biological system in real time and space
Ultrafast electron microscopy (UEM) has found widespread applications in physics, chemistry, and materials science, enabling real-space imaging of dynamics on ultrafast timescales. Recent advances have pushed the temporal resolution of UEM into the attosecond regime, enabling the attomicroscopy technique to directly visualize electron motion. In this work, we extend the capabilities of this powerful imaging tool to investigate ultrafast electron dynamics in a biological system by imaging and controlling light induced electronic and chemical changes in the conductive network of multicellular cable bacteria. Using electron energy loss spectroscopy (EELS), we first observed a laser induced increase in {\pi}-electron density, accompanied by spectral peak broadening and a blueshift features indicative of enhanced conductivity and structural modification. We also traced the effect of ultrafast laser pumping on bulk plasmon electron oscillations by monitoring changes in the plasmon like resonance peak. Additionally, we visualized laser induced chemical structural changes in cable bacteria in real space. The imaging results revealed carbon enrichment alongside a depletion of nitrogen and oxygen, highlighting the controllability of chemical dynamics. Moreover, time resolved EELS measurements further revealed a picosecond scale decay and recovery of both {\pi}-electron and plasmonic features, attributed to electron phonon coupling. In addition to shedding light on the mechanism of electron motion in cable bacteria, these findings demonstrate ultrafast modulation and switching of conductivity, underscoring their potential as bio-optoelectronic components operating on ultrafast timescales.
DeMo: Decoupled Momentum Optimization
Training large neural networks typically requires sharing gradients between accelerators through specialized high-speed interconnects. Drawing from the signal processing principles of frequency decomposition and energy compaction, we demonstrate that synchronizing full optimizer states and model parameters during training is unnecessary. By decoupling momentum updates and allowing controlled divergence in optimizer states across accelerators, we achieve improved convergence compared to state-of-the-art optimizers. We introduce {De}coupled {Mo}mentum (DeMo), a fused optimizer and data parallel algorithm that reduces inter-accelerator communication requirements by several orders of magnitude. This enables training of large neural networks even with limited network bandwidth and heterogeneous hardware. Our method is topology-agnostic and architecture-independent and supports scalable clock-synchronous distributed training with negligible compute and memory overhead. Empirical results show that models trained with DeMo match or exceed the performance of equivalent models trained with AdamW, while eliminating the need for high-speed interconnects when pre-training large scale foundation models. An open source reference PyTorch implementation is published on GitHub at https://github.com/bloc97/DeMo
Synthesis of discrete-continuous quantum circuits with multimodal diffusion models
Efficiently compiling quantum operations remains a major bottleneck in scaling quantum computing. Today's state-of-the-art methods achieve low compilation error by combining search algorithms with gradient-based parameter optimization, but they incur long runtimes and require multiple calls to quantum hardware or expensive classical simulations, making their scaling prohibitive. Recently, machine-learning models have emerged as an alternative, though they are currently restricted to discrete gate sets. Here, we introduce a multimodal denoising diffusion model that simultaneously generates a circuit's structure and its continuous parameters for compiling a target unitary. It leverages two independent diffusion processes, one for discrete gate selection and one for parameter prediction. We benchmark the model over different experiments, analyzing the method's accuracy across varying qubit counts, circuit depths, and proportions of parameterized gates. Finally, by exploiting its rapid circuit generation, we create large datasets of circuits for particular operations and use these to extract valuable heuristics that can help us discover new insights into quantum circuit synthesis.
AQCat25: Unlocking spin-aware, high-fidelity machine learning potentials for heterogeneous catalysis
Large-scale datasets have enabled highly accurate machine learning interatomic potentials (MLIPs) for general-purpose heterogeneous catalysis modeling. There are, however, some limitations in what can be treated with these potentials because of gaps in the underlying training data. To extend these capabilities, we introduce AQCat25, a complementary dataset of 13.5 million density functional theory (DFT) single point calculations designed to improve the treatment of systems where spin polarization and/or higher fidelity are critical. We also investigate methodologies for integrating new datasets, such as AQCat25, with the broader Open Catalyst 2020 (OC20) dataset to create spin-aware models without sacrificing generalizability. We find that directly tuning a general model on AQCat25 leads to catastrophic forgetting of the original dataset's knowledge. Conversely, joint training strategies prove effective for improving accuracy on the new data without sacrificing general performance. This joint approach introduces a challenge, as the model must learn from a dataset containing both mixed-fidelity calculations and mixed-physics (spin-polarized vs. unpolarized). We show that explicitly conditioning the model on this system-specific metadata, for example by using Feature-wise Linear Modulation (FiLM), successfully addresses this challenge and further enhances model accuracy. Ultimately, our work establishes an effective protocol for bridging DFT fidelity domains to advance the predictive power of foundational models in catalysis.
Streaming DiLoCo with overlapping communication: Towards a Distributed Free Lunch
Training of large language models (LLMs) is typically distributed across a large number of accelerators to reduce training time. Since internal states and parameter gradients need to be exchanged at each and every single gradient step, all devices need to be co-located using low-latency high-bandwidth communication links to support the required high volume of exchanged bits. Recently, distributed algorithms like DiLoCo have relaxed such co-location constraint: accelerators can be grouped into ``workers'', where synchronizations between workers only occur infrequently. This in turn means that workers can afford being connected by lower bandwidth communication links without affecting learning quality. However, in these methods, communication across workers still requires the same peak bandwidth as before, as the synchronizations require all parameters to be exchanged across all workers. In this paper, we improve DiLoCo in three ways. First, we synchronize only subsets of parameters in sequence, rather than all at once, which greatly reduces peak bandwidth. Second, we allow workers to continue training while synchronizing, which decreases wall clock time. Third, we quantize the data exchanged by workers, which further reduces bandwidth across workers. By properly combining these modifications, we show experimentally that we can distribute training of billion-scale parameters and reach similar quality as before, but reducing required bandwidth by two orders of magnitude.
