10 Controlled Generation for Private Synthetic Text Text anonymization is essential for responsibly developing and deploying AI in high-stakes domains such as healthcare, social services, and law. In this work, we propose a novel methodology for privacy-preserving synthetic text generation that leverages the principles of de-identification and the Hiding In Plain Sight (HIPS) theory. Our approach introduces entity-aware control codes to guide controllable generation using either in-context learning (ICL) or prefix tuning. The ICL variant ensures privacy levels consistent with the underlying de-identification system, while the prefix tuning variant incorporates a custom masking strategy and loss function to support scalable, high-quality generation. Experiments on legal and clinical datasets demonstrate that our method achieves a strong balance between privacy protection and utility, offering a practical and effective solution for synthetic text generation in sensitive domains. Center for Language and Speech Processing @ JHU · Sep 29 2
1 SUPERB: Speech processing Universal PERformance Benchmark Self-supervised learning (SSL) has proven vital for advancing research in natural language processing (NLP) and computer vision (CV). The paradigm pretrains a shared model on large volumes of unlabeled data and achieves state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the speech processing community lacks a similar setup to systematically explore the paradigm. To bridge this gap, we introduce Speech processing Universal PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data. Among multiple usages of the shared model, we especially focus on extracting the representation learned from SSL due to its preferable re-usability. We present a simple framework to solve SUPERB tasks by learning task-specialized lightweight prediction heads on top of the frozen shared model. Our results demonstrate that the framework is promising as SSL representations show competitive generalizability and accessibility across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a benchmark toolkit to fuel the research in representation learning and general speech processing. 20 authors · May 3, 2021
- CUPE: Contextless Universal Phoneme Encoder for Language-Agnostic Speech Processing Universal phoneme recognition typically requires analyzing long speech segments and language-specific patterns. Many speech processing tasks require pure phoneme representations free from contextual influence, which motivated our development of CUPE - a lightweight model that captures key phoneme features in just 120 milliseconds, about one phoneme's length. CUPE processes short, fixed-width windows independently and, despite fewer parameters than current approaches, achieves competitive cross-lingual performance by learning fundamental acoustic patterns common to all languages. Our extensive evaluation through supervised and self-supervised training on diverse languages, including zero-shot tests on the UCLA Phonetic Corpus, demonstrates strong cross-lingual generalization and reveals that effective universal speech processing is possible through modeling basic acoustic patterns within phoneme-length windows. 3 authors · Aug 21
- ProsodyLM: Uncovering the Emerging Prosody Processing Capabilities in Speech Language Models Speech language models refer to language models with speech processing and understanding capabilities. One key desirable capability for speech language models is the ability to capture the intricate interdependency between content and prosody. The existing mainstream paradigm of training speech language models, which converts speech into discrete tokens before feeding them into LLMs, is sub-optimal in learning prosody information -- we find that the resulting LLMs do not exhibit obvious emerging prosody processing capabilities via pre-training alone. To overcome this, we propose ProsodyLM, which introduces a simple tokenization scheme amenable to learning prosody. Each speech utterance is first transcribed into text, followed by a sequence of word-level prosody tokens. Compared with conventional speech tokenization schemes, the proposed tokenization scheme retains more complete prosody information, and is more understandable to text-based LLMs. We find that ProsodyLM can learn surprisingly diverse emerging prosody processing capabilities through pre-training alone, ranging from harnessing the prosody nuances in generated speech, such as contrastive focus, understanding emotion and stress in an utterance, to maintaining prosody consistency in long contexts. 7 authors · Jul 26
7 Where Visual Speech Meets Language: VSP-LLM Framework for Efficient and Context-Aware Visual Speech Processing In visual speech processing, context modeling capability is one of the most important requirements due to the ambiguous nature of lip movements. For example, homophenes, words that share identical lip movements but produce different sounds, can be distinguished by considering the context. In this paper, we propose a novel framework, namely Visual Speech Processing incorporated with LLMs (VSP-LLM), to maximize the context modeling ability by bringing the overwhelming power of LLMs. Specifically, VSP-LLM is designed to perform multi-tasks of visual speech recognition and translation, where the given instructions control the type of task. The input video is mapped to the input latent space of a LLM by employing a self-supervised visual speech model. Focused on the fact that there is redundant information in input frames, we propose a novel deduplication method that reduces the embedded visual features by employing visual speech units. Through the proposed deduplication and Low Rank Adaptors (LoRA), VSP-LLM can be trained in a computationally efficient manner. In the translation dataset, the MuAViC benchmark, we demonstrate that VSP-LLM can more effectively recognize and translate lip movements with just 15 hours of labeled data, compared to the recent translation model trained with 433 hours of labeld data. 4 authors · Feb 23, 2024 2
- ClearerVoice-Studio: Bridging Advanced Speech Processing Research and Practical Deployment This paper introduces ClearerVoice-Studio, an open-source, AI-powered speech processing toolkit designed to bridge cutting-edge research and practical application. Unlike broad platforms like SpeechBrain and ESPnet, ClearerVoice-Studio focuses on interconnected speech tasks of speech enhancement, separation, super-resolution, and multimodal target speaker extraction. A key advantage is its state-of-the-art pretrained models, including FRCRN with 3 million uses and MossFormer with 2.5 million uses, optimized for real-world scenarios. It also offers model optimization tools, multi-format audio support, the SpeechScore evaluation toolkit, and user-friendly interfaces, catering to researchers, developers, and end-users. Its rapid adoption attracting 3000 GitHub stars and 239 forks highlights its academic and industrial impact. This paper details ClearerVoice-Studio's capabilities, architectures, training strategies, benchmarks, community impact, and future plan. Source code is available at https://github.com/modelscope/ClearerVoice-Studio. 3 authors · Jun 24
- The Interspeech 2024 Challenge on Speech Processing Using Discrete Units Representing speech and audio signals in discrete units has become a compelling alternative to traditional high-dimensional feature vectors. Numerous studies have highlighted the efficacy of discrete units in various applications such as speech compression and restoration, speech recognition, and speech generation. To foster exploration in this domain, we introduce the Interspeech 2024 Challenge, which focuses on new speech processing benchmarks using discrete units. It encompasses three pivotal tasks, namely multilingual automatic speech recognition, text-to-speech, and singing voice synthesis, and aims to assess the potential applicability of discrete units in these tasks. This paper outlines the challenge designs and baseline descriptions. We also collate baseline and selected submission systems, along with preliminary findings, offering valuable contributions to future research in this evolving field. 10 authors · Jun 11, 2024
- Improving End-to-End Speech Processing by Efficient Text Data Utilization with Latent Synthesis Training a high performance end-to-end speech (E2E) processing model requires an enormous amount of labeled speech data, especially in the era of data-centric artificial intelligence. However, labeled speech data are usually scarcer and more expensive for collection, compared to textual data. We propose Latent Synthesis (LaSyn), an efficient textual data utilization framework for E2E speech processing models. We train a latent synthesizer to convert textual data into an intermediate latent representation of a pre-trained speech model. These pseudo acoustic representations of textual data augment acoustic data for model training. We evaluate LaSyn on low-resource automatic speech recognition (ASR) and spoken language understanding (SLU) tasks. For ASR, LaSyn improves an E2E baseline trained on LibriSpeech train-clean-100, with relative word error rate reductions over 22.3% on different test sets. For SLU, LaSyn improves our E2E baseline by absolute 4.1% for intent classification accuracy and 3.8% for slot filling SLU-F1 on SLURP, and absolute 4.49% and 2.25% for exact match (EM) and EM-Tree accuracies on STOP respectively. With fewer parameters, the results of LaSyn are competitive to published state-of-the-art works. The results demonstrate the quality of the augmented training data. 6 authors · Oct 8, 2023
- Transformers in Speech Processing: A Survey The remarkable success of transformers in the field of natural language processing has sparked the interest of the speech-processing community, leading to an exploration of their potential for modeling long-range dependencies within speech sequences. Recently, transformers have gained prominence across various speech-related domains, including automatic speech recognition, speech synthesis, speech translation, speech para-linguistics, speech enhancement, spoken dialogue systems, and numerous multimodal applications. In this paper, we present a comprehensive survey that aims to bridge research studies from diverse subfields within speech technology. By consolidating findings from across the speech technology landscape, we provide a valuable resource for researchers interested in harnessing the power of transformers to advance the field. We identify the challenges encountered by transformers in speech processing while also offering insights into potential solutions to address these issues. 6 authors · Mar 21, 2023
- IndicSUPERB: A Speech Processing Universal Performance Benchmark for Indian languages A cornerstone in AI research has been the creation and adoption of standardized training and test datasets to earmark the progress of state-of-the-art models. A particularly successful example is the GLUE dataset for training and evaluating Natural Language Understanding (NLU) models for English. The large body of research around self-supervised BERT-based language models revolved around performance improvements on NLU tasks in GLUE. To evaluate language models in other languages, several language-specific GLUE datasets were created. The area of speech language understanding (SLU) has followed a similar trajectory. The success of large self-supervised models such as wav2vec2 enable creation of speech models with relatively easy to access unlabelled data. These models can then be evaluated on SLU tasks, such as the SUPERB benchmark. In this work, we extend this to Indic languages by releasing the IndicSUPERB benchmark. Specifically, we make the following three contributions. (i) We collect Kathbath containing 1,684 hours of labelled speech data across 12 Indian languages from 1,218 contributors located in 203 districts in India. (ii) Using Kathbath, we create benchmarks across 6 speech tasks: Automatic Speech Recognition, Speaker Verification, Speaker Identification (mono/multi), Language Identification, Query By Example, and Keyword Spotting for 12 languages. (iii) On the released benchmarks, we train and evaluate different self-supervised models alongside a commonly used baseline FBANK. We show that language-specific fine-tuned models are more accurate than baseline on most of the tasks, including a large gap of 76\% for the Language Identification task. However, for speaker identification, self-supervised models trained on large datasets demonstrate an advantage. We hope IndicSUPERB contributes to the progress of developing speech language understanding models for Indian languages. 6 authors · Aug 24, 2022
- ESPnet: End-to-End Speech Processing Toolkit This paper introduces a new open source platform for end-to-end speech processing named ESPnet. ESPnet mainly focuses on end-to-end automatic speech recognition (ASR), and adopts widely-used dynamic neural network toolkits, Chainer and PyTorch, as a main deep learning engine. ESPnet also follows the Kaldi ASR toolkit style for data processing, feature extraction/format, and recipes to provide a complete setup for speech recognition and other speech processing experiments. This paper explains a major architecture of this software platform, several important functionalities, which differentiate ESPnet from other open source ASR toolkits, and experimental results with major ASR benchmarks. 12 authors · Mar 30, 2018
