new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 20

GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis

Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F_1 of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.

  • 3 authors
·
Jul 28, 2025 2

Chain of Code: Reasoning with a Language Model-Augmented Code Emulator

Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter - we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for semantic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for "detect_sarcasm(string)" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they not only write code, but also selectively "emulate" the interpreter by generating the expected output of "detect_sarcasm(string)". In this work, we propose Chain of Code (CoC), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format semantic sub-tasks in a program as flexible pseudocode that the interpreter can explicitly catch undefined behaviors and hand off to simulate with an LM (as an "LMulator"). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other baselines across a variety of benchmarks; on BIG-Bench Hard, Chain of Code achieves 84%, a gain of 12% over Chain of Thought. In a nutshell, CoC broadens the scope of reasoning questions that LMs can answer by "thinking in code".

  • 10 authors
·
Dec 7, 2023 4

Language Models as Compilers: Simulating Pseudocode Execution Improves Algorithmic Reasoning in Language Models

Algorithmic reasoning refers to the ability to understand the complex patterns behind the problem and decompose them into a sequence of reasoning steps towards the solution. Such nature of algorithmic reasoning makes it a challenge for large language models (LLMs), even though they have demonstrated promising performance in other reasoning tasks. Within this context, some recent studies use programming languages (e.g., Python) to express the necessary logic for solving a given instance/question (e.g., Program-of-Thought) as inspired by their strict and precise syntaxes. However, it is non-trivial to write an executable code that expresses the correct logic on the fly within a single inference call. Also, the code generated specifically for an instance cannot be reused for others, even if they are from the same task and might require identical logic to solve. This paper presents Think-and-Execute, a novel framework that decomposes the reasoning process of language models into two steps. (1) In Think, we discover a task-level logic that is shared across all instances for solving a given task and then express the logic with pseudocode; (2) In Execute, we further tailor the generated pseudocode to each instance and simulate the execution of the code. With extensive experiments on seven algorithmic reasoning tasks, we demonstrate the effectiveness of Think-and-Execute. Our approach better improves LMs' reasoning compared to several strong baselines performing instance-specific reasoning (e.g., CoT and PoT), suggesting the helpfulness of discovering task-level logic. Also, we show that compared to natural language, pseudocode can better guide the reasoning of LMs, even though they are trained to follow natural language instructions.

  • 11 authors
·
Apr 3, 2024 9

LLM4EFFI: Leveraging Large Language Models to Enhance Code Efficiency and Correctness

Large Language Models (LLMs), particularly Code LLMs, have demonstrated impressive performance in code generation. Current research primarily focuses on the correctness of generated code, while efficiency remains less explored. Recent works have focused on modifying the initial version of the code to improve its efficiency. However, such refinements are limited by the algorithmic design and overall logic of the initial code, resulting in only incremental improvements. In contrast, when human developers write high-quality code, they typically begin by designing several potential solutions at the logical level, evaluating various algorithms and their complexities, and then proceeding to implement and optimize the solution. In this study, we introduce \tool: Large Language Model for Code Efficiency, a novel framework that enables LLMs to generate code that balances both efficiency and correctness. Specifically, \tool divides the efficiency optimization process into two domains: algorithmic exploration in the logic domain and implementation optimization in the code domain. The correctness of the code is then guaranteed through a synthetic test case refinement process. This approach, which prioritizes efficiency before ensuring correctness, offers a new paradigm for efficient code generation. Experiments demonstrate that \tool consistently improves both efficiency and correctness, achieving new state-of-the-art performance in code efficiency benchmarks across various LLM backbones.

  • 7 authors
·
Feb 17, 2025

Reasoning Runtime Behavior of a Program with LLM: How Far Are We?

Large language models for code (i.e., code LLMs) have shown strong code understanding and generation capabilities. To evaluate the capabilities of code LLMs in various aspects, many benchmarks have been proposed (e.g., HumanEval and ClassEval). Code reasoning is one of the most essential abilities of code LLMs, but existing benchmarks for code reasoning are not sufficient. Typically, they focus on predicting the input and output of a program, ignoring the evaluation of the intermediate behavior during program execution, as well as the logical consistency (e.g., the model should not give the correct output if the prediction of execution path is wrong) when performing the reasoning. To address these problems, in this paper, we propose a framework, namely REval, for evaluating code reasoning abilities and consistency of code LLMs with program execution. We utilize existing code benchmarks and adapt them to new benchmarks within our framework. A large-scale empirical study is conducted and most LLMs show unsatisfactory performance on both Runtime Behavior Reasoning (i.e., an average accuracy of 44.4%) and Incremental Consistency Evaluation (i.e., an average IC score of 10.3). Evaluation results of current code LLMs reflect the urgent need for the community to strengthen the code reasoning capability of code LLMs. Our code, data, and \newname leaderboard are available at https://r-eval.github.io.

  • 6 authors
·
Mar 25, 2024

If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code Empowers Large Language Models to Serve as Intelligent Agents

The prominent large language models (LLMs) of today differ from past language models not only in size, but also in the fact that they are trained on a combination of natural language and formal language (code). As a medium between humans and computers, code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity. In this survey, we present an overview of the various benefits of integrating code into LLMs' training data. Specifically, beyond enhancing LLMs in code generation, we observe that these unique properties of code help (i) unlock the reasoning ability of LLMs, enabling their applications to a range of more complex natural language tasks; (ii) steer LLMs to produce structured and precise intermediate steps, which can then be connected to external execution ends through function calls; and (iii) take advantage of code compilation and execution environment, which also provides diverse feedback for model improvement. In addition, we trace how these profound capabilities of LLMs, brought by code, have led to their emergence as intelligent agents (IAs) in situations where the ability to understand instructions, decompose goals, plan and execute actions, and refine from feedback are crucial to their success on downstream tasks. Finally, we present several key challenges and future directions of empowering LLMs with code.

  • 12 authors
·
Jan 1, 2024 1

FLAG: Finding Line Anomalies (in code) with Generative AI

Code contains security and functional bugs. The process of identifying and localizing them is difficult and relies on human labor. In this work, we present a novel approach (FLAG) to assist human debuggers. FLAG is based on the lexical capabilities of generative AI, specifically, Large Language Models (LLMs). Here, we input a code file then extract and regenerate each line within that file for self-comparison. By comparing the original code with an LLM-generated alternative, we can flag notable differences as anomalies for further inspection, with features such as distance from comments and LLM confidence also aiding this classification. This reduces the inspection search space for the designer. Unlike other automated approaches in this area, FLAG is language-agnostic, can work on incomplete (and even non-compiling) code and requires no creation of security properties, functional tests or definition of rules. In this work, we explore the features that help LLMs in this classification and evaluate the performance of FLAG on known bugs. We use 121 benchmarks across C, Python and Verilog; with each benchmark containing a known security or functional weakness. We conduct the experiments using two state of the art LLMs in OpenAI's code-davinci-002 and gpt-3.5-turbo, but our approach may be used by other models. FLAG can identify 101 of the defects and helps reduce the search space to 12-17% of source code.

  • 4 authors
·
Jun 21, 2023

AutoCodeRover: Autonomous Program Improvement

Researchers have made significant progress in automating the software development process in the past decades. Recent progress in Large Language Models (LLMs) has significantly impacted the development process, where developers can use LLM-based programming assistants to achieve automated coding. Nevertheless, software engineering involves the process of program improvement apart from coding, specifically to enable software maintenance (e.g. bug fixing) and software evolution (e.g. feature additions). In this paper, we propose an automated approach for solving GitHub issues to autonomously achieve program improvement. In our approach called AutoCodeRover, LLMs are combined with sophisticated code search capabilities, ultimately leading to a program modification or patch. In contrast to recent LLM agent approaches from AI researchers and practitioners, our outlook is more software engineering oriented. We work on a program representation (abstract syntax tree) as opposed to viewing a software project as a mere collection of files. Our code search exploits the program structure in the form of classes/methods to enhance LLM's understanding of the issue's root cause, and effectively retrieve a context via iterative search. The use of spectrum-based fault localization using tests, further sharpens the context, as long as a test-suite is available. Experiments on SWE-bench-lite (300 real-life GitHub issues) show increased efficacy in solving GitHub issues (19% on SWE-bench-lite), which is higher than the efficacy of the recently reported SWE-agent. In addition, AutoCodeRover achieved this efficacy with significantly lower cost (on average, $0.43 USD), compared to other baselines. We posit that our workflow enables autonomous software engineering, where, in future, auto-generated code from LLMs can be autonomously improved.

  • 4 authors
·
Apr 8, 2024

Towards Automated Formal Verification of Backend Systems with LLMs

Software testing plays a critical role in ensuring that systems behave as intended. However, existing automated testing approaches struggle to match the capabilities of human engineers due to key limitations such as test locality, lack of general reliability, and business logic blindness. In this work, we propose a novel framework that leverages functional programming and type systems to translate Scala backend code into formal Lean representations. Our pipeline automatically generates theorems that specify the intended behavior of APIs and database operations, and uses LLM-based provers to verify them. When a theorem is proved, the corresponding logic is guaranteed to be correct and no further testing is needed. If the negation of a theorem is proved instead, it confirms a bug. In cases where neither can be proved, human intervention is required. We evaluate our method on realistic backend systems and find that it can formally verify over 50% of the test requirements, which suggests that half of a testing engineer's workload can be automated. Additionally, with an average cost of only $2.19 per API, LLM-based verification is significantly more cost-effective than manual testing and can be scaled easily through parallel execution. Our results indicate a promising direction for scalable, AI-powered software testing, with the potential to greatly improve engineering productivity as models continue to advance.