Learning Inter-Atomic Potentials without Explicit Equivariance
Accurate and scalable machine-learned inter-atomic potentials (MLIPs) are essential for molecular simulations ranging from drug discovery to new material design. Current state-of-the-art models enforce roto-translational symmetries through equivariant neural network architectures, a hard-wired inductive bias that can often lead to reduced flexibility, computational efficiency, and scalability. In this work, we introduce TransIP: Transformer-based Inter-Atomic Potentials, a novel training paradigm for interatomic potentials achieving symmetry compliance without explicit architectural constraints. Our approach guides a generic non-equivariant Transformer-based model to learn SO(3)-equivariance by optimizing its representations in the embedding space. Trained on the recent Open Molecules (OMol25) collection, a large and diverse molecular dataset built specifically for MLIPs and covering different types of molecules (including small organics, biomolecular fragments, and electrolyte-like species), TransIP attains comparable performance in machine-learning force fields versus state-of-the-art equivariant baselines. Further, compared to a data augmentation baseline, TransIP achieves 40% to 60% improvement in performance across varying OMol25 dataset sizes. More broadly, our work shows that learned equivariance can be a powerful and efficient alternative to equivariant or augmentation-based MLIP models.
Review of Distributed Quantum Computing. From single QPU to High Performance Quantum Computing
The emerging field of quantum computing has shown it might change how we process information by using the unique principles of quantum mechanics. As researchers continue to push the boundaries of quantum technologies to unprecedented levels, distributed quantum computing raises as an obvious path to explore with the aim of boosting the computational power of current quantum systems. This paper presents a comprehensive survey of the current state of the art in the distributed quantum computing field, exploring its foundational principles, landscape of achievements, challenges, and promising directions for further research. From quantum communication protocols to entanglement-based distributed algorithms, each aspect contributes to the mosaic of distributed quantum computing, making it an attractive approach to address the limitations of classical computing. Our objective is to provide an exhaustive overview for experienced researchers and field newcomers.
Hardware Beyond Backpropagation: a Photonic Co-Processor for Direct Feedback Alignment
The scaling hypothesis motivates the expansion of models past trillions of parameters as a path towards better performance. Recent significant developments, such as GPT-3, have been driven by this conjecture. However, as models scale-up, training them efficiently with backpropagation becomes difficult. Because model, pipeline, and data parallelism distribute parameters and gradients over compute nodes, communication is challenging to orchestrate: this is a bottleneck to further scaling. In this work, we argue that alternative training methods can mitigate these issues, and can inform the design of extreme-scale training hardware. Indeed, using a synaptically asymmetric method with a parallelizable backward pass, such as Direct Feedback Alignement, communication needs are drastically reduced. We present a photonic accelerator for Direct Feedback Alignment, able to compute random projections with trillions of parameters. We demonstrate our system on benchmark tasks, using both fully-connected and graph convolutional networks. Our hardware is the first architecture-agnostic photonic co-processor for training neural networks. This is a significant step towards building scalable hardware, able to go beyond backpropagation, and opening new avenues for deep learning.
Quantum Denoising Diffusion Models
In recent years, machine learning models like DALL-E, Craiyon, and Stable Diffusion have gained significant attention for their ability to generate high-resolution images from concise descriptions. Concurrently, quantum computing is showing promising advances, especially with quantum machine learning which capitalizes on quantum mechanics to meet the increasing computational requirements of traditional machine learning algorithms. This paper explores the integration of quantum machine learning and variational quantum circuits to augment the efficacy of diffusion-based image generation models. Specifically, we address two challenges of classical diffusion models: their low sampling speed and the extensive parameter requirements. We introduce two quantum diffusion models and benchmark their capabilities against their classical counterparts using MNIST digits, Fashion MNIST, and CIFAR-10. Our models surpass the classical models with similar parameter counts in terms of performance metrics FID, SSIM, and PSNR. Moreover, we introduce a consistency model unitary single sampling architecture that combines the diffusion procedure into a single step, enabling a fast one-step image generation.
Unveiling Real Triple Degeneracies in Crystals: Exploring Link and Compound Structures
With their non-Abelian topological charges, real multi-bandgap systems challenge the conventional topological phase classifications. As the minimal sector of multi-bandgap systems, real triple degeneracies (RTPs), which serve as real 'Weyl points', lay the foundation for the research on real topological phases. However, experimental demonstration of physical systems with global band configurations consisting of multiple RTPs in crystals has not been reported. Here we present experimental evidence of RTPs in photonic meta-crystals, characterizing them using the Euler number, and establishing their connection with both Abelian and non-Abelian charges. By considering RTPs as the basic elements, we further propose the concept of a topological compound, akin to a chemical compound, where we find that certain phases are not topologically allowed. The topological classification of RTPs in crystals demonstrated in our work plays a similar role as the 'no-go' theorem in Weyl systems.