2 SonicSim: A customizable simulation platform for speech processing in moving sound source scenarios The systematic evaluation of speech separation and enhancement models under moving sound source conditions typically requires extensive data comprising diverse scenarios. However, real-world datasets often contain insufficient data to meet the training and evaluation requirements of models. Although synthetic datasets offer a larger volume of data, their acoustic simulations lack realism. Consequently, neither real-world nor synthetic datasets effectively fulfill practical needs. To address these issues, we introduce SonicSim, a synthetic toolkit de-designed to generate highly customizable data for moving sound sources. SonicSim is developed based on the embodied AI simulation platform, Habitat-sim, supporting multi-level adjustments, including scene-level, microphone-level, and source-level, thereby generating more diverse synthetic data. Leveraging SonicSim, we constructed a moving sound source benchmark dataset, SonicSet, using the Librispeech, the Freesound Dataset 50k (FSD50K) and Free Music Archive (FMA), and 90 scenes from the Matterport3D to evaluate speech separation and enhancement models. Additionally, to validate the differences between synthetic data and real-world data, we randomly selected 5 hours of raw data without reverberation from the SonicSet validation set to record a real-world speech separation dataset, which was then compared with the corresponding synthetic datasets. Similarly, we utilized the real-world speech enhancement dataset RealMAN to validate the acoustic gap between other synthetic datasets and the SonicSet dataset for speech enhancement. The results indicate that the synthetic data generated by SonicSim can effectively generalize to real-world scenarios. Demo and code are publicly available at https://cslikai.cn/SonicSim/. 6 authors · Oct 2, 2024 2
1 WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. To tackle the problem, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM jointly learns masked speech prediction and denoising in pre-training. By this means, WavLM does not only keep the speech content modeling capability by the masked speech prediction, but also improves the potential to non-ASR tasks by the speech denoising. In addition, WavLM employs gated relative position bias for the Transformer structure to better capture the sequence ordering of input speech. We also scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks. The code and pre-trained models are available at https://aka.ms/wavlm. 19 authors · Oct 26, 2021
- FastLongSpeech: Enhancing Large Speech-Language Models for Efficient Long-Speech Processing The rapid advancement of Large Language Models (LLMs) has spurred significant progress in Large Speech-Language Models (LSLMs), enhancing their capabilities in both speech understanding and generation. While existing LSLMs often concentrate on augmenting speech generation or tackling a diverse array of short-speech tasks, the efficient processing of long-form speech remains a critical yet underexplored challenge. This gap is primarily attributed to the scarcity of long-speech training datasets and the high computational costs associated with long sequences. To address these limitations, we introduce FastLongSpeech, a novel framework designed to extend LSLM capabilities for efficient long-speech processing without necessitating dedicated long-speech training data. FastLongSpeech incorporates an iterative fusion strategy that can compress excessively long-speech sequences into manageable lengths. To adapt LSLMs for long-speech inputs, it introduces a dynamic compression training approach, which exposes the model to short-speech sequences at varying compression ratios, thereby transferring the capabilities of LSLMs to long-speech tasks. To assess the long-speech capabilities of LSLMs, we develop a long-speech understanding benchmark called LongSpeech-Eval. Experiments show that our method exhibits strong performance in both long-speech and short-speech tasks, while greatly improving inference efficiency. 6 authors · Jul 20
- HebDB: a Weakly Supervised Dataset for Hebrew Speech Processing We present HebDB, a weakly supervised dataset for spoken language processing in the Hebrew language. HebDB offers roughly 2500 hours of natural and spontaneous speech recordings in the Hebrew language, consisting of a large variety of speakers and topics. We provide raw recordings together with a pre-processed, weakly supervised, and filtered version. The goal of HebDB is to further enhance research and development of spoken language processing tools for the Hebrew language. Hence, we additionally provide two baseline systems for Automatic Speech Recognition (ASR): (i) a self-supervised model; and (ii) a fully supervised model. We present the performance of these two methods optimized on HebDB and compare them to current multi-lingual ASR alternatives. Results suggest the proposed method reaches better results than the evaluated baselines considering similar model sizes. Dataset, code, and models are publicly available under https://pages.cs.huji.ac.il/adiyoss-lab/HebDB/. 12 authors · Jul 10, 2024
- NADI 2025: The First Multidialectal Arabic Speech Processing Shared Task We present the findings of the sixth Nuanced Arabic Dialect Identification (NADI 2025) Shared Task, which focused on Arabic speech dialect processing across three subtasks: spoken dialect identification (Subtask 1), speech recognition (Subtask 2), and diacritic restoration for spoken dialects (Subtask 3). A total of 44 teams registered, and during the testing phase, 100 valid submissions were received from eight unique teams. The distribution was as follows: 34 submissions for Subtask 1 "five teams{\ae}, 47 submissions for Subtask 2 "six teams", and 19 submissions for Subtask 3 "two teams". The best-performing systems achieved 79.8% accuracy on Subtask 1, 35.68/12.20 WER/CER (overall average) on Subtask 2, and 55/13 WER/CER on Subtask 3. These results highlight the ongoing challenges of Arabic dialect speech processing, particularly in dialect identification, recognition, and diacritic restoration. We also summarize the methods adopted by participating teams and briefly outline directions for future editions of NADI. 12 authors · Sep 2
1 NEST: Self-supervised Fast Conformer as All-purpose Seasoning to Speech Processing Tasks Self-supervised learning has been proved to benefit a wide range of speech processing tasks, such as speech recognition/translation, speaker verification and diarization, etc. However, most of current approaches are computationally expensive. In this paper, we propose a simplified and more efficient self-supervised learning framework termed as NeMo Encoder for Speech Tasks (NEST). Specifically, we adopt the FastConformer architecture with 8x sub-sampling rate, which is faster than Transformer or Conformer architectures. Instead of clustering-based quantization, we use fixed random projection for its simplicity and effectiveness. We also implement a generalized noisy speech augmentation that teaches the model to disentangle the main speaker from noise or other speakers. Experiments show that \model improves over existing self-supervised models and achieves new state-of-the-art performance on a variety of speech processing tasks, such as speech recognition/translation, speaker diarization, spoken language understanding, etc. Code and checkpoints will be publicly available via NVIDIA NeMo framework. 9 authors · Aug 23, 2024
- WenetSpeech-Chuan: A Large-Scale Sichuanese Corpus with Rich Annotation for Dialectal Speech Processing The scarcity of large-scale, open-source data for dialects severely hinders progress in speech technology, a challenge particularly acute for the widely spoken Sichuanese dialects of Chinese. To address this critical gap, we introduce WenetSpeech-Chuan, a 10,000-hour, richly annotated corpus constructed using our novel Chuan-Pipeline, a complete data processing framework for dialectal speech. To facilitate rigorous evaluation and demonstrate the corpus's effectiveness, we also release high-quality ASR and TTS benchmarks, WenetSpeech-Chuan-Eval, with manually verified transcriptions. Experiments show that models trained on WenetSpeech-Chuan achieve state-of-the-art performance among open-source systems and demonstrate results comparable to commercial services. As the largest open-source corpus for Sichuanese dialects, WenetSpeech-Chuan not only lowers the barrier to research in dialectal speech processing but also plays a crucial role in promoting AI equity and mitigating bias in speech technologies. The corpus, benchmarks, models, and receipts are publicly available on our project page. 16 authors · Sep 22
1 Harmonics to the Rescue: Why Voiced Speech is Not a Wss Process Speech processing algorithms often rely on statistical knowledge of the underlying process. Despite many years of research, however, the debate on the most appropriate statistical model for speech still continues. Speech is commonly modeled as a wide-sense stationary (WSS) process. However, the use of the WSS model for spectrally correlated processes is fundamentally wrong, as WSS implies spectral uncorrelation. In this paper, we demonstrate that voiced speech can be more accurately represented as a cyclostationary (CS) process. By employing the CS rather than the WSS model for processes that are inherently correlated across frequency, it is possible to improve the estimation of cross-power spectral densities (PSDs), source separation, and beamforming. We illustrate how the correlation between harmonic frequencies of CS processes can enhance system identification, and validate our findings using both simulated and real speech data. 3 authors · Jul 14
1 ML-SUPERB: Multilingual Speech Universal PERformance Benchmark Speech processing Universal PERformance Benchmark (SUPERB) is a leaderboard to benchmark the performance of Self-Supervised Learning (SSL) models on various speech processing tasks. However, SUPERB largely considers English speech in its evaluation. This paper presents multilingual SUPERB (ML-SUPERB), covering 143 languages (ranging from high-resource to endangered), and considering both automatic speech recognition and language identification. Following the concept of SUPERB, ML-SUPERB utilizes frozen SSL features and employs a simple framework for multilingual tasks by learning a shallow downstream model. Similar to the SUPERB benchmark, we find speech SSL models can significantly improve performance compared to FBANK features. Furthermore, we find that multilingual models do not always perform better than their monolingual counterparts. We will release ML-SUPERB as a challenge with organized datasets and reproducible training scripts for future multilingual representation research. 11 authors · May 17, 2023
- LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech Self-supervised learning (SSL) is at the origin of unprecedented improvements in many different domains including computer vision and natural language processing. Speech processing drastically benefitted from SSL as most of the current domain-related tasks are now being approached with pre-trained models. This work introduces LeBenchmark 2.0 an open-source framework for assessing and building SSL-equipped French speech technologies. It includes documented, large-scale and heterogeneous corpora with up to 14,000 hours of heterogeneous speech, ten pre-trained SSL wav2vec 2.0 models containing from 26 million to one billion learnable parameters shared with the community, and an evaluation protocol made of six downstream tasks to complement existing benchmarks. LeBenchmark 2.0 also presents unique perspectives on pre-trained SSL models for speech with the investigation of frozen versus fine-tuned downstream models, task-agnostic versus task-specific pre-trained models as well as a discussion on the carbon footprint of large-scale model training. 22 authors · Sep 11, 2023
1 Autoregressive Speech Enhancement via Acoustic Tokens In speech processing pipelines, improving the quality and intelligibility of real-world recordings is crucial. While supervised regression is the primary method for speech enhancement, audio tokenization is emerging as a promising alternative for a smooth integration with other modalities. However, research on speech enhancement using discrete representations is still limited. Previous work has mainly focused on semantic tokens, which tend to discard key acoustic details such as speaker identity. Additionally, these studies typically employ non-autoregressive models, assuming conditional independence of outputs and overlooking the potential improvements offered by autoregressive modeling. To address these gaps we: 1) conduct a comprehensive study of the performance of acoustic tokens for speech enhancement, including the effect of bitrate and noise strength; 2) introduce a novel transducer-based autoregressive architecture specifically designed for this task. Experiments on VoiceBank and Libri1Mix datasets show that acoustic tokens outperform semantic tokens in terms of preserving speaker identity, and that our autoregressive approach can further improve performance. Nevertheless, we observe that discrete representations still fall short compared to continuous ones, highlighting the need for further research in this area. 3 authors · Jul 17
- Improving Multilingual Speech Models on ML-SUPERB 2.0: Fine-tuning with Data Augmentation and LID-Aware CTC Multilingual speech processing with self-supervised or supervised pre-trained Speech Foundation Models (SFM) has achieved strong performance on tasks like Language Identification (LID) and Automatic Speech Recognition (ASR). However, these models struggle with limited resources during fine-tuning. This paper enhances multilingual LID and ASR on ML-SUPERB 2.0 by exploring multiple strategies for adapting SFMs, including frozen upstream training, partial fine-tuning, and low-rank adaptation. Furthermore, we employ data augmentation to mitigate performance gaps in few-shot settings and introduce LID Connectionist Temporal Classification (CTC) loss for regularization. Our approach achieves a 14% relative improvement in LID accuracy and a 30% relative reduction in ASR CER over the baseline on ML-SUPERB 2.0, securing second place in the Interspeech 2025 ML-SUPERB 2.0 Challenge. 4 authors · May 30