  • 4 authors
·
Apr 13, 2025

CodeSense: a Real-World Benchmark and Dataset for Code Semantic Reasoning

Understanding and reasoning about code semantics is essential for enhancing code LLMs' abilities to solve real-world software engineering (SE) tasks. Although several code reasoning benchmarks exist, most rely on synthetic datasets or educational coding problems and focus on coarse-grained reasoning tasks such as input/output prediction, limiting their effectiveness in evaluating LLMs in practical SE contexts. To bridge this gap, we propose CodeSense, the first benchmark that makes available a spectrum of fine-grained code reasoning tasks concerned with the software engineering of real-world code. We collected Python, C and Java software projects from real-world repositories. We executed tests from these repositories, collected their execution traces, and constructed a ground truth dataset for fine-grained semantic reasoning tasks. We then performed comprehensive evaluations on state-of-the-art LLMs. Our results show a clear performance gap for the models to handle fine-grained reasoning tasks. Although prompting techniques such as chain-of-thought and in-context learning helped, the lack of code semantics in LLMs fundamentally limit models' capabilities of code reasoning. Besides dataset, benchmark and evaluation, our work produced an execution tracing framework and tool set that make it easy to collect ground truth for fine-grained SE reasoning tasks, offering a strong basis for future benchmark construction and model post training. Our code and data are located at https://codesense-bench.github.io/.

  • 7 authors
·
May 31, 2025

FLARE: Faithful Logic-Aided Reasoning and Exploration

Modern Question Answering (QA) and Reasoning approaches based on Large Language Models (LLMs) commonly use prompting techniques, such as Chain-of-Thought (CoT), assuming the resulting generation will have a more granular exploration and reasoning over the question space and scope. However, such methods struggle with generating outputs that are faithful to the intermediate chain of reasoning produced by the model. On the other end of the spectrum, neuro-symbolic methods such as Faithful CoT (F-CoT) propose to combine LLMs with external symbolic solvers. While such approaches boast a high degree of faithfulness, they usually require a model trained for code generation and struggle with tasks that are ambiguous or hard to formalise strictly. We introduce Faithful Logic-Aided Reasoning and Exploration (\ours), a novel interpretable approach for traversing the problem space using task decompositions. We use the LLM to plan a solution, soft-formalise the query into facts and predicates using a logic programming code and simulate that code execution using an exhaustive multi-hop search over the defined space. Our method allows us to compute the faithfulness of the reasoning process w.r.t. the generated code and analyse the steps of the multi-hop search without relying on external solvers. Our methods achieve SOTA results on 7 out of 9 diverse reasoning benchmarks. We also show that model faithfulness positively correlates with overall performance and further demonstrate that {\ours} allows pinpointing the decisive factors sufficient for and leading to the correct answer with optimal reasoning during the multi-hop search.

  • 5 authors
·
Oct 14, 2024 2

From Copilot to Pilot: Towards AI Supported Software Development

AI-supported programming has arrived, as shown by the introduction and successes of large language models for code, such as Copilot/Codex (Github/OpenAI) and AlphaCode (DeepMind). Above human average performance on programming challenges is now possible. However, software engineering is much more than solving programming contests. Moving beyond code completion to AI-supported software engineering will require an AI system that can, among other things, understand how to avoid code smells, to follow language idioms, and eventually (maybe!) propose rational software designs. In this study, we explore the current limitations of AI-supported code completion tools like Copilot and offer a simple taxonomy for understanding the classification of AI-supported code completion tools in this space. We first perform an exploratory study on Copilot's code suggestions for language idioms and code smells. Copilot does not follow language idioms and avoid code smells in most of our test scenarios. We then conduct additional investigation to determine the current boundaries of AI-supported code completion tools like Copilot by introducing a taxonomy of software abstraction hierarchies where 'basic programming functionality' such as code compilation and syntax checking is at the least abstract level, software architecture analysis and design are at the most abstract level. We conclude by providing a discussion on challenges for future development of AI-supported code completion tools to reach the design level of abstraction in our taxonomy.

  • 2 authors
·
Mar 7, 2023

Helping LLMs Improve Code Generation Using Feedback from Testing and Static Analysis

Large Language Models (LLMs) are one of the most promising developments in the field of artificial intelligence, and the software engineering community has readily noticed their potential role in the software development life-cycle. Developers routinely ask LLMs to generate code snippets, increasing productivity but also potentially introducing ownership, privacy, correctness, and security issues. Previous work highlighted how code generated by mainstream commercial LLMs is often not safe, containing vulnerabilities, bugs, and code smells. In this paper, we present a framework that leverages testing and static analysis to assess the quality, and guide the self-improvement, of code generated by general-purpose, open-source LLMs. First, we ask LLMs to generate C code to solve a number of programming tasks. Then we employ ground-truth tests to assess the (in)correctness of the generated code, and a static analysis tool to detect potential safety vulnerabilities. Next, we assess the models ability to evaluate the generated code, by asking them to detect errors and vulnerabilities. Finally, we test the models ability to fix the generated code, providing the reports produced during the static analysis and incorrectness evaluation phases as feedback. Our results show that models often produce incorrect code, and that the generated code can include safety issues. Moreover, they perform very poorly at detecting either issue. On the positive side, we observe a substantial ability to fix flawed code when provided with information about failed tests or potential vulnerabilities, indicating a promising avenue for improving the safety of LLM-based code generation tools.

  • 6 authors
·
Dec 19, 2024

COFFE: A Code Efficiency Benchmark for Code Generation

Code generation has largely improved development efficiency in the era of large language models (LLMs). With the ability to follow instructions, current LLMs can be prompted to generate code solutions given detailed descriptions in natural language. Many research efforts are being devoted to improving the correctness of LLM-generated code, and many benchmarks are proposed to evaluate the correctness comprehensively. Despite the focus on correctness, the time efficiency of LLM-generated code solutions is under-explored. Current correctness benchmarks are not suitable for time efficiency evaluation since their test cases cannot well distinguish the time efficiency of different code solutions. Besides, the current execution time measurement is not stable and comprehensive, threatening the validity of the time efficiency evaluation. To address the challenges in the time efficiency evaluation of code generation, we propose COFFE, a code generation benchmark for evaluating the time efficiency of LLM-generated code solutions. COFFE contains 398 and 358 problems for function-level and file-level code generation, respectively. To improve the distinguishability, we design a novel stressful test case generation approach with contracts and two new formats of test cases to improve the accuracy of generation. For the time evaluation metric, we propose efficienct@k based on CPU instruction count to ensure a stable and solid comparison between different solutions. We evaluate 14 popular LLMs on COFFE and identify four findings. Based on the findings, we draw some implications for LLM researchers and software practitioners to facilitate future research and usage of LLMs in code generation.

  • 4 authors
·
Feb 4, 2025

Evaluating the Impact of Source Code Parsers on ML4SE Models

As researchers and practitioners apply Machine Learning to increasingly more software engineering problems, the approaches they use become more sophisticated. A lot of modern approaches utilize internal code structure in the form of an abstract syntax tree (AST) or its extensions: path-based representation, complex graph combining AST with additional edges. Even though the process of extracting ASTs from code can be done with different parsers, the impact of choosing a parser on the final model quality remains unstudied. Moreover, researchers often omit the exact details of extracting particular code representations. In this work, we evaluate two models, namely Code2Seq and TreeLSTM, in the method name prediction task backed by eight different parsers for the Java language. To unify the process of data preparation with different parsers, we develop SuperParser, a multi-language parser-agnostic library based on PathMiner. SuperParser facilitates the end-to-end creation of datasets suitable for training and evaluation of ML models that work with structural information from source code. Our results demonstrate that trees built by different parsers vary in their structure and content. We then analyze how this diversity affects the models' quality and show that the quality gap between the most and least suitable parsers for both models turns out to be significant. Finally, we discuss other features of the parsers that researchers and practitioners should take into account when selecting a parser along with the impact on the models' quality. The code of SuperParser is publicly available at https://doi.org/10.5281/zenodo.6366591. We also publish Java-norm, the dataset we use to evaluate the models: https://doi.org/10.5281/zenodo.6366599.

  • 4 authors
·
Jun 17, 2022

A Survey on Large Language Models for Code Generation

Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks, known as Code LLMs, particularly in code generation that generates source code with LLM from natural language descriptions. This burgeoning field has captured significant interest from both academic researchers and industry professionals due to its practical significance in software development, e.g., GitHub Copilot. Despite the active exploration of LLMs for a variety of code tasks, either from the perspective of natural language processing (NLP) or software engineering (SE) or both, there is a noticeable absence of a comprehensive and up-to-date literature review dedicated to LLM for code generation. In this survey, we aim to bridge this gap by providing a systematic literature review that serves as a valuable reference for researchers investigating the cutting-edge progress in LLMs for code generation. We introduce a taxonomy to categorize and discuss the recent developments in LLMs for code generation, covering aspects such as data curation, latest advances, performance evaluation, and real-world applications. In addition, we present a historical overview of the evolution of LLMs for code generation and offer an empirical comparison using the widely recognized HumanEval and MBPP benchmarks to highlight the progressive enhancements in LLM capabilities for code generation. We identify critical challenges and promising opportunities regarding the gap between academia and practical development. Furthermore, we have established a dedicated resource website (https://codellm.github.io) to continuously document and disseminate the most recent advances in the field.

