- All You Need is DAG We present DAG-Rider, the first asynchronous Byzantine Atomic Broadcast protocol that achieves optimal resilience, optimal amortized communication complexity, and optimal time complexity. DAG-Rider is post-quantum safe and ensures that all messages proposed by correct processes eventually get decided. We construct DAG-Rider in two layers: In the first layer, processes reliably broadcast their proposals and build a structured Directed Acyclic Graph (DAG) of the communication among them. In the second layer, processes locally observe their DAGs and totally order all proposals with no extra communication. 4 authors · Feb 16, 2021
- Post-Quantum Cryptography: Securing Digital Communication in the Quantum Era The advent of quantum computing poses a profound threat to traditional cryptographic systems, exposing vulnerabilities that compromise the security of digital communication channels reliant on RSA, ECC, and similar classical encryption methods. Quantum algorithms, notably Shor's algorithm, exploit the inherent computational power of quantum computers to efficiently solve mathematical problems underlying these cryptographic schemes. In response, post-quantum cryptography (PQC) emerged as a critical field aimed at developing resilient cryptographic algorithms impervious to quantum attacks. This paper delineates the vulnerabilities of classical cryptographic systems to quantum attacks, elucidates the principles of quantum computing, and introduces various PQC algorithms such as lattice-based cryptography, code-based cryptography, hash-based cryptography, and multivariate polynomial cryptography. Highlighting the importance of PQC in securing digital communication amidst quantum computing advancements, this research underscores its pivotal role in safeguarding data integrity, confidentiality, and authenticity in the face of emerging quantum threats. 3 authors · Mar 18, 2024