- Speech Representation Analysis based on Inter- and Intra-Model Similarities Self-supervised models have revolutionized speech processing, achieving new levels of performance in a wide variety of tasks with limited resources. However, the inner workings of these models are still opaque. In this paper, we aim to analyze the encoded contextual representation of these foundation models based on their inter- and intra-model similarity, independent of any external annotation and task-specific constraint. We examine different SSL models varying their training paradigm -- Contrastive (Wav2Vec2.0) and Predictive models (HuBERT); and model sizes (base and large). We explore these models on different levels of localization/distributivity of information including (i) individual neurons; (ii) layer representation; (iii) attention weights and (iv) compare the representations with their finetuned counterparts.Our results highlight that these models converge to similar representation subspaces but not to similar neuron-localized concepts\footnote{A concept represents a coherent fragment of knowledge, such as ``a class containing certain objects as elements, where the objects have certain properties. We made the code publicly available for facilitating further research, we publicly released our code. 3 authors · Jun 23, 2024
43 Robust Speech Recognition via Large-Scale Weak Supervision We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing. 6 authors · Dec 6, 2022 7
1 Brouhaha: multi-task training for voice activity detection, speech-to-noise ratio, and C50 room acoustics estimation Most automatic speech processing systems are sensitive to the acoustic environment, with degraded performance when applied to noisy or reverberant speech. But how can one tell whether speech is noisy or reverberant? We propose Brouhaha, a pipeline to simulate audio segments recorded in noisy and reverberant conditions. We then use the simulated audio to jointly train the Brouhaha model for voice activity detection, signal-to-noise ratio estimation, and C50 room acoustics prediction. We show how the predicted SNR and C50 values can be used to investigate and help diagnose errors made by automatic speech processing tools (such as pyannote.audio for speaker diarization or OpenAI's Whisper for automatic speech recognition). Both our pipeline and a pretrained model are open source and shared with the speech community. 10 authors · Oct 24, 2022
- UniFlow: Unifying Speech Front-End Tasks via Continuous Generative Modeling Generative modeling has recently achieved remarkable success across image, video, and audio domains, demonstrating powerful capabilities for unified representation learning. Yet speech front-end tasks such as speech enhancement (SE), target speaker extraction (TSE), acoustic echo cancellation (AEC), and language-queried source separation (LASS) remain largely tackled by disparate, task-specific solutions. This fragmentation leads to redundant engineering effort, inconsistent performance, and limited extensibility. To address this gap, we introduce UniFlow, a unified framework that employs continuous generative modeling to tackle diverse speech front-end tasks in a shared latent space. Specifically, UniFlow utilizes a waveform variational autoencoder (VAE) to learn a compact latent representation of raw audio, coupled with a Diffusion Transformer (DiT) that predicts latent updates. To differentiate the speech processing task during the training, learnable condition embeddings indexed by a task ID are employed to enable maximal parameter sharing while preserving task-specific adaptability. To balance model performance and computational efficiency, we investigate and compare three generative objectives: denoising diffusion, flow matching, and mean flow within the latent domain. We validate UniFlow on multiple public benchmarks, demonstrating consistent gains over state-of-the-art baselines. UniFlow's unified latent formulation and conditional design make it readily extensible to new tasks, providing an integrated foundation for building and scaling generative speech processing pipelines. To foster future research, we will open-source our codebase. 9 authors · Aug 10
- FireRedASR: Open-Source Industrial-Grade Mandarin Speech Recognition Models from Encoder-Decoder to LLM Integration We present FireRedASR, a family of large-scale automatic speech recognition (ASR) models for Mandarin, designed to meet diverse requirements in superior performance and optimal efficiency across various applications. FireRedASR comprises two variants: FireRedASR-LLM: Designed to achieve state-of-the-art (SOTA) performance and to enable seamless end-to-end speech interaction. It adopts an Encoder-Adapter-LLM framework leveraging large language model (LLM) capabilities. On public Mandarin benchmarks, FireRedASR-LLM (8.3B parameters) achieves an average Character Error Rate (CER) of 3.05%, surpassing the latest SOTA of 3.33% with an 8.4% relative CER reduction (CERR). It demonstrates superior generalization capability over industrial-grade baselines, achieving 24%-40% CERR in multi-source Mandarin ASR scenarios such as video, live, and intelligent assistant. FireRedASR-AED: Designed to balance high performance and computational efficiency and to serve as an effective speech representation module in LLM-based speech models. It utilizes an Attention-based Encoder-Decoder (AED) architecture. On public Mandarin benchmarks, FireRedASR-AED (1.1B parameters) achieves an average CER of 3.18%, slightly worse than FireRedASR-LLM but still outperforming the latest SOTA model with over 12B parameters. It offers a more compact size, making it suitable for resource-constrained applications. Moreover, both models exhibit competitive results on Chinese dialects and English speech benchmarks and excel in singing lyrics recognition. To advance research in speech processing, we release our models and inference code at https://github.com/FireRedTeam/FireRedASR. 4 authors · Jan 24
- LibriheavyMix: A 20,000-Hour Dataset for Single-Channel Reverberant Multi-Talker Speech Separation, ASR and Speaker Diarization The evolving speech processing landscape is increasingly focused on complex scenarios like meetings or cocktail parties with multiple simultaneous speakers and far-field conditions. Existing methodologies for addressing these challenges fall into two categories: multi-channel and single-channel solutions. Single-channel approaches, notable for their generality and convenience, do not require specific information about microphone arrays. This paper presents a large-scale far-field overlapping speech dataset, crafted to advance research in speech separation, recognition, and speaker diarization. This dataset is a critical resource for decoding ``Who said What and When'' in multi-talker, reverberant environments, a daunting challenge in the field. Additionally, we introduce a pipeline system encompassing speech separation, recognition, and diarization as a foundational benchmark. Evaluations on the WHAMR! dataset validate the broad applicability of the proposed data. 13 authors · Sep 1, 2024
- ICMC-ASR: The ICASSP 2024 In-Car Multi-Channel Automatic Speech Recognition Challenge To promote speech processing and recognition research in driving scenarios, we build on the success of the Intelligent Cockpit Speech Recognition Challenge (ICSRC) held at ISCSLP 2022 and launch the ICASSP 2024 In-Car Multi-Channel Automatic Speech Recognition (ICMC-ASR) Challenge. This challenge collects over 100 hours of multi-channel speech data recorded inside a new energy vehicle and 40 hours of noise for data augmentation. Two tracks, including automatic speech recognition (ASR) and automatic speech diarization and recognition (ASDR) are set up, using character error rate (CER) and concatenated minimum permutation character error rate (cpCER) as evaluation metrics, respectively. Overall, the ICMC-ASR Challenge attracts 98 participating teams and receives 53 valid results in both tracks. In the end, first-place team USTCiflytek achieves a CER of 13.16% in the ASR track and a cpCER of 21.48% in the ASDR track, showing an absolute improvement of 13.08% and 51.4% compared to our challenge baseline, respectively. 16 authors · Jan 7, 2024
- SpeechCLIP: Integrating Speech with Pre-Trained Vision and Language Model Data-driven speech processing models usually perform well with a large amount of text supervision, but collecting transcribed speech data is costly. Therefore, we propose SpeechCLIP, a novel framework bridging speech and text through images to enhance speech models without transcriptions. We leverage state-of-the-art pre-trained HuBERT and CLIP, aligning them via paired images and spoken captions with minimal fine-tuning. SpeechCLIP outperforms prior state-of-the-art on image-speech retrieval and performs zero-shot speech-text retrieval without direct supervision from transcriptions. Moreover, SpeechCLIP can directly retrieve semantically related keywords from speech. 6 authors · Oct 3, 2022
- An enhanced Conv-TasNet model for speech separation using a speaker distance-based loss function This work addresses the problem of speech separation in the Spanish Language using pre-trained deep learning models. As with many speech processing tasks, large databases in other languages different from English are scarce. Therefore this work explores different training strategies using the Conv-TasNet model as a benchmark. A scale-invariant signal distortion ratio (SI-SDR) metric value of 9.9 dB was achieved for the best training strategy. Then, experimentally, we identified an inverse relationship between the speakers' similarity and the model's performance, so an improved ConvTasNet architecture was proposed. The enhanced Conv-TasNet model uses pre-trained speech embeddings to add a between-speakers cosine similarity term in the cost function, yielding an SI-SDR of 10.6 dB. Lastly, final experiments regarding real-time deployment show some drawbacks in the speakers' channel synchronization due to the need to process small speech segments where only one of the speakers appears. 2 authors · May 26, 2022
- A Study of Gender Impact in Self-supervised Models for Speech-to-Text Systems Self-supervised models for speech processing emerged recently as popular foundation blocks in speech processing pipelines. These models are pre-trained on unlabeled audio data and then used in speech processing downstream tasks such as automatic speech recognition (ASR) or speech translation (ST). Since these models are now used in research and industrial systems alike, it becomes necessary to understand the impact caused by some features such as gender distribution within pre-training data. Using French as our investigation language, we train and compare gender-specific wav2vec 2.0 models against models containing different degrees of gender balance in their pre-training data. The comparison is performed by applying these models to two speech-to-text downstream tasks: ASR and ST. Results show the type of downstream integration matters. We observe lower overall performance using gender-specific pre-training before fine-tuning an end-to-end ASR system. However, when self-supervised models are used as feature extractors, the overall ASR and ST results follow more complex patterns in which the balanced pre-trained model does not necessarily lead to the best results. Lastly, our crude 'fairness' metric, the relative performance difference measured between female and male test sets, does not display a strong variation from balanced to gender-specific pre-trained wav2vec 2.0 models. 4 authors · Apr 4, 2022
- SLUE: New Benchmark Tasks for Spoken Language Understanding Evaluation on Natural Speech Progress in speech processing has been facilitated by shared datasets and benchmarks. Historically these have focused on automatic speech recognition (ASR), speaker identification, or other lower-level tasks. Interest has been growing in higher-level spoken language understanding tasks, including using end-to-end models, but there are fewer annotated datasets for such tasks. At the same time, recent work shows the possibility of pre-training generic representations and then fine-tuning for several tasks using relatively little labeled data. We propose to create a suite of benchmark tasks for Spoken Language Understanding Evaluation (SLUE) consisting of limited-size labeled training sets and corresponding evaluation sets. This resource would allow the research community to track progress, evaluate pre-trained representations for higher-level tasks, and study open questions such as the utility of pipeline versus end-to-end approaches. We present the first phase of the SLUE benchmark suite, consisting of named entity recognition, sentiment analysis, and ASR on the corresponding datasets. We focus on naturally produced (not read or synthesized) speech, and freely available datasets. We provide new transcriptions and annotations on subsets of the VoxCeleb and VoxPopuli datasets, evaluation metrics and results for baseline models, and an open-source toolkit to reproduce the baselines and evaluate new models. 7 authors · Nov 19, 2021
- Multimodal Semi-supervised Learning Framework for Punctuation Prediction in Conversational Speech In this work, we explore a multimodal semi-supervised learning approach for punctuation prediction by learning representations from large amounts of unlabelled audio and text data. Conventional approaches in speech processing typically use forced alignment to encoder per frame acoustic features to word level features and perform multimodal fusion of the resulting acoustic and lexical representations. As an alternative, we explore attention based multimodal fusion and compare its performance with forced alignment based fusion. Experiments conducted on the Fisher corpus show that our proposed approach achieves ~6-9% and ~3-4% absolute improvement (F1 score) over the baseline BLSTM model on reference transcripts and ASR outputs respectively. We further improve the model robustness to ASR errors by performing data augmentation with N-best lists which achieves up to an additional ~2-6% improvement on ASR outputs. We also demonstrate the effectiveness of semi-supervised learning approach by performing ablation study on various sizes of the corpus. When trained on 1 hour of speech and text data, the proposed model achieved ~9-18% absolute improvement over baseline model. 5 authors · Aug 3, 2020