  • 5 authors
·
Jun 1, 2024

On Code-Induced Reasoning in LLMs

Code data has been shown to enhance the reasoning capabilities of large language models (LLMs), but it remains unclear which aspects of code are most responsible. We investigate this question with a systematic, data-centric framework. We construct parallel instruction datasets in ten programming languages and apply controlled perturbations that selectively disrupt structural or semantic properties of code. We then finetune LLMs from five model families and eight scales on each variant and evaluate their performance on natural language, math, and code tasks. Across 3,331 experiments, our results show that LLMs are more vulnerable to structural perturbations than semantic ones, particularly on math and code tasks. Appropriate abstractions like pseudocode and flowcharts can be as effective as code, while encoding the same information with fewer tokens without adhering to original syntax can often retain or even improve performance. Remarkably, even corrupted code with misleading signals remains competitive when surface-level regularities persist. Finally, syntactic styles also shape task-specific gains with Python favoring natural language reasoning and lower-level languages such as Java and Rust favoring math. Through our systematic framework, we aim to provide insight into how different properties of code influence reasoning and inform the design of training data for enhancing LLM reasoning capabilities.

Code Security Vulnerability Repair Using Reinforcement Learning with Large Language Models

With the recent advancement of Large Language Models (LLMs), generating functionally correct code has become less complicated for a wide array of developers. While using LLMs has sped up the functional development process, it poses a heavy risk to code security. Code generation with proper security measures using LLM is a significantly more challenging task than functional code generation. Security measures may include adding a pair of lines of code with the original code, consisting of null pointer checking or prepared statements for SQL injection prevention. Currently, available code repair LLMs generate code repair by supervised fine-tuning, where the model looks at cross-entropy loss. However, the original and repaired codes are mostly similar in functionality and syntactically, except for a few (1-2) lines, which act as security measures. This imbalance between the lines needed for security measures and the functional code enforces the supervised fine-tuned model to prioritize generating functional code without adding proper security measures, which also benefits the model by resulting in minimal loss. Therefore, in this work, for security hardening and strengthening of generated code from LLMs, we propose a reinforcement learning-based method for program-specific repair with the combination of semantic and syntactic reward mechanisms that focus heavily on adding security and functional measures in the code, respectively.

  • 3 authors
·
Jan 13, 2024

CodeMind: A Framework to Challenge Large Language Models for Code Reasoning

Solely relying on test passing to evaluate Large Language Models (LLMs) for code synthesis may result in unfair assessment or promoting models with data leakage. As an alternative, we introduce CodeMind, a framework designed to gauge the code reasoning abilities of LLMs. CodeMind currently supports three code reasoning tasks: Independent Execution Reasoning (IER), Dependent Execution Reasoning (DER), and Specification Reasoning (SR). The first two evaluate models to predict the execution output of an arbitrary code or code the model could correctly synthesize. The third one evaluates the extent to which LLMs implement the specified expected behavior. Our extensive evaluation of nine LLMs across five benchmarks in two different programming languages using CodeMind shows that LLMs fairly follow control flow constructs and, in general, explain how inputs evolve to output, specifically for simple programs and the ones they can correctly synthesize. However, their performance drops for code with higher complexity, non-trivial logical and arithmetic operators, non-primitive types, and API calls. Furthermore, we observe that, while correlated, specification reasoning (essential for code synthesis) does not imply execution reasoning (essential for broader programming tasks such as testing and debugging): ranking LLMs based on test passing can be different compared to code reasoning.

  • 4 authors
·
Feb 14, 2024

COMEX: A Tool for Generating Customized Source Code Representations

Learning effective representations of source code is critical for any Machine Learning for Software Engineering (ML4SE) system. Inspired by natural language processing, large language models (LLMs) like Codex and CodeGen treat code as generic sequences of text and are trained on huge corpora of code data, achieving state of the art performance on several software engineering (SE) tasks. However, valid source code, unlike natural language, follows a strict structure and pattern governed by the underlying grammar of the programming language. Current LLMs do not exploit this property of the source code as they treat code like a sequence of tokens and overlook key structural and semantic properties of code that can be extracted from code-views like the Control Flow Graph (CFG), Data Flow Graph (DFG), Abstract Syntax Tree (AST), etc. Unfortunately, the process of generating and integrating code-views for every programming language is cumbersome and time consuming. To overcome this barrier, we propose our tool COMEX - a framework that allows researchers and developers to create and combine multiple code-views which can be used by machine learning (ML) models for various SE tasks. Some salient features of our tool are: (i) it works directly on source code (which need not be compilable), (ii) it currently supports Java and C#, (iii) it can analyze both method-level snippets and program-level snippets by using both intra-procedural and inter-procedural analysis, and (iv) it is easily extendable to other languages as it is built on tree-sitter - a widely used incremental parser that supports over 40 languages. We believe this easy-to-use code-view generation and customization tool will give impetus to research in source code representation learning methods and ML4SE. Tool: https://pypi.org/project/comex - GitHub: https://github.com/IBM/tree-sitter-codeviews - Demo: https://youtu.be/GER6U87FVbU

  • 7 authors
·
Jul 10, 2023

Steering Large Language Models between Code Execution and Textual Reasoning

While a lot of recent research focuses on enhancing the textual reasoning capabilities of Large Language Models (LLMs) by optimizing the multi-agent framework or reasoning chains, several benchmark tasks can be solved with 100% success through direct coding, which is more scalable and avoids the computational overhead associated with textual iterating and searching. Textual reasoning has inherent limitations in solving tasks with challenges in math, logics, optimization, and searching, which is unlikely to be solved by simply scaling up the model and data size. The recently released OpenAI GPT Code Interpreter and multi-agent frameworks such as AutoGen have demonstrated remarkable proficiency of integrating code generation and execution to solve complex tasks using LLMs. However, based on our experiments on 7 existing popular methods for steering code/text generation in both single- and multi-turn settings with 14 tasks and 6 types of LLMs (including the new O1-preview), currently there is no optimal method to correctly steer LLMs to write code when needed. We discover some interesting patterns on when models use code vs. textual reasoning with the evolution to task complexity and model sizes, which even result in an astonishingly inverse scaling law. We also discover that results from LLM written code are not always better than using textual reasoning, even if the task could be solved through code. To mitigate the above issues, we propose three methods to better steer LLM code/text generation and achieve a notable improvement. The costs of token lengths and runtime are thoroughly discussed for all the methods. We believe the problem of steering LLM code/text generation is critical for future research and has much space for further improvement. Project Page, Datasets, and Codes are available at https://yongchao98.github.io/CodeSteer/.

  • 5 authors
·
Oct 4, 2024

Bugs in Large Language Models Generated Code: An Empirical Study

Large Language Models (LLMs) for code have gained significant attention recently. They can generate code in different programming languages based on provided prompts, fulfilling a long-lasting dream in Software Engineering (SE), i.e., automatic code generation. Similar to human-written code, LLM-generated code is prone to bugs, and these bugs have not yet been thoroughly examined by the community. Given the increasing adoption of LLM-based code generation tools (e.g., GitHub Copilot) in SE activities, it is critical to understand the characteristics of bugs contained in code generated by LLMs. This paper examines a sample of 333 bugs collected from code generated using three leading LLMs (i.e., CodeGen, PanGu-Coder, and Codex) and identifies the following 10 distinctive bug patterns: Misinterpretations, Syntax Error, Silly Mistake, Prompt-biased code, Missing Corner Case, Wrong Input Type, Hallucinated Object, Wrong Attribute, Incomplete Generation, and Non-Prompted Consideration. The bug patterns are presented in the form of a taxonomy. The identified bug patterns are validated using an online survey with 34 LLM practitioners and researchers. The surveyed participants generally asserted the significance and prevalence of the bug patterns. Researchers and practitioners can leverage these findings to develop effective quality assurance techniques for LLM-generated code. This study sheds light on the distinctive characteristics of LLM-generated code.

