new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

Exploiting Inter-Layer Expert Affinity for Accelerating Mixture-of-Experts Model Inference

In large language models like the Generative Pre-trained Transformer, the Mixture of Experts paradigm has emerged as a powerful technique for enhancing model expressiveness and accuracy. However, deploying GPT MoE models for parallel inference on distributed systems presents significant challenges, primarily due to the extensive Alltoall communication required for expert routing and aggregation. This communication bottleneck exacerbates the already complex computational landscape, hindering the efficient utilization of high-performance computing resources. In this paper, we propose a lightweight optimization technique called ExFlow, to largely accelerate the inference of these MoE models. We take a new perspective on alleviating the communication overhead by exploiting the inter-layer expert affinity. Unlike previous methods, our solution can be directly applied to pre-trained MoE models without any fine-tuning or accuracy degradation. By proposing a context-coherent expert parallelism on distributed systems, our design only uses one Alltoall communication to deliver the same functionality while previous methods all require two Alltoalls. By carefully examining the conditional probability in tokens' routing across multiple layers, we proved that pre-trained GPT MoE models implicitly exhibit a strong inter-layer expert affinity. We then design an efficient integer programming model to capture such features and show that by properly placing the experts on corresponding GPUs, we can reduce up to 67% cross-GPU routing latency. Our solution beats the cutting-edge MoE implementations with experts from 8 to 64, with up to 2.2x improvement in inference throughput. We further provide a detailed study of how the model implicitly acquires this expert affinity at the very early training stage and how this affinity evolves and stabilizes during training.

  • 6 authors
·
Jan 16, 2024

Layer-Wise High-Impact Parameter Ratio Optimization in Post-Training Quantization for Large Language Models

Large language models (LLMs) have significantly advanced natural language processing, but their massive parameter counts create substantial computational and memory challenges during deployment. Post-training quantization (PTQ) has emerged as a promising approach to mitigate these challenges with minimal overhead. While existing PTQ methods can effectively quantize LLMs, they experience substantial accuracy loss at extremely low bit-widths, primarily due to high-impact parameters that significantly influence quantization performance. Several approaches address these issues by identifying and retaining the high-impact parameters in FP16 format. However, they apply fixed ratios of high-impact parameters across all layers, overlooking layer-wise sensitivity variations. In this paper, we propose a quadratic optimization framework that determines layer-specific ratios of high-impact parameters while considering inter-layer dependencies. We quantize high-impact parameters to moderate bit-widths, which often result in negligible performance degradation in quantized LLMs, while the remaining parameters can be quantized to extremely low bit-widths. Under the same resource-constrained budget, this allows for preserving more high-impact parameters than methods that keep selecting a few in FP16 format. Additionally, the proposed framework allows us to leverage an advanced quantization method that often requires extensive learnable parameters solely for high-impact parameters, while applying a computationally efficient method to the rest. Our approach achieves an effective balance between computational efficiency and model accuracy while maintaining high performance compared to state-of-the-art methods.

  • 6 authors
·
Nov 21, 2025