- Polish Read Speech Corpus for Speech Tools and Services This paper describes the speech processing activities conducted at the Polish consortium of the CLARIN project. The purpose of this segment of the project was to develop specific tools that would allow for automatic and semi-automatic processing of large quantities of acoustic speech data. The tools include the following: grapheme-to-phoneme conversion, speech-to-text alignment, voice activity detection, speaker diarization, keyword spotting and automatic speech transcription. Furthermore, in order to develop these tools, a large high-quality studio speech corpus was recorded and released under an open license, to encourage development in the area of Polish speech research. Another purpose of the corpus was to serve as a reference for studies in phonetics and pronunciation. All the tools and resources were released on the the Polish CLARIN website. This paper discusses the current status and future plans for the project. 4 authors · Jun 1, 2017
2 VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We propose VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework for real-time voice interaction. Departing from the conventional next-token prediction (NTP), we introduce multi-token prediction (MTP), a novel approach optimized for speech LLMs that simultaneously improves generation speed and quality. Experiments show that VocalNet outperforms mainstream Omni LLMs despite using significantly less training data, while also surpassing existing open-source speech LLMs by a substantial margin. To support reproducibility and community advancement, we will open-source all model weights, inference code, training data, and framework implementations upon publication. 7 authors · Apr 5
14 OWSM v3.1: Better and Faster Open Whisper-Style Speech Models based on E-Branchformer Recent studies have advocated for fully open foundation models to promote transparency and open science. As an initial step, the Open Whisper-style Speech Model (OWSM) reproduced OpenAI's Whisper using publicly available data and open-source toolkits. With the aim of reproducing Whisper, the previous OWSM v1 through v3 models were still based on Transformer, which might lead to inferior performance compared to other state-of-the-art speech encoders. In this work, we aim to improve the performance and efficiency of OWSM without extra training data. We present E-Branchformer based OWSM v3.1 models at two scales, i.e., 100M and 1B. The 1B model is the largest E-Branchformer based speech model that has been made publicly available. It outperforms the previous OWSM v3 in a vast majority of evaluation benchmarks, while demonstrating up to 25% faster inference speed. We publicly release the data preparation scripts, pre-trained models and training logs. 12 authors · Jan 29, 2024 1
8 Towards General-Purpose Speech Abilities for Large Language Models Using Unpaired Data In this work, we extend the instruction-tuned Llama-2 model with end-to-end general-purpose speech processing and reasoning abilities while maintaining the wide range of LLM capabilities, without using any carefully curated paired data. The proposed model can utilize audio prompts as a replacement for text and sustain a conversation. Such a model also has extended cross-modal capabilities such as being able to perform speech question answering, speech translation, and audio summarization amongst many other closed and open-domain tasks. This is unlike prior approaches in speech, in which LLMs are extended to handle audio for a limited number of pre-designated tasks. Experiments show that our end-to-end approach is on par with or outperforms a cascaded system (speech recognizer + LLM) in terms of modeling the response to a prompt. Furthermore, unlike a cascade, our approach shows the ability to interchange text and audio modalities and utilize the prior context in a conversation to provide better results. 9 authors · Nov 12, 2023
1 Multi-resolution HuBERT: Multi-resolution Speech Self-Supervised Learning with Masked Unit Prediction Existing Self-Supervised Learning (SSL) models for speech typically process speech signals at a fixed resolution of 20 milliseconds. This approach overlooks the varying informational content present at different resolutions in speech signals. In contrast, this paper aims to incorporate multi-resolution information into speech self-supervised representation learning. We introduce a SSL model that leverages a hierarchical Transformer architecture, complemented by HuBERT-style masked prediction objectives, to process speech at multiple resolutions. Experimental results indicate that the proposed model not only achieves more efficient inference but also exhibits superior or comparable performance to the original HuBERT model over various tasks. Specifically, significant performance improvements over the original HuBERT have been observed in fine-tuning experiments on the LibriSpeech speech recognition benchmark as well as in evaluations using the Speech Universal PERformance Benchmark (SUPERB) and Multilingual SUPERB (ML-SUPERB). 5 authors · Oct 4, 2023
1 SpeechBrain: A General-Purpose Speech Toolkit SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to facilitate the research and development of neural speech processing technologies by being simple, flexible, user-friendly, and well-documented. This paper describes the core architecture designed to support several tasks of common interest, allowing users to naturally conceive, compare and share novel speech processing pipelines. SpeechBrain achieves competitive or state-of-the-art performance in a wide range of speech benchmarks. It also provides training recipes, pretrained models, and inference scripts for popular speech datasets, as well as tutorials which allow anyone with basic Python proficiency to familiarize themselves with speech technologies. 21 authors · Jun 8, 2021
- SpeechAccentLLM: A Unified Framework for Foreign Accent Conversion and Text to Speech Foreign accent conversion (FAC) in speech processing remains a challenging task. Building on the remarkable success of large language models (LLMs) in Text-to-Speech (TTS) tasks, this study investigates the adaptation of LLM-based techniques for FAC, which we term SpeechAccentLLM. At the core of this framework, we introduce SpeechCodeVAE, the first model to integrate connectionist temporal classification (CTC) directly into codebook discretization for speech content tokenization. This novel architecture generates tokens with a unique "locality" property, as validated by experiments demonstrating optimal trade-offs among content faithfulness, temporal coherence, and structural recoverability. Then, to address data scarcity for the FAC module, we adopted a multitask learning strategy that jointly trains the FAC and TTS modules. Beyond mitigating data limitations, this approach yielded accelerated convergence and superior speech quality compared to standalone FAC training. Moreover, leveraging the salient properties of our discrete speech representations, we introduce SpeechRestorer, a postprocessing architecture designed to refine LLM-generated outputs. This module effectively mitigates stochastic errors prevalent in LLM inference pipelines while enhancing prosodic continuity, as validated by ablation experiments. 9 authors · Jul 2
- Casablanca: Data and Models for Multidialectal Arabic Speech Recognition In spite of the recent progress in speech processing, the majority of world languages and dialects remain uncovered. This situation only furthers an already wide technological divide, thereby hindering technological and socioeconomic inclusion. This challenge is largely due to the absence of datasets that can empower diverse speech systems. In this paper, we seek to mitigate this obstacle for a number of Arabic dialects by presenting Casablanca, a large-scale community-driven effort to collect and transcribe a multi-dialectal Arabic dataset. The dataset covers eight dialects: Algerian, Egyptian, Emirati, Jordanian, Mauritanian, Moroccan, Palestinian, and Yemeni, and includes annotations for transcription, gender, dialect, and code-switching. We also develop a number of strong baselines exploiting Casablanca. The project page for Casablanca is accessible at: www.dlnlp.ai/speech/casablanca. 27 authors · Oct 6, 2024
- Mamba in Speech: Towards an Alternative to Self-Attention Transformer and its derivatives have achieved success in diverse tasks across computer vision, natural language processing, and speech processing. To reduce the complexity of computations within the multi-head self-attention mechanism in Transformer, Selective State Space Models (i.e., Mamba) were proposed as an alternative. Mamba exhibited its effectiveness in natural language processing and computer vision tasks, but its superiority has rarely been investigated in speech signal processing. This paper explores solutions for applying Mamba to speech processing using two typical speech processing tasks: speech recognition, which requires semantic and sequential information, and speech enhancement, which focuses primarily on sequential patterns. The experimental results exhibit the superiority of bidirectional Mamba (BiMamba) for speech processing to vanilla Mamba. Moreover, experiments demonstrate the effectiveness of BiMamba as an alternative to the self-attention module in Transformer and its derivates, particularly for the semantic-aware task. The crucial technologies for transferring Mamba to speech are then summarized in ablation studies and the discussion section to offer insights for future research. 9 authors · May 21, 2024
- LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT Self-supervised speech representation learning has shown promising results in various speech processing tasks. However, the pre-trained models, e.g., HuBERT, are storage-intensive Transformers, limiting their scope of applications under low-resource settings. To this end, we propose LightHuBERT, a once-for-all Transformer compression framework, to find the desired architectures automatically by pruning structured parameters. More precisely, we create a Transformer-based supernet that is nested with thousands of weight-sharing subnets and design a two-stage distillation strategy to leverage the contextualized latent representations from HuBERT. Experiments on automatic speech recognition (ASR) and the SUPERB benchmark show the proposed LightHuBERT enables over 10^9 architectures concerning the embedding dimension, attention dimension, head number, feed-forward network ratio, and network depth. LightHuBERT outperforms the original HuBERT on ASR and five SUPERB tasks with the HuBERT size, achieves comparable performance to the teacher model in most tasks with a reduction of 29% parameters, and obtains a 3.5times compression ratio in three SUPERB tasks, e.g., automatic speaker verification, keyword spotting, and intent classification, with a slight accuracy loss. The code and pre-trained models are available at https://github.com/mechanicalsea/lighthubert. 9 authors · Mar 29, 2022
- InQSS: a speech intelligibility and quality assessment model using a multi-task learning network Speech intelligibility and quality assessment models are essential tools for researchers to evaluate and improve speech processing models. However, only a few studies have investigated multi-task models for intelligibility and quality assessment due to the limitations of available data. In this study, we released TMHINT-QI, the first Chinese speech dataset that records the quality and intelligibility scores of clean, noisy, and enhanced utterances. Then, we propose InQSS, a non-intrusive multi-task learning framework for intelligibility and quality assessment. We evaluated the InQSS on both the training-from-scratch and the pretrained models. The experimental results confirm the effectiveness of the InQSS framework. In addition, the resulting model can predict not only the intelligibility scores but also the quality scores of a speech signal. 2 authors · Nov 3, 2021
- UniSpeech-SAT: Universal Speech Representation Learning with Speaker Aware Pre-Training Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks. 11 authors · Oct 12, 2021
- A Wavenet for Speech Denoising Currently, most speech processing techniques use magnitude spectrograms as front-end and are therefore by default discarding part of the signal: the phase. In order to overcome this limitation, we propose an end-to-end learning method for speech denoising based on Wavenet. The proposed model adaptation retains Wavenet's powerful acoustic modeling capabilities, while significantly reducing its time-complexity by eliminating its autoregressive nature. Specifically, the model makes use of non-causal, dilated convolutions and predicts target fields instead of a single target sample. The discriminative adaptation of the model we propose, learns in a supervised fashion via minimizing a regression loss. These modifications make the model highly parallelizable during both training and inference. Both computational and perceptual evaluations indicate that the proposed method is preferred to Wiener filtering, a common method based on processing the magnitude spectrogram. 3 authors · Jun 22, 2017