  • 6 authors
·
Mar 13, 2024

PLSEMANTICSBENCH: Large Language Models As Programming Language Interpreters

As large language models (LLMs) excel at code reasoning, a natural question arises: can an LLM execute programs (i.e., act as an interpreter) purely based on a programming language's formal semantics? If so, it will enable rapid prototyping of new programming languages and language features. We study this question using the imperative language IMP (a subset of C), formalized via small-step operational semantics (SOS) and rewriting-based operational semantics (K-semantics). We introduce three evaluation sets-Human-Written, LLM-Translated, and Fuzzer- Generated-whose difficulty is controlled by code-complexity metrics spanning the size, control-flow, and data-flow axes. Given a program and its semantics formalized with SOS/K-semantics, models are evaluated on three tasks ranging from coarse to fine: (1) final-state prediction, (2) semantic rule prediction, and (3) execution trace prediction. To distinguish pretraining memorization from semantic competence, we define two nonstandard semantics obtained through systematic mutations of the standard rules. Across strong code/reasoning LLMs, performance drops under nonstandard semantics despite high performance under the standard one. We further find that (i) there are patterns to different model failures, (ii) most reasoning models perform exceptionally well on coarse grained tasks involving reasoning about highly complex programs often containing nested loop depths beyond five, and surprisingly, (iii) providing formal semantics helps on simple programs but often hurts on more complex ones. Overall, the results show a promise that LLMs could serve as programming language interpreters, but points to the lack of their robust semantics understanding. We release the benchmark and the supporting code at https://github.com/EngineeringSoftware/PLSemanticsBench.

  • 5 authors
·
Oct 3, 2025

Neural Theorem Proving: Generating and Structuring Proofs for Formal Verification

Formally verifying properties of software code has been a highly desirable task, especially with the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for the exploration of formal verification and mechanistic interpretability. Since the introduction of code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task of generalized theorem proving still remains far from being fully solved and will be a benchmark for reasoning capability in LLMs. In this work, we introduce a framework that generates whole proofs in a formal language to be used within systems that utilize the power of built-in tactics and off-the-shelf automated theorem provers. Our framework includes 3 components: generating natural language statements of the code to be verified, an LLM that generates formal proofs for the given statement, and a module employing heuristics for building the final proof. To train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training to enable the model to generate syntactically correct Isabelle code and then RL-based training that encourages the model to generate proofs verified by a theorem prover. We validate our framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset based on the FVEL\textnormal{ER} dataset for future training tasks.

  • 3 authors
·
Apr 23, 2025

Improving Few-Shot Prompts with Relevant Static Analysis Products

Large Language Models (LLM) are a new class of computation engines, "programmed" via prompt engineering. We are still learning how to best "program" these LLMs to help developers. We start with the intuition that developers tend to consciously and unconsciously have a collection of semantics facts in mind when working on coding tasks. Mostly these are shallow, simple facts arising from a quick read. For a function, examples of facts might include parameter and local variable names, return expressions, simple pre- and post-conditions, and basic control and data flow, etc. One might assume that the powerful multi-layer architecture of transformer-style LLMs makes them inherently capable of doing this simple level of "code analysis" and extracting such information, implicitly, while processing code: but are they, really? If they aren't, could explicitly adding this information help? Our goal here is to investigate this question, using the code summarization task and evaluate whether automatically augmenting an LLM's prompt with semantic facts explicitly, actually helps. Prior work shows that LLM performance on code summarization benefits from few-shot samples drawn either from the same-project or from examples found via information retrieval methods (such as BM25). While summarization performance has steadily increased since the early days, there is still room for improvement: LLM performance on code summarization still lags its performance on natural-language tasks like translation and text summarization. We find that adding semantic facts actually does help! This approach improves performance in several different settings suggested by prior work, including for two different Large Language Models. In most cases, improvement nears or exceeds 2 BLEU; for the PHP language in the challenging CodeSearchNet dataset, this augmentation actually yields performance surpassing 30 BLEU.

  • 4 authors
·
Apr 13, 2023

Can ChatGPT replace StackOverflow? A Study on Robustness and Reliability of Large Language Model Code Generation

Recently, the large language models (LLMs) have shown extraordinary ability in understanding natural language and generating programming code. It has been a common practice of software engineers to consult LLMs when encountering coding questions. Although efforts have been made to avoid syntax errors and align the code with the intended semantics, the reliability and robustness of the code generationfrom LLMs have not yet been thoroughly studied. The executable code is not equivalent to the reliable and robust code, especially in the context of real-world software development. The misuse of APIs in the generated code could lead to severe problem, such as resource leaks, program crashes. To make things worse, the users of LLM code generation services are actually the developers that are most vulnerable to these code that seems right -- They are always novice developers that are not familiar with the APIs that LLMs generate code for them. Therefore, they could hardly tell the misuse in the code generated by LLMs, which further facilitates the incorrect code applied in real-world software. Existing code evaluation benchmark and datasets focus on crafting small tasks such as programming questions in coding interviews, which however deviates from the problem that developers would ask LLM for real-world coding help. To fill the missing piece, in this work, we propose a dataset RobustAPI for evaluating the reliability and robustness of code generated by LLMs. We collect 1208 coding questions from StackOverflow on 24 representative Java APIs. We summarize thecommon misuse patterns of these APIs and evaluate them oncurrent popular LLMs. The evaluation results show that evenfor GPT-4, 62% of the generated code contains API misuses,which would cause unexpected consequences if the code isintroduced into real-world software.

  • 2 authors
·
Aug 20, 2023

Learning to Answer Semantic Queries over Code

During software development, developers need answers to queries about semantic aspects of code. Even though extractive question-answering using neural approaches has been studied widely in natural languages, the problem of answering semantic queries over code using neural networks has not yet been explored. This is mainly because there is no existing dataset with extractive question and answer pairs over code involving complex concepts and long chains of reasoning. We bridge this gap by building a new, curated dataset called CodeQueries, and proposing a neural question-answering methodology over code. We build upon state-of-the-art pre-trained models of code to predict answer and supporting-fact spans. Given a query and code, only some of the code may be relevant to answer the query. We first experiment under an ideal setting where only the relevant code is given to the model and show that our models do well. We then experiment under three pragmatic considerations: (1) scaling to large-size code, (2) learning from a limited number of examples and (3) robustness to minor syntax errors in code. Our results show that while a neural model can be resilient to minor syntax errors in code, increasing size of code, presence of code that is not relevant to the query, and reduced number of training examples limit the model performance. We are releasing our data and models to facilitate future work on the proposed problem of answering semantic queries over code.

  • 6 authors
·
Sep 17, 2022

130k Lines of Formal Topology in Two Weeks: Simple and Cheap Autoformalization for Everyone?

This is a brief description of a project that has already autoformalized a large portion of the general topology from the Munkres textbook (which has in total 241 pages in 7 chapters and 39 sections). The project has been running since November 21, 2025 and has as of January 4, 2026, produced 160k lines of formalized topology. Most of it (about 130k lines) have been done in two weeks,from December 22 to January 4, for an LLM subscription cost of about \$100. This includes a 3k-line proof of Urysohn's lemma, a 2k-line proof of Urysohn's Metrization theorem, over 10k-line proof of the Tietze extension theorem, and many more (in total over 1.5k lemmas/theorems). The approach is quite simple and cheap: build a long-running feedback loop between an LLM and a reasonably fast proof checker equipped with a core foundational library. The LLM is now instantiated as ChatGPT (mostly 5.2) or Claude Sonnet (4.5) run through the respective Codex or Claude Code command line interfaces. The proof checker is Chad Brown's higher-order set theory system Megalodon, and the core library is Brown's formalization of basic set theory and surreal numbers (including reals, etc). The rest is some prompt engineering and technical choices which we describe here. Based on the fast progress, low cost, virtually unknown ITP/library, and the simple setup available to everyone, we believe that (auto)formalization may become quite easy and ubiquitous in 2026, regardless of which proof assistant is used.

  • 1 authors
·
Jan 5

LINC: A Neurosymbolic Approach for Logical Reasoning by Combining Language Models with First-Order Logic Provers

Logical reasoning, i.e., deductively inferring the truth value of a conclusion from a set of premises, is an important task for artificial intelligence with wide potential impacts on science, mathematics, and society. While many prompting-based strategies have been proposed to enable Large Language Models (LLMs) to do such reasoning more effectively, they still appear unsatisfactory, often failing in subtle and unpredictable ways. In this work, we investigate the validity of instead reformulating such tasks as modular neurosymbolic programming, which we call LINC: Logical Inference via Neurosymbolic Computation. In LINC, the LLM acts as a semantic parser, translating premises and conclusions from natural language to expressions in first-order logic. These expressions are then offloaded to an external theorem prover, which symbolically performs deductive inference. Leveraging this approach, we observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate. On ProofWriter, augmenting the comparatively small open-source StarCoder+ (15.5B parameters) with LINC even outperforms GPT-3.5 and GPT-4 with Chain-of-Thought (CoT) prompting by an absolute 38% and 10%, respectively. When used with GPT-4, LINC scores 26% higher than CoT on ProofWriter while performing comparatively on FOLIO. Further analysis reveals that although both methods on average succeed roughly equally often on this dataset, they exhibit distinct and complementary failure modes. We thus provide promising evidence for how logical reasoning over natural language can be tackled through jointly leveraging LLMs alongside symbolic provers. All corresponding code is publicly available at https://github.com/benlipkin/linc

  • 7 authors
·
Oct 23, 2023

UniCoder: Scaling Code Large Language Model via Universal Code

Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.