8 Interface Design for Self-Supervised Speech Models Self-supervised speech (SSL) models have recently become widely adopted for many downstream speech processing tasks. The general usage pattern is to employ SSL models as feature extractors, and then train a downstream prediction head to solve a specific task. However, different layers of SSL models have been shown to capture different types of information, and the methods of combining them are not well studied. To this end, we extend the general framework for SSL model utilization by proposing the interface that connects the upstream and downstream. Under this view, the dominant technique of combining features via a layerwise weighted sum can be regarded as a specific interface. We propose several alternative interface designs and demonstrate that the weighted sum interface is suboptimal for many tasks. In particular, we show that a convolutional interface whose depth scales logarithmically with the depth of the upstream model consistently outperforms many other interface designs. 2 authors · Jun 17, 2024 1
7 On decoder-only architecture for speech-to-text and large language model integration Large language models (LLMs) have achieved remarkable success in the field of natural language processing, enabling better human-computer interaction using natural language. However, the seamless integration of speech signals into LLMs has not been explored well. The "decoder-only" architecture has also not been well studied for speech processing tasks. In this research, we introduce Speech-LLaMA, a novel approach that effectively incorporates acoustic information into text-based large language models. Our method leverages Connectionist Temporal Classification and a simple audio encoder to map the compressed acoustic features to the continuous semantic space of the LLM. In addition, we further probe the decoder-only architecture for speech-to-text tasks by training a smaller scale randomly initialized speech-LLaMA model from speech-text paired data alone. We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines, highlighting the potential advantages of decoder-only models for speech-to-text conversion. 11 authors · Jul 8, 2023
3 XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale This paper presents XLS-R, a large-scale model for cross-lingual speech representation learning based on wav2vec 2.0. We train models with up to 2B parameters on nearly half a million hours of publicly available speech audio in 128 languages, an order of magnitude more public data than the largest known prior work. Our evaluation covers a wide range of tasks, domains, data regimes and languages, both high and low-resource. On the CoVoST-2 speech translation benchmark, we improve the previous state of the art by an average of 7.4 BLEU over 21 translation directions into English. For speech recognition, XLS-R improves over the best known prior work on BABEL, MLS, CommonVoice as well as VoxPopuli, lowering error rates by 14-34% relative on average. XLS-R also sets a new state of the art on VoxLingua107 language identification. Moreover, we show that with sufficient model size, cross-lingual pretraining can outperform English-only pretraining when translating English speech into other languages, a setting which favors monolingual pretraining. We hope XLS-R can help to improve speech processing tasks for many more languages of the world. 13 authors · Nov 17, 2021
2 Granary: Speech Recognition and Translation Dataset in 25 European Languages Multi-task and multilingual approaches benefit large models, yet speech processing for low-resource languages remains underexplored due to data scarcity. To address this, we present Granary, a large-scale collection of speech datasets for recognition and translation across 25 European languages. This is the first open-source effort at this scale for both transcription and translation. We enhance data quality using a pseudo-labeling pipeline with segmentation, two-pass inference, hallucination filtering, and punctuation restoration. We further generate translation pairs from pseudo-labeled transcriptions using EuroLLM, followed by a data filtration pipeline. Designed for efficiency, our pipeline processes vast amount of data within hours. We assess models trained on processed data by comparing their performance on previously curated datasets for both high- and low-resource languages. Our findings show that these models achieve similar performance using approx. 50% less data. Dataset will be made available at https://hf.co/datasets/nvidia/Granary 15 authors · May 19
- GigaAM: Efficient Self-Supervised Learner for Speech Recognition Self-Supervised Learning (SSL) has demonstrated strong performance in speech processing, particularly in automatic speech recognition. In this paper, we explore an SSL pretraining framework that leverages masked language modeling with targets derived from a speech recognition model. We also present chunkwise attention with dynamic chunk size sampling during pretraining to enable both full-context and streaming fine-tuning. Our experiments examine scaling with respect to model size and the amount of data. Using our method, we train the GigaAM family of models, including a state-of-the-art model for Russian speech recognition that outperforms Whisper-large-v3 by 50%. We have released our foundation and ASR models, along with the inference code, under the MIT license as open-source resources to the research community. Available at https://github.com/salute-developers/gigaam. 5 authors · Jun 1
- InSerter: Speech Instruction Following with Unsupervised Interleaved Pre-training Recent advancements in speech large language models (SpeechLLMs) have attracted considerable attention. Nonetheless, current methods exhibit suboptimal performance in adhering to speech instructions. Notably, the intelligence of models significantly diminishes when processing speech-form input as compared to direct text-form input. Prior work has attempted to mitigate this semantic inconsistency between speech and text representations through techniques such as representation and behavior alignment, which involve the meticulous design of data pairs during the post-training phase. In this paper, we introduce a simple and scalable training method called InSerter, which stands for Interleaved Speech-Text Representation Pre-training. InSerter is designed to pre-train large-scale unsupervised speech-text sequences, where the speech is synthesized from randomly selected segments of an extensive text corpus using text-to-speech conversion. Consequently, the model acquires the ability to generate textual continuations corresponding to the provided speech segments, obviating the need for intensive data design endeavors. To systematically evaluate speech instruction-following capabilities, we introduce SpeechInstructBench, the first comprehensive benchmark specifically designed for speech-oriented instruction-following tasks. Our proposed InSerter achieves SOTA performance in SpeechInstructBench and demonstrates superior or competitive results across diverse speech processing tasks. 9 authors · Mar 4
2 PEFT for Speech: Unveiling Optimal Placement, Merging Strategies, and Ensemble Techniques Parameter-Efficient Fine-Tuning (PEFT) is increasingly recognized as an effective method in speech processing. However, the optimal approach and the placement of PEFT methods remain inconclusive. Our study conducts extensive experiments to compare different PEFT methods and their layer-wise placement adapting Differentiable Architecture Search (DARTS). We also explore the use of ensemble learning to leverage diverse PEFT strategies. The results reveal that DARTS does not outperform the baseline approach, which involves inserting the same PEFT method into all layers of a Self-Supervised Learning (SSL) model. In contrast, an ensemble learning approach, particularly one employing majority voting, demonstrates superior performance. Our statistical evidence indicates that different PEFT methods learn in varied ways. This variation might explain why the synergistic integration of various PEFT methods through ensemble learning can harness their unique learning capabilities more effectively compared to individual layer-wise optimization. 6 authors · Jan 4, 2024
12 USAD: Universal Speech and Audio Representation via Distillation Self-supervised learning (SSL) has revolutionized audio representations, yet models often remain domain-specific, focusing on either speech or non-speech tasks. In this work, we present Universal Speech and Audio Distillation (USAD), a unified approach to audio representation learning that integrates diverse audio types - speech, sound, and music - into a single model. USAD employs efficient layer-to-layer distillation from domain-specific SSL models to train a student on a comprehensive audio dataset. USAD offers competitive performance across various benchmarks and datasets, including frame and instance-level speech processing tasks, audio tagging, and sound classification, achieving near state-of-the-art results with a single encoder on SUPERB and HEAR benchmarks. 4 authors · Jun 23 1
2 TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation In recent years, much speech separation research has focused primarily on improving model performance. However, for low-latency speech processing systems, high efficiency is equally important. Therefore, we propose a speech separation model with significantly reduced parameters and computational costs: Time-frequency Interleaved Gain Extraction and Reconstruction network (TIGER). TIGER leverages prior knowledge to divide frequency bands and compresses frequency information. We employ a multi-scale selective attention module to extract contextual features, while introducing a full-frequency-frame attention module to capture both temporal and frequency contextual information. Additionally, to more realistically evaluate the performance of speech separation models in complex acoustic environments, we introduce a dataset called EchoSet. This dataset includes noise and more realistic reverberation (e.g., considering object occlusions and material properties), with speech from two speakers overlapping at random proportions. Experimental results showed that models trained on EchoSet had better generalization ability than those trained on other datasets to the data collected in the physical world, which validated the practical value of the EchoSet. On EchoSet and real-world data, TIGER significantly reduces the number of parameters by 94.3% and the MACs by 95.3% while achieving performance surpassing state-of-the-art (SOTA) model TF-GridNet. This is the first speech separation model with fewer than 1 million parameters that achieves performance comparable to the SOTA model. 4 authors · Oct 2, 2024
1 The NaijaVoices Dataset: Cultivating Large-Scale, High-Quality, Culturally-Rich Speech Data for African Languages The development of high-performing, robust, and reliable speech technologies depends on large, high-quality datasets. However, African languages -- including our focus, Igbo, Hausa, and Yoruba -- remain under-represented due to insufficient data. Popular voice-enabled technologies do not support any of the 2000+ African languages, limiting accessibility for circa one billion people. While previous dataset efforts exist for the target languages, they lack the scale and diversity needed for robust speech models. To bridge this gap, we introduce the NaijaVoices dataset, a 1,800-hour speech-text dataset with 5,000+ speakers. We outline our unique data collection approach, analyze its acoustic diversity, and demonstrate its impact through finetuning experiments on automatic speech recognition, averagely achieving 75.86% (Whisper), 52.06% (MMS), and 42.33% (XLSR) WER improvements. These results highlight NaijaVoices' potential to advance multilingual speech processing for African languages. 11 authors · May 26
1 OWSM-CTC: An Open Encoder-Only Speech Foundation Model for Speech Recognition, Translation, and Language Identification There has been an increasing interest in large speech models that can perform multiple speech processing tasks in a single model. Such models usually adopt the encoder-decoder or decoder-only architecture due to their popularity and good performance in many domains. However, autoregressive models can be slower during inference compared to non-autoregressive models and also have potential risks of hallucination. Though prior studies observed promising results of non-autoregressive models for certain tasks at small scales, it remains unclear if they can be scaled to speech-to-text generation in diverse languages and tasks. Inspired by the Open Whisper-style Speech Model (OWSM) project, we propose OWSM-CTC, a novel encoder-only speech foundation model based on Connectionist Temporal Classification (CTC). It is trained on 180k hours of public audio data for multilingual automatic speech recognition (ASR), speech translation (ST), and language identification (LID). Compared to encoder-decoder OWSM, our OWSM-CTC achieves competitive results on ASR and up to 25% relative improvement on ST, while it is more robust and 3 to 4 times faster for inference. OWSM-CTC also improves the long-form ASR result with 20x speed-up. We will publicly release our codebase, pre-trained model, and training logs to promote open science in speech foundation models. 4 authors · Feb 19, 2024
1 An Integration of Pre-Trained Speech and Language Models for End-to-End Speech Recognition Advances in machine learning have made it possible to perform various text and speech processing tasks, including automatic speech recognition (ASR), in an end-to-end (E2E) manner. Since typical E2E approaches require large amounts of training data and resources, leveraging pre-trained foundation models instead of training from scratch is gaining attention. Although there have been attempts to use pre-trained speech and language models in ASR, most of them are limited to using either. This paper explores the potential of integrating a pre-trained speech representation model with a large language model (LLM) for E2E ASR. The proposed model enables E2E ASR by generating text tokens in an autoregressive manner via speech representations as speech prompts, taking advantage of the vast knowledge provided by the LLM. Furthermore, the proposed model can incorporate remarkable developments for LLM utilization, such as inference optimization and parameter-efficient domain adaptation. Experimental results show that the proposed model achieves performance comparable to modern E2E ASR models. 6 authors · Dec 6, 2023