  • 9 authors
·
Jun 24, 2024

Learning to Reason via Program Generation, Emulation, and Search

Program synthesis with language models (LMs) has unlocked a large set of reasoning abilities; code-tuned LMs have proven adept at generating programs that solve a wide variety of algorithmic symbolic manipulation tasks (e.g. word concatenation). However, not all reasoning tasks are easily expressible as code, e.g. tasks involving commonsense reasoning, moral decision-making, and sarcasm understanding. Our goal is to extend an LM's program synthesis skills to such tasks and evaluate the results via pseudo-programs, namely Python programs where some leaf function calls are left undefined. To that end, we propose, Code Generation and Emulated EXecution (CoGEX). CoGEX works by (1) training LMs to generate their own pseudo-programs, (2) teaching them to emulate their generated program's execution, including those leaf functions, allowing the LM's knowledge to fill in the execution gaps; and (3) using them to search over many programs to find an optimal one. To adapt the CoGEX model to a new task, we introduce a method for performing program search to find a single program whose pseudo-execution yields optimal performance when applied to all the instances of a given dataset. We show that our approach yields large improvements compared to standard in-context learning approaches on a battery of tasks, both algorithmic and soft reasoning. This result thus demonstrates that code synthesis can be applied to a much broader class of problems than previously considered. Our released dataset, fine-tuned models, and implementation can be found at https://github.com/nweir127/CoGEX.

  • 5 authors
·
May 25, 2024

Reasoning Distillation and Structural Alignment for Improved Code Generation

Effective code generation with language models hinges on two critical factors: accurately understanding the intent of the prompt and generating code that applies algorithmic reasoning to produce correct solutions capable of passing diverse test cases while adhering to the syntax of the target programming language. Unlike other language tasks, code generation requires more than accurate token prediction; it demands comprehension of solution-level and structural relationships rather than merely generating the most likely tokens. very large language model (VLLM) are capable of generating detailed steps toward the correct solution of complex tasks where reasoning is crucial in solving the problem. Such reasoning capabilities may be absent in smaller language models. Therefore, in this work, we distill the reasoning capabilities of a VLLM into a smaller, more efficient model that is faster and cheaper to deploy. Our approach trains the model to emulate the reasoning and problem-solving abilities of the VLLM by learning to identify correct solution pathways and establishing a structural correspondence between problem definitions and potential solutions through a novel method of structure-aware loss optimization. This enables the model to transcend token-level generation and to deeply grasp the overarching structure of solutions for given problems. Experimental results show that our fine-tuned model, developed through a cheap and simple to implement process, significantly outperforms our baseline model in terms of pass@1, average data flow, and average syntax match metrics across the MBPP, MBPP Plus, and HumanEval benchmarks.

  • 3 authors
·
Oct 20, 2025

Planning-Driven Programming: A Large Language Model Programming Workflow

The strong performance of large language models (LLMs) on natural language processing tasks raises extensive discussion on their application to code generation. Recent work suggests multiple sampling approaches to improve initial code generation accuracy or program repair approaches to refine the code. However, these methods suffer from LLMs' inefficiencies and limited reasoning capacity. In this work, we propose an LLM programming workflow (LPW) designed to improve both initial code generation and subsequent refinements within a structured two-phase workflow. Specifically, in the solution generation phase, the LLM first outlines a solution plan that decomposes the problem into manageable sub-problems and then verifies the generated solution plan through visible test cases. Subsequently, in the code implementation phase, the LLM initially drafts a code according to the solution plan and its verification. If the generated code fails the visible tests, the plan verification serves as the intended natural language solution to inform the refinement process for correcting bugs. We further introduce SLPW, a sampling variant of LPW, which initially generates multiple solution plans and plan verifications, produces a program for each plan and its verification, and refines each program as necessary until one successfully passes the visible tests. Compared to the state-of-the-art methods across various existing LLMs, our experimental results show that LPW significantly improves the Pass@1 accuracy by up to 16.4% on well-established text-to-code generation benchmarks, especially with a notable improvement of around 10% on challenging benchmarks. Additionally, SLPW demonstrates up to a 5.6% improvement over LPW and sets new state-of-the-art Pass@1 accuracy on various benchmarks, e.g., 98.2% on HumanEval, 84.8% on MBPP, 64.0% on APPS, and 35.3% on CodeContest, using GPT-4o as the backbone.

  • 4 authors
·
Nov 21, 2024

Test-Case-Driven Programming Understanding in Large Language Models for Better Code Generation

Code generation is to automatically generate source code conforming to a given programming specification, which has received extensive attention especially with the development of large language models (LLMs). Due to the inherent difficulty of code generation, the code generated by LLMs may be also not aligned with the specification. To improve the perfor mance of LLMs in code generation, some Chain of Thought (CoT) techniques have been proposed to guide LLMs for programming understanding before code generation. However, they are still hard to figure out complicated programming logic according to the (concise) specification, leadingto unsatisfactory code generation performance. In this work, we propose the first test-case-driven CoT technique, called TCoT, to further enhance the ability of LLMs in code generation. It understands the programming specification from the novel perspective of test cases, which is aligned with human practice by using examples to understand complicated problems. Due to the existence of the expected output specified in a test case, TCoT can instantly check the correctness of the programming understanding and then refine it to be as correct as possible before code generation. In this way, it is more likely to generate correct code. Our evaluation on 6 datasets and 14 baselines demonstrates the effectiveness of TCoT. For example, TCoT improves ChatGPT by 13.93%~69.44% in terms of Pass@1 (measuring the ratio of programming problems for which the generated code passes all test cases), and outperforms the existing CoT technique with the improvement of 12.14%~53.72% in terms of Pass@1.

  • 2 authors
·
Sep 27, 2023

A & B == B & A: Triggering Logical Reasoning Failures in Large Language Models

Recent advancements in large language models (LLMs) have propelled Artificial Intelligence (AI) to new heights, enabling breakthroughs in various tasks such as writing assistance, code generation, and machine translation. A significant distinction of advanced LLMs, such as ChatGPT, is their demonstrated ability to "reason." However, evaluating the reasoning ability of LLMs remains a challenge as most existing evaluations focus on their accuracy on the downstream tasks rather than directly assessing their reasoning processes. Efforts have been made to develop benchmarks and metrics to assess reasoning in LLMs, but they suffer from data leakage or limited scope. In this paper, we introduce LogicAsker, an automatic approach that comprehensively evaluates and improves the logical reasoning abilities of LLMs under a set of atomic reasoning skills based on propositional and predicate logic. The results provide insights into LLMs' reasoning abilities and reveal the logical rules the LLMs did not learn well. We evaluate LogicAsker on six widely deployed LLMs, including GPT-3, ChatGPT, GPT-4, Bard, Vicuna, and Guanaco. The results show that test cases from LogicAsker can find logical reasoning failures in different LLMs with a rate of 25\% - 94\%. In addition, the test cases of LogicAsker can be further used to design demonstration examples for in-context learning, which effectively improves the logical reasoning ability of LLMs, e.g., 10\% for GPT-4. As far as we know, our work is the first to create prompts based on testing results to improve LLMs' formal reasoning ability effectively. All the code, data, and results will be released for reproduction and future research.

  • 8 authors
·
Jan 1, 2024

SuperCoder2.0: Technical Report on Exploring the feasibility of LLMs as Autonomous Programmer

We present SuperCoder2.0, an advanced autonomous system designed to enhance software development through artificial intelligence. The system combines an AI-native development approach with intelligent agents to enable fully autonomous coding. Key focus areas include a retry mechanism with error output traceback, comprehensive code rewriting and replacement using Abstract Syntax Tree (ast) parsing to minimize linting issues, code embedding technique for retrieval-augmented generation, and a focus on localizing methods for problem-solving rather than identifying specific line numbers. The methodology employs a three-step hierarchical search space reduction approach for code base navigation and bug localization:utilizing Retrieval Augmented Generation (RAG) and a Repository File Level Map to identify candidate files, (2) narrowing down to the most relevant files using a File Level Schematic Map, and (3) extracting 'relevant locations' within these files. Code editing is performed through a two-part module comprising CodeGeneration and CodeEditing, which generates multiple solutions at different temperature values and replaces entire methods or classes to maintain code integrity. A feedback loop executes repository-level test cases to validate and refine solutions. Experiments conducted on the SWE-bench Lite dataset demonstrate SuperCoder2.0's effectiveness, achieving correct file localization in 84.33% of cases within the top 5 candidates and successfully resolving 34% of test instances. This performance places SuperCoder2.0 fourth globally on the SWE-bench leaderboard. The system's ability to handle diverse repositories and problem types highlights its potential as a versatile tool for autonomous software development. Future work will focus on refining the code editing process and exploring advanced embedding models for improved natural language to code mapping.

  • 5 authors
·
Sep 17, 2024

Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for Code Generation

Large language models (LLMs) have showcased remarkable prowess in code generation. However, automated code generation is still challenging since it requires a high-level semantic mapping between natural language requirements and codes. Most existing LLMs-based approaches for code generation rely on decoder-only causal language models often treate codes merely as plain text tokens, i.e., feeding the requirements as a prompt input, and outputing code as flat sequence of tokens, potentially missing the rich semantic features inherent in source code. To bridge this gap, this paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT. Our motivation is that the semantic information of the source code (\eg data flow and control flow) describes more precise program execution behavior, intention and function. By guiding LLM consider and integrate semantic information, we can achieve a more granular understanding and representation of code, enhancing code generation accuracy. Meanwhile, while traditional techniques leveraging such semantic information require complex static or dynamic code analysis to obtain features such as data flow and control flow, SeCoT demonstrates that this process can be fully automated via the intrinsic capabilities of LLMs (i.e., in-context learning), while being generalizable and applicable to challenging domains. While SeCoT can be applied with different LLMs, this paper focuses on the powerful GPT-style models: ChatGPT(close-source model) and WizardCoder(open-source model). The experimental study on three popular DL benchmarks (i.e., HumanEval, HumanEval-ET and MBPP) shows that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.