1 Fast-HuBERT: An Efficient Training Framework for Self-Supervised Speech Representation Learning Recent years have witnessed significant advancements in self-supervised learning (SSL) methods for speech-processing tasks. Various speech-based SSL models have been developed and present promising performance on a range of downstream tasks including speech recognition. However, existing speech-based SSL models face a common dilemma in terms of computational cost, which might hinder their potential application and in-depth academic research. To address this issue, we first analyze the computational cost of different modules during HuBERT pre-training and then introduce a stack of efficiency optimizations, which is named Fast-HuBERT in this paper. The proposed Fast-HuBERT can be trained in 1.1 days with 8 V100 GPUs on the Librispeech 960h benchmark, without performance degradation, resulting in a 5.2x speedup, compared to the original implementation. Moreover, we explore two well-studied techniques in the Fast-HuBERT and demonstrate consistent improvements as reported in previous work. 6 authors · Sep 25, 2023
1 DPHuBERT: Joint Distillation and Pruning of Self-Supervised Speech Models Self-supervised learning (SSL) has achieved notable success in many speech processing tasks, but the large model size and heavy computational cost hinder the deployment. Knowledge distillation trains a small student model to mimic the behavior of a large teacher model. However, the student architecture usually needs to be manually designed and will remain fixed during training, which requires prior knowledge and can lead to suboptimal performance. Inspired by recent success of task-specific structured pruning, we propose DPHuBERT, a novel task-agnostic compression method for speech SSL based on joint distillation and pruning. Experiments on SUPERB show that DPHuBERT outperforms pure distillation methods in almost all tasks. Moreover, DPHuBERT requires little training time and performs well with limited training data, making it suitable for resource-constrained applications. Our method can also be applied to various speech SSL models. Our code and models will be publicly available. 4 authors · May 28, 2023
- SPEAR: A Unified SSL Framework for Learning Speech and Audio Representations Self-Supervised Learning (SSL) excels at learning generic representations of acoustic signals, yet prevailing methods remain domain-specific, tailored to either speech or general audio, hindering the development of a unified representation model with a comprehensive capability over both domains. To address this, we present SPEAR (SPEech and Audio Representations), the first SSL framework to successfully learn unified speech and audio representations from a mixture of speech and audio data. SPEAR proposes a unified pre-training objective based on masked prediction of fine-grained discrete tokens for both speech and general audio. These tokens are derived from continuous speech and audio representations using a Multi-codebook Vector Quantisation (MVQ) method, retaining rich acoustic detail essential for modelling both speech and complex audio events. SPEAR is applied to pre-train both single-domain and unified speech-and-audio SSL models. Our speech-domain model establishes a new state-of-the-art on the SUPERB benchmark, a speech processing benchmark for SSL models, matching or surpassing the highly competitive WavLM Large on 12 out of 15 tasks with the same pre-training corpora and a similar model size. Crucially, our unified model learns complementary features and demonstrates comprehensive capabilities across two major benchmarks, SUPERB and HEAR, for evaluating audio representations. By further scaling up the model size and pre-training data, we present a unified model with 600M parameters that excels in both domains, establishing it as one of the most powerful and versatile open-source SSL models for auditory understanding. The inference code and pre-trained models will be made publicly available. 8 authors · Oct 29
- Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition Given recent advances in generative AI technology, a key question is how large language models (LLMs) can enhance acoustic modeling tasks using text decoding results from a frozen, pretrained automatic speech recognition (ASR) model. To explore new capabilities in language modeling for speech processing, we introduce the generative speech transcription error correction (GenSEC) challenge. This challenge comprises three post-ASR language modeling tasks: (i) post-ASR transcription correction, (ii) speaker tagging, and (iii) emotion recognition. These tasks aim to emulate future LLM-based agents handling voice-based interfaces while remaining accessible to a broad audience by utilizing open pretrained language models or agent-based APIs. We also discuss insights from baseline evaluations, as well as lessons learned for designing future evaluations. 21 authors · Sep 15, 2024
- TokenVerse: Towards Unifying Speech and NLP Tasks via Transducer-based ASR In traditional conversational intelligence from speech, a cascaded pipeline is used, involving tasks such as voice activity detection, diarization, transcription, and subsequent processing with different NLP models for tasks like semantic endpointing and named entity recognition (NER). Our paper introduces TokenVerse, a single Transducer-based model designed to handle multiple tasks. This is achieved by integrating task-specific tokens into the reference text during ASR model training, streamlining the inference and eliminating the need for separate NLP models. In addition to ASR, we conduct experiments on 3 different tasks: speaker change detection, endpointing, and NER. Our experiments on a public and a private dataset show that the proposed method improves ASR by up to 7.7% in relative WER while outperforming the cascaded pipeline approach in individual task performance. Our code is publicly available: https://github.com/idiap/tokenverse-unifying-speech-nlp 9 authors · Jul 5, 2024
- Transcribe, Align and Segment: Creating speech datasets for low-resource languages In this work, we showcase a cost-effective method for generating training data for speech processing tasks. First, we transcribe unlabeled speech using a state-of-the-art Automatic Speech Recognition (ASR) model. Next, we align generated transcripts with the audio and apply segmentation on short utterances. Our focus is on ASR for low-resource languages, such as Ukrainian, using podcasts as a source of unlabeled speech. We release a new dataset UK-PODS that features modern conversational Ukrainian language. It contains over 50 hours of text audio-pairs as well as uk-pods-conformer, a 121 M parameters ASR model that is trained on MCV-10 and UK-PODS and achieves 3x reduction of Word Error Rate (WER) on podcasts comparing to publically available uk-nvidia-citrinet while maintaining comparable WER on MCV-10 test split. Both dataset UK-PODS https://huggingface.co/datasets/taras-sereda/uk-pods and ASR uk-pods-conformer https://huggingface.co/taras-sereda/uk-pods-conformer are available on the hugging-face hub. 1 authors · Jun 18, 2024
- Self-Supervised Speech Quality Estimation and Enhancement Using Only Clean Speech Speech quality estimation has recently undergone a paradigm shift from human-hearing expert designs to machine-learning models. However, current models rely mainly on supervised learning, which is time-consuming and expensive for label collection. To solve this problem, we propose VQScore, a self-supervised metric for evaluating speech based on the quantization error of a vector-quantized-variational autoencoder (VQ-VAE). The training of VQ-VAE relies on clean speech; hence, large quantization errors can be expected when the speech is distorted. To further improve correlation with real quality scores, domain knowledge of speech processing is incorporated into the model design. We found that the vector quantization mechanism could also be used for self-supervised speech enhancement (SE) model training. To improve the robustness of the encoder for SE, a novel self-distillation mechanism combined with adversarial training is introduced. In summary, the proposed speech quality estimation method and enhancement models require only clean speech for training without any label requirements. Experimental results show that the proposed VQScore and enhancement model are competitive with supervised baselines. The code will be released after publication. 4 authors · Feb 26, 2024
- Analysis of Self-Supervised Speech Models on Children's Speech and Infant Vocalizations To understand why self-supervised learning (SSL) models have empirically achieved strong performances on several speech-processing downstream tasks, numerous studies have focused on analyzing the encoded information of the SSL layer representations in adult speech. Limited work has investigated how pre-training and fine-tuning affect SSL models encoding children's speech and vocalizations. In this study, we aim to bridge this gap by probing SSL models on two relevant downstream tasks: (1) phoneme recognition (PR) on the speech of adults, older children (8-10 years old), and younger children (1-4 years old), and (2) vocalization classification (VC) distinguishing cry, fuss, and babble for infants under 14 months old. For younger children's PR, the superiority of fine-tuned SSL models is largely due to their ability to learn features that represent older children's speech and then adapt those features to the speech of younger children. For infant VC, SSL models pre-trained on large-scale home recordings learn to leverage phonetic representations at middle layers, and thereby enhance the performance of this task. 3 authors · Feb 10, 2024
- Branchformer: Parallel MLP-Attention Architectures to Capture Local and Global Context for Speech Recognition and Understanding Conformer has proven to be effective in many speech processing tasks. It combines the benefits of extracting local dependencies using convolutions and global dependencies using self-attention. Inspired by this, we propose a more flexible, interpretable and customizable encoder alternative, Branchformer, with parallel branches for modeling various ranged dependencies in end-to-end speech processing. In each encoder layer, one branch employs self-attention or its variant to capture long-range dependencies, while the other branch utilizes an MLP module with convolutional gating (cgMLP) to extract local relationships. We conduct experiments on several speech recognition and spoken language understanding benchmarks. Results show that our model outperforms both Transformer and cgMLP. It also matches with or outperforms state-of-the-art results achieved by Conformer. Furthermore, we show various strategies to reduce computation thanks to the two-branch architecture, including the ability to have variable inference complexity in a single trained model. The weights learned for merging branches indicate how local and global dependencies are utilized in different layers, which benefits model designing. 4 authors · Jul 6, 2022
- DistilHuBERT: Speech Representation Learning by Layer-wise Distillation of Hidden-unit BERT Self-supervised speech representation learning methods like wav2vec 2.0 and Hidden-unit BERT (HuBERT) leverage unlabeled speech data for pre-training and offer good representations for numerous speech processing tasks. Despite the success of these methods, they require large memory and high pre-training costs, making them inaccessible for researchers in academia and small companies. Therefore, this paper introduces DistilHuBERT, a novel multi-task learning framework to distill hidden representations from a HuBERT model directly. This method reduces HuBERT's size by 75% and 73% faster while retaining most performance in ten different tasks. Moreover, DistilHuBERT required little training time and data, opening the possibilities of pre-training personal and on-device SSL models for speech. 3 authors · Oct 5, 2021
- Visual Features for Context-Aware Speech Recognition Automatic transcriptions of consumer-generated multi-media content such as "Youtube" videos still exhibit high word error rates. Such data typically occupies a very broad domain, has been recorded in challenging conditions, with cheap hardware and a focus on the visual modality, and may have been post-processed or edited. In this paper, we extend our earlier work on adapting the acoustic model of a DNN-based speech recognition system to an RNN language model and show how both can be adapted to the objects and scenes that can be automatically detected in the video. We are working on a corpus of "how-to" videos from the web, and the idea is that an object that can be seen ("car"), or a scene that is being detected ("kitchen") can be used to condition both models on the "context" of the recording, thereby reducing perplexity and improving transcription. We achieve good improvements in both cases and compare and analyze the respective reductions in word error rate. We expect that our results can be used for any type of speech processing in which "context" information is available, for example in robotics, man-machine interaction, or when indexing large audio-visual archives, and should ultimately help to bring together the "video-to-text" and "speech-to-text" communities. 4 authors · Dec 1, 2017
19 FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian The development of speech foundation models (SFMs) like Whisper and SeamlessM4T has significantly advanced the field of speech processing. However, their closed nature--with inaccessible training data and code--poses major reproducibility and fair evaluation challenges. While other domains have made substantial progress toward open science by developing fully transparent models trained on open-source (OS) code and data, similar efforts in speech remain limited. To fill this gap, we introduce FAMA, the first family of open science SFMs for English and Italian, trained on 150k+ hours of OS speech data. Moreover, we present a new dataset containing 16k hours of cleaned and pseudo-labeled speech for both languages. Results show that FAMA achieves competitive performance compared to existing SFMs while being up to 8 times faster. All artifacts, including code, datasets, and models, are released under OS-compliant licenses, promoting openness in speech technology research. 9 authors · May 28 2
2 Recycle-and-Distill: Universal Compression Strategy for Transformer-based Speech SSL Models with Attention Map Reusing and Masking Distillation Transformer-based speech self-supervised learning (SSL) models, such as HuBERT, show surprising performance in various speech processing tasks. However, huge number of parameters in speech SSL models necessitate the compression to a more compact model for wider usage in academia or small companies. In this study, we suggest to reuse attention maps across the Transformer layers, so as to remove key and query parameters while retaining the number of layers. Furthermore, we propose a novel masking distillation strategy to improve the student model's speech representation quality. We extend the distillation loss to utilize both masked and unmasked speech frames to fully leverage the teacher model's high-quality representation. Our universal compression strategy yields the student model that achieves phoneme error rate (PER) of 7.72% and word error rate (WER) of 9.96% on the SUPERB benchmark. 4 authors · May 19, 2023
2 Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition Conformer-based models have become the dominant end-to-end architecture for speech processing tasks. With the objective of enhancing the conformer architecture for efficient training and inference, we carefully redesigned Conformer with a novel downsampling schema. The proposed model, named Fast Conformer(FC), is 2.8x faster than the original Conformer, supports scaling to Billion parameters without any changes to the core architecture and also achieves state-of-the-art accuracy on Automatic Speech Recognition benchmarks. To enable transcription of long-form speech up to 11 hours, we replaced global attention with limited context attention post-training, while also improving accuracy through fine-tuning with the addition of a global token. Fast Conformer, when combined with a Transformer decoder also outperforms the original Conformer in accuracy and in speed for Speech Translation and Spoken Language Understanding. 8 authors · May 8, 2023
1 Decoder-only Architecture for Speech Recognition with CTC Prompts and Text Data Augmentation Collecting audio-text pairs is expensive; however, it is much easier to access text-only data. Unless using shallow fusion, end-to-end automatic speech recognition (ASR) models require architecture modifications or additional training schemes to use text-only data. Inspired by recent advances in decoder-only language models (LMs), such as GPT-3 and PaLM adopted for speech-processing tasks, we propose using a decoder-only architecture for ASR with simple text augmentation. To provide audio information, encoder features compressed by CTC prediction are used as prompts for the decoder, which can be regarded as refining CTC prediction using the decoder-only model. Because the decoder architecture is the same as an autoregressive LM, it is simple to enhance the model by leveraging external text data with LM training. An experimental comparison using LibriSpeech and Switchboard shows that our proposed models with text augmentation training reduced word error rates from ordinary CTC by 0.3% and 1.4% on LibriSpeech test-clean and testother set, respectively, and 2.9% and 5.0% on Switchboard and CallHome. The proposed model had advantage on computational efficiency compared with conventional encoder-decoder ASR models with a similar parameter setup, and outperformed them on the LibriSpeech 100h and Switchboard training scenarios. 5 authors · Sep 16, 2023
- Hybrid Pruning: In-Situ Compression of Self-Supervised Speech Models for Speaker Verification and Anti-Spoofing Although large-scale self-supervised learning (SSL) models like WavLM have achieved state-of-the-art performance in speech processing, their significant size impedes deployment on resource-constrained devices. While structured pruning is a key technique for model compression, existing methods typically separate it from task-specific fine-tuning. This multi-stage approach struggles to create optimal architectures tailored for diverse downstream tasks. In this work, we introduce a unified framework that integrates structured pruning into the downstream fine-tuning process. Our framework unifies these steps, jointly optimizing for task performance and model sparsity in a single stage. This allows the model to learn a compressed architecture specifically for the end task, eliminating the need for complex multi-stage pipelines and knowledge distillation. Our pruned models achieve up to a 70\% parameter reduction with negligible performance degradation on large-scale datasets, achieving equal error rates of 0.7\%, 0.8\%, and 1.6\% on Vox1-O, -E, and -H, respectively. Furthermore, our approach demonstrates improved generalization in low-resource scenarios, reducing overfitting and achieving a state-of-the-art 3.7\% EER on ASVspoof5. 8 authors · Aug 22
- OSUM: Advancing Open Speech Understanding Models with Limited Resources in Academia Large Language Models (LLMs) have made significant progress in various downstream tasks, inspiring the development of Speech Understanding Language Models (SULMs) to enable comprehensive speech-based interactions. However, most advanced SULMs are developed by the industry, leveraging large-scale datasets and computational resources that are not readily available to the academic community. Moreover, the lack of transparency in training details creates additional barriers to further innovation. In this study, we present OSUM, an Open Speech Understanding Model designed to explore the potential of training SLUMs under constrained academic resources. The OSUM model combines a Whisper encoder with a Qwen2 LLM and supports a wide range of speech tasks, including speech recognition (ASR), speech recognition with timestamps (SRWT), vocal event detection (VED), speech emotion recognition (SER), speaking style recognition (SSR), speaker gender classification (SGC), speaker age prediction (SAP), and speech-to-text chat (STTC). By employing an ASR+X training strategy, OSUM achieves efficient and stable multi-task training by simultaneously optimizing ASR alongside target tasks. Beyond delivering strong performance, OSUM emphasizes transparency by providing openly available data preparation and training methodologies, offering valuable insights and practical guidance for the academic community. By doing so, we aim to accelerate research and innovation in advanced SULM technologies. 21 authors · Jan 22
- Towards a Speech Foundation Model for Singapore and Beyond This technical report describes the MERaLiON Speech Encoder, a foundation model designed to support a wide range of downstream speech applications. Developed as part of Singapore's National Multimodal Large Language Model Programme, the MERaLiON Speech Encoder is tailored to address the speech processing needs in Singapore and the surrounding Southeast Asian region. The model currently supports mainly English, including the variety spoken in Singapore. We are actively expanding our datasets to gradually cover other languages in subsequent releases. The MERaLiON Speech Encoder was pre-trained from scratch on 200K hours of unlabelled speech data using a self-supervised learning approach based on masked language modelling. We describe our training procedure and hyperparameter tuning experiments in detail below. Our evaluation demonstrates improvements to spontaneous and Singapore speech benchmarks for speech recognition, while remaining competitive to other state-of-the-art speech encoders across ten other speech tasks. We commit to releasing our model, supporting broader research endeavours, both in Singapore and beyond. 9 authors · Dec 16, 2024
- The NPU-ASLP System for Audio-Visual Speech Recognition in MISP 2022 Challenge This paper describes our NPU-ASLP system for the Audio-Visual Diarization and Recognition (AVDR) task in the Multi-modal Information based Speech Processing (MISP) 2022 Challenge. Specifically, the weighted prediction error (WPE) and guided source separation (GSS) techniques are used to reduce reverberation and generate clean signals for each single speaker first. Then, we explore the effectiveness of Branchformer and E-Branchformer based ASR systems. To better make use of the visual modality, a cross-attention based multi-modal fusion module is proposed, which explicitly learns the contextual relationship between different modalities. Experiments show that our system achieves a concatenated minimum-permutation character error rate (cpCER) of 28.13\% and 31.21\% on the Dev and Eval set, and obtains second place in the challenge. 5 authors · Mar 11, 2023
13 Efficient Audio-Visual Speech Separation with Discrete Lip Semantics and Multi-Scale Global-Local Attention Audio-visual speech separation (AVSS) methods leverage visual cues to extract target speech and have demonstrated strong separation quality in noisy acoustic environments. However, these methods usually involve a large number of parameters and require high computational cost, which is unacceptable in many applications where speech separation serves as only a preprocessing step for further speech processing. To address this issue, we propose an efficient AVSS method, named Dolphin. For visual feature extraction, we develop DP-LipCoder, a dual-path lightweight video encoder that transforms lip-motion into discrete audio-aligned semantic tokens. For audio separation, we construct a lightweight encoder-decoder separator, in which each layer incorporates a global-local attention (GLA) block to efficiently capture multi-scale dependencies. Experiments on three benchmark datasets showed that Dolphin not only surpassed the current state-of-the-art (SOTA) model in separation quality but also achieved remarkable improvements in efficiency: over 50% fewer parameters, more than 2.4x reduction in MACs, and over 6x faster GPU inference speed. These results indicate that Dolphin offers a practical and deployable solution for high-performance AVSS in real-world scenarios. Our code and demo page are publicly available at http://cslikai.cn/Dolphin/. Tsinghua University · Sep 27 2
- Sagalee: an Open Source Automatic Speech Recognition Dataset for Oromo Language We present a novel Automatic Speech Recognition (ASR) dataset for the Oromo language, a widely spoken language in Ethiopia and neighboring regions. The dataset was collected through a crowd-sourcing initiative, encompassing a diverse range of speakers and phonetic variations. It consists of 100 hours of real-world audio recordings paired with transcriptions, covering read speech in both clean and noisy environments. This dataset addresses the critical need for ASR resources for the Oromo language which is underrepresented. To show its applicability for the ASR task, we conducted experiments using the Conformer model, achieving a Word Error Rate (WER) of 15.32% with hybrid CTC and AED loss and WER of 18.74% with pure CTC loss. Additionally, fine-tuning the Whisper model resulted in a significantly improved WER of 10.82%. These results establish baselines for Oromo ASR, highlighting both the challenges and the potential for improving ASR performance in Oromo. The dataset is publicly available at https://github.com/turinaf/sagalee and we encourage its use for further research and development in Oromo speech processing. 4 authors · Feb 1
65 StableToken: A Noise-Robust Semantic Speech Tokenizer for Resilient SpeechLLMs Prevalent semantic speech tokenizers, designed to capture linguistic content, are surprisingly fragile. We find they are not robust to meaning-irrelevant acoustic perturbations; even at high Signal-to-Noise Ratios (SNRs) where speech is perfectly intelligible, their output token sequences can change drastically, increasing the learning burden for downstream LLMs. This instability stems from two flaws: a brittle single-path quantization architecture and a distant training signal indifferent to intermediate token stability. To address this, we introduce StableToken, a tokenizer that achieves stability through a consensus-driven mechanism. Its multi-branch architecture processes audio in parallel, and these representations are merged via a powerful bit-wise voting mechanism to form a single, stable token sequence. StableToken sets a new state-of-the-art in token stability, drastically reducing Unit Edit Distance (UED) under diverse noise conditions. This foundational stability translates directly to downstream benefits, significantly improving the robustness of SpeechLLMs on a variety of tasks. 7 authors · Sep 26 2
1 SepPrune: Structured Pruning for Efficient Deep Speech Separation Although deep learning has substantially advanced speech separation in recent years, most existing studies continue to prioritize separation quality while overlooking computational efficiency, an essential factor for low-latency speech processing in real-time applications. In this paper, we propose SepPrune, the first structured pruning framework specifically designed to compress deep speech separation models and reduce their computational cost. SepPrune begins by analyzing the computational structure of a given model to identify layers with the highest computational burden. It then introduces a differentiable masking strategy to enable gradient-driven channel selection. Based on the learned masks, SepPrune prunes redundant channels and fine-tunes the remaining parameters to recover performance. Extensive experiments demonstrate that this learnable pruning paradigm yields substantial advantages for channel pruning in speech separation models, outperforming existing methods. Notably, a model pruned with SepPrune can recover 85% of the performance of a pre-trained model (trained over hundreds of epochs) with only one epoch of fine-tuning, and achieves convergence 36times faster than training from scratch. Code is available at https://github.com/itsnotacie/SepPrune. 9 authors · May 17