  • 8 authors
·
Oct 16, 2023

SmartDoc: A Context-Aware Agentic Method Comment Generation Plugin

Context: The software maintenance phase involves many activities such as code refactoring, bug fixing, code review or testing. Program comprehension is key to all these activities, as it demands developers to grasp the knowledge (e.g., implementation details) required to modify the codebase. Methods as main building blocks in a program can offer developers this knowledge source for code comprehension. However, reading entire method statements can be challenging, which necessitates precise and up-to-date comments. Objective: We propose a solution as an IntelliJ IDEA plugin, named SmartDoc, that assists developers in generating context-aware method comments. Method: This plugin acts as an Artificial Intelligence (AI) agent that has its own memory and is augmented by target methods' context. When a request is initiated by the end-user, the method content and all its nested method calls are used in the comment generation. At the beginning, these nested methods are visited and a call graph is generated. This graph is then traversed using depth-first search (DFS), enabling the provision of full-context to enrich Large Language Model (LLM) prompts. Result: The product is a software, as a plugin, developed for Java codebase and installable on IntelliJ IDEA. This plugin can serve concurrently for methods whose comments are being updated , and it shares memory across all flows to avoid redundant calls. o measure the accuracy of this solution, a dedicated test case is run to record SmartDoc generated comments and their corresponding ground truth. For each collected result-set, three metrics are computed, BERTScore, BLEU and ROUGE-1. These metrics will determine how accurate the generated comments are in comparison to the ground truth. Result: The obtained accuracy, in terms of the precision, recall and F1, is promising, and lies in the range of 0.80 to 0.90 for BERTScore.

  • 2 authors
·
Nov 1, 2025

CORE: Benchmarking LLMs Code Reasoning Capabilities through Static Analysis Tasks

Large language models (LLMs) have been widely adopted across diverse software engineering domains, such as code generation, program repair, and vulnerability detection. These applications require understanding beyond surface-level code patterns: value propagation, control flow, and interdependence between program elements. However, existing benchmarks primarily evaluate end-to-end outcomes, such as whether code is correctly repaired or generated, leaving the models ability for program semantic reasoning underexplored. This work presents CoRe, a high-quality, human-verified benchmark designed to evaluate LLMs on fundamental static analysis tasks. CoRe includes 12,553 task instances spanning data dependency, control dependency, and information flow across programs written in C/C++, Java, and Python. To ensure semantic diversity and reasoning complexity, we propose a semantics-aware diverse sampling strategy that selects targets and task instances based on structural coverage and dependency depth. We evaluate 10 mainstream LLMs and show that, while they perform well at identifying dependencies, models still struggle with tasks that require deeper semantic understanding and multi-step reasoning. We further conduct qualitative analyses to uncover key challenges, such as complex control structures and backward dependency patterns, offering insights into improving LLMs code reasoning capabilities.

  • 7 authors
·
Jul 2, 2025 1

CodeCircuit: Toward Inferring LLM-Generated Code Correctness via Attribution Graphs

Current paradigms for code verification rely heavily on external mechanisms-such as execution-based unit tests or auxiliary LLM judges-which are often labor-intensive or limited by the judging model's own capabilities. This raises a fundamental, yet unexplored question: Can an LLM's functional correctness be assessed purely from its internal computational structure? Our primary objective is to investigate whether the model's neural dynamics encode internally decodable signals that are predictive of logical validity during code generation. Inspired by mechanistic interpretability, we propose to treat code verification as a mechanistic diagnostic task, mapping the model's explicit algorithmic trajectory into line-level attribution graphs. By decomposing complex residual flows, we aim to identify the structural signatures that distinguish sound reasoning from logical failure within the model's internal circuits. Analysis across Python, C++, and Java confirms that intrinsic correctness signals are robust across diverse syntaxes. Topological features from these internal graphs predict correctness more reliably than surface heuristics and enable targeted causal interventions to fix erroneous logic. These findings establish internal introspection as a decodable property for verifying generated code. Our code is at https:// github.com/bruno686/CodeCircuit.

Vulnerability Detection: From Formal Verification to Large Language Models and Hybrid Approaches: A Comprehensive Overview

Software testing and verification are critical for ensuring the reliability and security of modern software systems. Traditionally, formal verification techniques, such as model checking and theorem proving, have provided rigorous frameworks for detecting bugs and vulnerabilities. However, these methods often face scalability challenges when applied to complex, real-world programs. Recently, the advent of Large Language Models (LLMs) has introduced a new paradigm for software analysis, leveraging their ability to understand insecure coding practices. Although LLMs demonstrate promising capabilities in tasks such as bug prediction and invariant generation, they lack the formal guarantees of classical methods. This paper presents a comprehensive study of state-of-the-art software testing and verification, focusing on three key approaches: classical formal methods, LLM-based analysis, and emerging hybrid techniques, which combine their strengths. We explore each approach's strengths, limitations, and practical applications, highlighting the potential of hybrid systems to address the weaknesses of standalone methods. We analyze whether integrating formal rigor with LLM-driven insights can enhance the effectiveness and scalability of software verification, exploring their viability as a pathway toward more robust and adaptive testing frameworks.

  • 7 authors
·
Mar 13, 2025

Defining and Detecting the Defects of the Large Language Model-based Autonomous Agents

AI agents are systems capable of perceiving their environment, autonomously planning and executing tasks. Recent advancements in LLM have introduced a transformative paradigm for AI agents, enabling them to interact with external resources and tools through prompts. In such agents, the workflow integrates developer-written code, which manages framework construction and logic control, with LLM-generated natural language that enhances dynamic decision-making and interaction. However, discrepancies between developer-implemented logic and the dynamically generated content of LLMs in terms of behavior and expected outcomes can lead to defects, such as tool invocation failures and task execution errors. These issues introduce specific risks, leading to various defects in LLM-based AI Agents, such as service interruptions. Despite the importance of these issues, there is a lack of systematic work that focuses on analyzing LLM-based AI Agents to uncover defects in their code. In this paper, we present the first study focused on identifying and detecting defects in LLM Agents. We collected and analyzed 6,854 relevant posts from StackOverflow to define 8 types of agent defects. For each type, we provided detailed descriptions with an example. Then, we designed a static analysis tool, named Agentable, to detect the defects. Agentable leverages Code Property Graphs and LLMs to analyze Agent workflows by efficiently identifying specific code patterns and analyzing natural language descriptions. To evaluate Agentable, we constructed two datasets: AgentSet, consists of 84 real-world Agents, and AgentTest, which contains 78 Agents specifically designed to include various types of defects. Our results show that Agentable achieved an overall accuracy of 88.79% and a recall rate of 91.03%. Furthermore, our analysis reveals the 889 defects of the AgentSet, highlighting the prevalence of these defects.

  • 8 authors
·
Dec 24, 2024

Modularization is Better: Effective Code Generation with Modular Prompting

Large Language Models are transforming software development by automatically generating code. Current prompting techniques such as Chain-of-Thought (CoT) suggest tasks step by step and the reasoning process follows a linear structure, which hampers the understanding of complex programming problems, particularly those requiring hierarchical solutions. Inspired by the principle of modularization in software development, in this work, we propose a novel prompting technique, called MoT, to enhance the code generation performance of LLMs. At first, MoT exploits modularization principles to decompose complex programming problems into smaller, independent reasoning steps, enabling a more structured and interpretable problem-solving process. This hierarchical structure improves the LLM's ability to comprehend complex programming problems. Then, it structures the reasoning process using an MLR Graph (Multi-Level Reasoning Graph), which hierarchically organizes reasoning steps. This approach enhances modular understanding and ensures better alignment between reasoning steps and the generated code, significantly improving code generation performance. Our experiments on two advanced LLMs (GPT-4o-mini and DeepSeek-R1), comparing MoT to six baseline prompting techniques across six widely used datasets, HumanEval, HumanEval-ET, HumanEval+, MBPP, MBPP-ET, and MBPP+, demonstrate that MoT significantly outperforms existing baselines (e.g., CoT and SCoT), achieving Pass@1 scores ranging from 58.1% to 95.1%. The experimental results confirm that MoT significantly enhances the performance of LLM-based code generation.

  • 2 authors
·
Mar 16, 2025

Assessing the Quality and Security of AI-Generated Code: A Quantitative Analysis

This study presents a quantitative evaluation of the code quality and security of five prominent Large Language Models (LLMs): Claude Sonnet 4, Claude 3.7 Sonnet, GPT-4o, Llama 3.2 90B, and OpenCoder 8B. While prior research has assessed the functional performance of LLM-generated code, this research tested LLM output from 4,442 Java coding assignments through comprehensive static analysis using SonarQube. The findings suggest that although LLMs can generate functional code, they also introduce a range of software defects, including bugs, security vulnerabilities, and code smells. These defects do not appear to be isolated; rather, they may represent shared weaknesses stemming from systemic limitations within current LLM code generation methods. In particular, critically severe issues, such as hard-coded passwords and path traversal vulnerabilities, were observed across multiple models. These results indicate that LLM-generated code requires verification in order to be considered production-ready. This study found no direct correlation between a model's functional performance (measured by Pass@1 rate of unit tests) and the overall quality and security of its generated code, measured by the number of SonarQube issues in benchmark solutions that passed the functional tests. This suggests that functional benchmark performance score is not a good indicator of overall code quality and security. The goal of this study is not to rank LLM performance but to highlight that all evaluated models appear to share certain weaknesses. Consequently, these findings support the view that static analysis can be a valuable instrument for detecting latent defects and an important safeguard for organizations that deploy AI in software development.

  • 3 authors
·
Aug 20, 2025

B4: Towards Optimal Assessment of Plausible Code Solutions with Plausible Tests

Selecting the best code solution from multiple generated ones is an essential task in code generation, which can be achieved by using some reliable validators (e.g., developer-written test cases) for assistance. Since reliable test cases are not always available and can be expensive to build in practice, researchers propose to automatically generate test cases to assess code solutions. However, when both code solutions and test cases are plausible and not reliable, selecting the best solution becomes challenging. Although some heuristic strategies have been proposed to tackle this problem, they lack a strong theoretical guarantee and it is still an open question whether an optimal selection strategy exists. Our work contributes in two ways. First, we show that within a Bayesian framework, the optimal selection strategy can be defined based on the posterior probability of the observed passing states between solutions and tests. The problem of identifying the best solution is then framed as an integer programming problem. Second, we propose an efficient approach for approximating this optimal (yet uncomputable) strategy, where the approximation error is bounded by the correctness of prior knowledge. We then incorporate effective prior knowledge to tailor code generation tasks. Both theoretical and empirical studies confirm that existing heuristics are limited in selecting the best solutions with plausible test cases. Our proposed approximated optimal strategy B4 significantly surpasses existing heuristics in selecting code solutions generated by large language models (LLMs) with LLM-generated tests, achieving a relative performance improvement by up to 50% over the strongest heuristic and 246% over the random selection in the most challenging scenarios. Our code is publicly available at https://github.com/ZJU-CTAG/B4.

  • 7 authors
·
Sep 13, 2024 2

CoCoNUT: Structural Code Understanding does not fall out of a tree

Large Language Models (LLMs) have shown impressive performance across a wide array of tasks involving both structured and unstructured textual data. Recent results on various benchmarks for code generation, repair, or completion suggest that certain models have programming abilities comparable to or even surpass humans. In this work, we demonstrate that high performance on such benchmarks does not correlate to humans' innate ability to understand structural control flow in code. To this end, we extract solutions from the HumanEval benchmark, which the relevant models perform strongly on, and trace their execution path using function calls sampled from the respective test set. Using this dataset, we investigate the ability of seven state-of-the-art LLMs to match the execution trace and find that, despite their ability to generate semantically identical code, they possess limited ability to trace execution paths, especially for longer traces and specific control structures. We find that even the top-performing model, Gemini, can fully and correctly generate only 47% of HumanEval task traces. Additionally, we introduce a subset for three key structures not contained in HumanEval: Recursion, Parallel Processing, and Object-Oriented Programming, including concepts like Inheritance and Polymorphism. Besides OOP, we show that none of the investigated models achieve an accuracy over 5% on the relevant traces. Aggregating these specialized parts with HumanEval tasks, we present Benchmark CoCoNUT: Code Control Flow for Navigation Understanding and Testing, which measures a model's ability to trace execution of code upon relevant calls, including advanced structural components. We conclude that current LLMs need significant improvement to enhance code reasoning abilities. We hope our dataset helps researchers bridge this gap.

  • 2 authors
·
Jan 27, 2025

Competition-Level Code Generation with AlphaCode

Programming is a powerful and ubiquitous problem-solving tool. Developing systems that can assist programmers or even generate programs independently could make programming more productive and accessible, yet so far incorporating innovations in AI has proven challenging. Recent large-scale language models have demonstrated an impressive ability to generate code, and are now able to complete simple programming tasks. However, these models still perform poorly when evaluated on more complex, unseen problems that require problem-solving skills beyond simply translating instructions into code. For example, competitive programming problems which require an understanding of algorithms and complex natural language remain extremely challenging. To address this gap, we introduce AlphaCode, a system for code generation that can create novel solutions to these problems that require deeper reasoning. In simulated evaluations on recent programming competitions on the Codeforces platform, AlphaCode achieved on average a ranking of top 54.3% in competitions with more than 5,000 participants. We found that three key components were critical to achieve good and reliable performance: (1) an extensive and clean competitive programming dataset for training and evaluation, (2) large and efficient-to-sample transformer-based architectures, and (3) large-scale model sampling to explore the search space, followed by filtering based on program behavior to a small set of submissions.

  • 26 authors
·
Feb 8, 2022

Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models

Logical reasoning is fundamental for humans yet presents a substantial challenge in the domain of Artificial Intelligence. Initially, researchers used Knowledge Representation and Reasoning (KR) systems that did not scale and required non trivial manual effort. Recently, the emergence of large language models (LLMs) has demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems. Consequently, there is a growing interest in using LLMs for logical reasoning via natural language. This work strives to understand the proficiency of LLMs in logical reasoning by offering a brief review of the latest progress in this area; with a focus on the logical reasoning datasets, tasks, and the methods adopted to utilize LLMs for reasoning. To offer a thorough analysis, we have compiled a benchmark titled LogiGLUE. This includes 24 varied datasets encompassing deductive, abductive, and inductive reasoning. We have standardized these datasets into Seq2Seq tasks to facilitate straightforward training and evaluation for future research. Utilizing LogiGLUE as a foundation, we have trained an instruction fine tuned language model, resulting in LogiT5. We study single task training, multi task training, and a chain of thought knowledge distillation fine tuning technique to assess the performance of model across the different logical reasoning categories. By this comprehensive process, we aim to shed light on the capabilities and potential pathways for enhancing logical reasoning proficiency in LLMs, paving the way for more advanced and nuanced developments in this critical field.

  • 8 authors
·
Oct 1, 2023

LLM-Powered Code Vulnerability Repair with Reinforcement Learning and Semantic Reward

In software development, the predominant emphasis on functionality often supersedes security concerns, a trend gaining momentum with AI-driven automation tools like GitHub Copilot. These tools significantly improve developers' efficiency in functional code development. Nevertheless, it remains a notable concern that such tools are also responsible for creating insecure code, predominantly because of pre-training on publicly available repositories with vulnerable code. Moreover, developers are called the "weakest link in the chain" since they have very minimal knowledge of code security. Although existing solutions provide a reasonable solution to vulnerable code, they must adequately describe and educate the developers on code security to ensure that the security issues are not repeated. Therefore we introduce a multipurpose code vulnerability analysis system SecRepair, powered by a large language model, CodeGen2 assisting the developer in identifying and generating fixed code along with a complete description of the vulnerability with a code comment. Our innovative methodology uses a reinforcement learning paradigm to generate code comments augmented by a semantic reward mechanism. Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs. We further identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub. Our findings underscore that incorporating reinforcement learning coupled with semantic reward augments our model's performance, thereby fortifying its capacity to address code vulnerabilities with improved efficacy.

  • 7 authors
·
Jan 6, 2024

Enhancing Formal Theorem Proving: A Comprehensive Dataset for Training AI Models on Coq Code

In the realm of formal theorem proving, the Coq proof assistant stands out for its rigorous approach to verifying mathematical assertions and software correctness. Despite the advances in artificial intelligence and machine learning, the specialized nature of Coq syntax and semantics poses unique challenges for Large Language Models (LLMs). Addressing this gap, we present a comprehensive dataset specifically designed to enhance LLMs' proficiency in interpreting and generating Coq code. This dataset, derived from a collection of over 10,000 Coq source files, encompasses a wide array of propositions, proofs, and definitions, enriched with metadata including source references and licensing information. Our primary aim is to facilitate the development of LLMs capable of generating syntactically correct and semantically meaningful Coq constructs, thereby advancing the frontier of automated theorem proving. Initial experiments with this dataset have showcased its significant potential; models trained on this data exhibited enhanced accuracy in Coq code generation. Notably, a particular experiment revealed that a fine-tuned LLM was capable of generating 141 valid proofs for a basic lemma, highlighting the dataset's utility in facilitating the discovery of diverse and valid proof strategies. This paper discusses the dataset's composition, the methodology behind its creation, and the implications of our findings for the future of machine learning in formal verification. The dataset is accessible for further research and exploration: https://huggingface.co/datasets/florath/coq-facts-props-proofs-gen0-v1

  • 1 authors
·
Mar 19, 2024

TheoremLlama: Transforming General-Purpose LLMs into Lean4 Experts

Proving mathematical theorems using computer-verifiable formal languages like Lean significantly impacts mathematical reasoning. One approach to formal theorem proving involves generating complete proofs using Large Language Models (LLMs) based on Natural Language (NL) proofs. Similar methods have shown promising results in code generation. However, most modern LLMs exhibit suboptimal performance due to the scarcity of aligned NL and Formal Language (FL) theorem-proving data. This scarcity results in a paucity of methodologies for training LLMs and techniques to fully utilize their capabilities in composing formal proofs. To address the challenges, this paper proposes **TheoremLlama**, an end-to-end framework to train a general-purpose LLM to become a Lean4 expert. This framework encompasses NL-FL aligned dataset generation methods, training approaches for the LLM formal theorem prover, and techniques for LLM Lean4 proof writing. Using the dataset generation method, we provide *Open Bootstrapped Theorems* (OBT), an NL-FL aligned and bootstrapped dataset. A key innovation in this framework is the NL-FL bootstrapping method, where NL proofs are integrated into Lean4 code for training datasets, leveraging the NL reasoning ability of LLMs for formal reasoning. The **TheoremLlama** framework achieves cumulative accuracies of 36.48% and 33.61% on MiniF2F-Valid and Test datasets respectively, surpassing the GPT-4 baseline of 22.95% and 25.41%. We have also open-sourced our model checkpoints and generated dataset, and will soon make all the code publicly available.

  • 7 authors
·
Jul 3, 2024 1

Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective

Code generation aims to understand the problem description and generate corresponding code snippets, where existing works generally decompose such complex tasks into intermediate steps by prompting strategies, such as Chain-of-Thought and its variants. While these studies have achieved some success, their effectiveness is highly dependent on the capabilities of advanced Large Language Models (LLMs) such as GPT-4, particularly in terms of API calls, which significantly limits their practical applicability. Consequently, how to enhance the code generation capabilities of small and medium-scale code LLMs without significantly increasing training costs is an appealing challenge. In this paper, we suggest that code comments are the natural logic pivot between natural language and code language and propose using comments to boost the code generation ability of code LLMs. Concretely, we propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strategy and a corresponding logical comment decoding strategy. Experiments are performed on HumanEval and MBPP, utilizing StarCoder and WizardCoder as backbone models, and encompassing model parameter sizes between 3B and 7B. The results indicate that MANGO significantly improves the code pass rate based on the strong baselines. Meanwhile, the robustness of the logical comment decoding strategy is notably higher than the Chain-of-thoughts prompting. The code is publicly available at https://github.com/pppa2019/Mango.

  • 6 authors
·
Apr 11, 2024

LLM-Assisted Content Analysis: Using Large Language Models to Support Deductive Coding

Deductive coding is a widely used qualitative research method for determining the prevalence of themes across documents. While useful, deductive coding is often burdensome and time consuming since it requires researchers to read, interpret, and reliably categorize a large body of unstructured text documents. Large language models (LLMs), like ChatGPT, are a class of quickly evolving AI tools that can perform a range of natural language processing and reasoning tasks. In this study, we explore the use of LLMs to reduce the time it takes for deductive coding while retaining the flexibility of a traditional content analysis. We outline the proposed approach, called LLM-assisted content analysis (LACA), along with an in-depth case study using GPT-3.5 for LACA on a publicly available deductive coding data set. Additionally, we conduct an empirical benchmark using LACA on 4 publicly available data sets to assess the broader question of how well GPT-3.5 performs across a range of deductive coding tasks. Overall, we find that GPT-3.5 can often perform deductive coding at levels of agreement comparable to human coders. Additionally, we demonstrate that LACA can help refine prompts for deductive coding, identify codes for which an LLM is randomly guessing, and help assess when to use LLMs vs. human coders for deductive coding. We conclude with several implications for future practice of deductive coding and related research methods.

  • 5 authors
·
Jun 23, 2023

LiCoEval: Evaluating LLMs on License Compliance in Code Generation

Recent advances in Large Language Models (LLMs) have revolutionized code generation, leading to widespread adoption of AI coding tools by developers. However, LLMs can generate license-protected code without providing the necessary license information, leading to potential intellectual property violations during software production. This paper addresses the critical, yet underexplored, issue of license compliance in LLM-generated code by establishing a benchmark to evaluate the ability of LLMs to provide accurate license information for their generated code. To establish this benchmark, we conduct an empirical study to identify a reasonable standard for "striking similarity" that excludes the possibility of independent creation, indicating a copy relationship between the LLM output and certain open-source code. Based on this standard, we propose LiCoEval, to evaluate the license compliance capabilities of LLMs, i.e., the ability to provide accurate license or copyright information when they generate code with striking similarity to already existing copyrighted code. Using LiCoEval, we evaluate 14 popular LLMs, finding that even top-performing LLMs produce a non-negligible proportion (0.88% to 2.01%) of code strikingly similar to existing open-source implementations. Notably, most LLMs fail to provide accurate license information, particularly for code under copyleft licenses. These findings underscore the urgent need to enhance LLM compliance capabilities in code generation tasks. Our study provides a foundation for future research and development to improve license compliance in AI-assisted software development, contributing to both the protection of open-source software copyrights and the mitigation of legal risks for LLM users.

  • 4 authors
·
Aug 5, 2024

rStar-Coder: Scaling Competitive Code Reasoning with a Large-Scale Verified Dataset

Advancing code reasoning in large language models (LLMs) is fundamentally limited by the scarcity of high-difficulty datasets, especially those with verifiable input-output test cases necessary for rigorous solution validation at scale. We introduce rStar-Coder, which significantly improves LLM code reasoning capabilities by constructing a large-scale, verified dataset of 418K competition-level code problems, 580K long-reasoning solutions along with rich test cases of varying difficulty. This is achieved through three core contributions: (1) we curate competitive programming code problems and oracle solutions to synthesize new, solvable problems; (2) we introduce a reliable input-output test case synthesis pipeline that decouples the generation into a three-step input generation method and a mutual verification mechanism for effective output labeling; (3) we augment problems with high-quality, test-case-verified long-reasoning solutions. Extensive experiments on Qwen models (1.5B-14B) across various code reasoning benchmarks demonstrate the superiority of rStar-Coder dataset, achieving leading performance comparable to frontier reasoning LLMs with much smaller model sizes. On LiveCodeBench, rStar-Coder improves Qwen2.5-7B from 17.4% to an impressive 57.3%, and Qwen2.5-14B from 23.3% to 62.5%, surpassing o3-mini (low) by3.1%. On the more challenging USA Computing Olympiad, our 7B model achieves an average pass@1 accuracy of 16.15%, outperforming the frontier-level QWQ-32B. Code and the dataset will be released at https://github.com/microsoft/rStar.

  • 8 authors
·
May 27, 2025 5

On Learning Meaningful Code Changes via Neural Machine Translation

Recent years have seen the rise of Deep Learning (DL) techniques applied to source code. Researchers have exploited DL to automate several development and maintenance tasks, such as writing commit messages, generating comments and detecting vulnerabilities among others. One of the long lasting dreams of applying DL to source code is the possibility to automate non-trivial coding activities. While some steps in this direction have been taken (e.g., learning how to fix bugs), there is still a glaring lack of empirical evidence on the types of code changes that can be learned and automatically applied by DL. Our goal is to make this first important step by quantitatively and qualitatively investigating the ability of a Neural Machine Translation (NMT) model to learn how to automatically apply code changes implemented by developers during pull requests. We train and experiment with the NMT model on a set of 236k pairs of code components before and after the implementation of the changes provided in the pull requests. We show that, when applied in a narrow enough context (i.e., small/medium-sized pairs of methods before/after the pull request changes), NMT can automatically replicate the changes implemented by developers during pull requests in up to 36% of the cases. Moreover, our qualitative analysis shows that the model is capable of learning and replicating a wide variety of meaningful code changes, especially refactorings and bug-fixing activities. Our results pave the way for novel research in the area of DL on code, such as the automatic learning and applications of refactoring.

  • 5 authors
·
Jan 25, 2019

Code Structure-Aware through Line-level Semantic Learning for Code Vulnerability Detection

Different from the flow semantics of natural languages, programming languages are inherently rigid in structure and grammar. Existing fine-tuning methodologies for code vulnerability detection generally treat code as long text sequences, stripping away structural elements such as newlines ('/n') and whitespace. However, this approach inadvertently results in the loss of crucial structural information, diminishing the distinct characteristics of code and impairing the accuracy of vulnerability detection. To address these challenges, we propose a novel network architecture method based on pre-trained code models, which incorporates structural information awareness. We propose an enhanced code text processing workflow that retains structural elements prior to modeling. This refinement allows the model to retain and exploit line-level structural information and semantic information during the modeling process. Furthermore, we introduce a new network architecture, the Code Structure-Aware Network through Line-level Semantic Learning (CSLS), which integrates three key components: global vulnerability awareness, line-structural awareness, and sensitive-line awareness. We have conducted comprehensive experiments using vulnerability detection datasets from real-world projects. Extensive experiments were conducted on vulnerability detection datasets derived from real-world projects. The results demonstrate that our new code pre-processing flow significantly improves existing baselines (e.g., a 3\% accuracy improvement on the Devign dataset when applied to popular models such as CoderBert and UniXcoder). The proposed network architecture also demonstrates superior accuracy in detecting vulnerabilities, surpassing newly established benchmarks. These findings underscore the importance of structural information in enhancing the efficacy of code vulnerability detection models.

  • 6 authors
·
Jul 26, 2024