- UniSE: A Unified Framework for Decoder-only Autoregressive LM-based Speech Enhancement The development of neural audio codecs (NACs) has largely promoted applications of language models (LMs) to speech processing and understanding. However, there lacks the verification on the effectiveness of autoregressive (AR) LMbased models in unifying different sub-tasks of speech enhancement (SE). In this work, we propose UniSE, a unified decoder-only LM-based framework to handle different SE tasks including speech restoration, target speaker extraction and speech separation. It takes input speech features as conditions and generates discrete tokens of the target speech using AR modeling, which facilitates a compatibility between distinct learning patterns of multiple tasks. Experiments on several benchmarks indicate the proposed UniSE can achieve competitive performance compared to discriminative and generative baselines, showing the capacity of LMs in unifying SE tasks. The demo page is available here: https://github.com/hyyan2k/UniSE. 5 authors · Oct 23
- Long-Form Speech Generation with Spoken Language Models We consider the generative modeling of speech over multiple minutes, a requirement for long-form multimedia generation and audio-native voice assistants. However, current spoken language models struggle to generate plausible speech past tens of seconds, from high temporal resolution of speech tokens causing loss of coherence, to architectural issues with long-sequence training or extrapolation, to memory costs at inference time. With these considerations we propose SpeechSSM, the first speech language model to learn from and sample long-form spoken audio (e.g., 16 minutes of read or extemporaneous speech) in a single decoding session without text intermediates, based on recent advances in linear-time sequence modeling. Furthermore, to address growing challenges in spoken language evaluation, especially in this new long-form setting, we propose: new embedding-based and LLM-judged metrics; quality measurements over length and time; and a new benchmark for long-form speech processing and generation, LibriSpeech-Long. Speech samples and the dataset are released at https://google.github.io/tacotron/publications/speechssm/ 6 authors · Dec 24, 2024 1
- Exploring WavLM Back-ends for Speech Spoofing and Deepfake Detection This paper describes our submitted systems to the ASVspoof 5 Challenge Track 1: Speech Deepfake Detection - Open Condition, which consists of a stand-alone speech deepfake (bonafide vs spoof) detection task. Recently, large-scale self-supervised models become a standard in Automatic Speech Recognition (ASR) and other speech processing tasks. Thus, we leverage a pre-trained WavLM as a front-end model and pool its representations with different back-end techniques. The complete framework is fine-tuned using only the trained dataset of the challenge, similar to the close condition. Besides, we adopt data-augmentation by adding noise and reverberation using MUSAN noise and RIR datasets. We also experiment with codec augmentations to increase the performance of our method. Ultimately, we use the Bosaris toolkit for score calibration and system fusion to get better Cllr scores. Our fused system achieves 0.0937 minDCF, 3.42% EER, 0.1927 Cllr, and 0.1375 actDCF. 4 authors · Sep 8, 2024
- How do Hyenas deal with Human Speech? Speech Recognition and Translation with ConfHyena The attention mechanism, a cornerstone of state-of-the-art neural models, faces computational hurdles in processing long sequences due to its quadratic complexity. Consequently, research efforts in the last few years focused on finding more efficient alternatives. Among them, Hyena (Poli et al., 2023) stands out for achieving competitive results in both language modeling and image classification, while offering sub-quadratic memory and computational complexity. Building on these promising results, we propose ConfHyena, a Conformer whose encoder self-attentions are replaced with an adaptation of Hyena for speech processing, where the long input sequences cause high computational costs. Through experiments in automatic speech recognition (for English) and translation (from English into 8 target languages), we show that our best ConfHyena model significantly reduces the training time by 27%, at the cost of minimal quality degradation (~1%), which, in most cases, is not statistically significant. 4 authors · Feb 20, 2024
- Mispronunciation detection using self-supervised speech representations In recent years, self-supervised learning (SSL) models have produced promising results in a variety of speech-processing tasks, especially in contexts of data scarcity. In this paper, we study the use of SSL models for the task of mispronunciation detection for second language learners. We compare two downstream approaches: 1) training the model for phone recognition (PR) using native English data, and 2) training a model directly for the target task using non-native English data. We compare the performance of these two approaches for various SSL representations as well as a representation extracted from a traditional DNN-based speech recognition model. We evaluate the models on L2Arctic and EpaDB, two datasets of non-native speech annotated with pronunciation labels at the phone level. Overall, we find that using a downstream model trained for the target task gives the best performance and that most upstream models perform similarly for the task. 3 authors · Jul 30, 2023
- AISHELL-4: An Open Source Dataset for Speech Enhancement, Separation, Recognition and Speaker Diarization in Conference Scenario In this paper, we present AISHELL-4, a sizable real-recorded Mandarin speech dataset collected by 8-channel circular microphone array for speech processing in conference scenario. The dataset consists of 211 recorded meeting sessions, each containing 4 to 8 speakers, with a total length of 120 hours. This dataset aims to bridge the advanced research on multi-speaker processing and the practical application scenario in three aspects. With real recorded meetings, AISHELL-4 provides realistic acoustics and rich natural speech characteristics in conversation such as short pause, speech overlap, quick speaker turn, noise, etc. Meanwhile, accurate transcription and speaker voice activity are provided for each meeting in AISHELL-4. This allows the researchers to explore different aspects in meeting processing, ranging from individual tasks such as speech front-end processing, speech recognition and speaker diarization, to multi-modality modeling and joint optimization of relevant tasks. Given most open source dataset for multi-speaker tasks are in English, AISHELL-4 is the only Mandarin dataset for conversation speech, providing additional value for data diversity in speech community. We also release a PyTorch-based training and evaluation framework as baseline system to promote reproducible research in this field. 13 authors · Apr 8, 2021
- MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement The discrepancy between the cost function used for training a speech enhancement model and human auditory perception usually makes the quality of enhanced speech unsatisfactory. Objective evaluation metrics which consider human perception can hence serve as a bridge to reduce the gap. Our previously proposed MetricGAN was designed to optimize objective metrics by connecting the metric with a discriminator. Because only the scores of the target evaluation functions are needed during training, the metrics can even be non-differentiable. In this study, we propose a MetricGAN+ in which three training techniques incorporating domain-knowledge of speech processing are proposed. With these techniques, experimental results on the VoiceBank-DEMAND dataset show that MetricGAN+ can increase PESQ score by 0.3 compared to the previous MetricGAN and achieve state-of-the-art results (PESQ score = 3.15). 7 authors · Apr 8, 2021
- Open Challenge for Correcting Errors of Speech Recognition Systems The paper announces the new long-term challenge for improving the performance of automatic speech recognition systems. The goal of the challenge is to investigate methods of correcting the recognition results on the basis of previously made errors by the speech processing system. The dataset prepared for the task is described and evaluation criteria are presented. 4 authors · Jan 9, 2020
2 POWSM: A Phonetic Open Whisper-Style Speech Foundation Model Recent advances in spoken language processing have led to substantial progress in phonetic tasks such as automatic speech recognition (ASR), phone recognition (PR), grapheme-to-phoneme conversion (G2P), and phoneme-to-grapheme conversion (P2G). Despite their conceptual similarity, these tasks have largely been studied in isolation, each relying on task-specific architectures and datasets. In this paper, we introduce POWSM (Phonetic Open Whisper-style Speech Model), the first unified framework capable of jointly performing multiple phone-related tasks. POWSM enables seamless conversion between audio, text (graphemes), and phones, opening up new possibilities for universal and low-resource speech processing. Our model outperforms or matches specialized PR models of similar size (Wav2Vec2Phoneme and ZIPA) while jointly supporting G2P, P2G, and ASR. Our training data, code and models are released to foster open science. CMU-LTI · Oct 28 1
10 VITA-Audio: Fast Interleaved Cross-Modal Token Generation for Efficient Large Speech-Language Model With the growing requirement for natural human-computer interaction, speech-based systems receive increasing attention as speech is one of the most common forms of daily communication. However, the existing speech models still experience high latency when generating the first audio token during streaming, which poses a significant bottleneck for deployment. To address this issue, we propose VITA-Audio, an end-to-end large speech model with fast audio-text token generation. Specifically, we introduce a lightweight Multiple Cross-modal Token Prediction (MCTP) module that efficiently generates multiple audio tokens within a single model forward pass, which not only accelerates the inference but also significantly reduces the latency for generating the first audio in streaming scenarios. In addition, a four-stage progressive training strategy is explored to achieve model acceleration with minimal loss of speech quality. To our knowledge, VITA-Audio is the first multi-modal large language model capable of generating audio output during the first forward pass, enabling real-time conversational capabilities with minimal latency. VITA-Audio is fully reproducible and is trained on open-source data only. Experimental results demonstrate that our model achieves an inference speedup of 3~5x at the 7B parameter scale, but also significantly outperforms open-source models of similar model size on multiple benchmarks for automatic speech recognition (ASR), text-to-speech (TTS), and spoken question answering (SQA) tasks. 14 authors · May 6 1
1 Evaluating and reducing the distance between synthetic and real speech distributions While modern Text-to-Speech (TTS) systems can produce speech rated highly in terms of subjective evaluation, the distance between real and synthetic speech distributions remains understudied, where we use the term distribution to mean the sample space of all possible real speech recordings from a given set of speakers; or of the synthetic samples that could be generated for the same set of speakers. We evaluate the distance of real and synthetic speech distributions along the dimensions of the acoustic environment, speaker characteristics and prosody using a range of speech processing measures and the respective Wasserstein distances of their distributions. We reduce these distribution distances along said dimensions by providing utterance-level information derived from the measures to the model and show they can be generated at inference time. The improvements to the dimensions translate to overall distribution distance reduction approximated using Automatic Speech Recognition (ASR) by evaluating the fitness of the synthetic data as training data. 3 authors · Nov 29, 2022
- DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs Denoising diffusion probabilistic models (DDPMs) are expressive generative models that have been used to solve a variety of speech synthesis problems. However, because of their high sampling costs, DDPMs are difficult to use in real-time speech processing applications. In this paper, we introduce DiffGAN-TTS, a novel DDPM-based text-to-speech (TTS) model achieving high-fidelity and efficient speech synthesis. DiffGAN-TTS is based on denoising diffusion generative adversarial networks (GANs), which adopt an adversarially-trained expressive model to approximate the denoising distribution. We show with multi-speaker TTS experiments that DiffGAN-TTS can generate high-fidelity speech samples within only 4 denoising steps. We present an active shallow diffusion mechanism to further speed up inference. A two-stage training scheme is proposed, with a basic TTS acoustic model trained at stage one providing valuable prior information for a DDPM trained at stage two. Our experiments show that DiffGAN-TTS can achieve high synthesis performance with only 1 denoising step. 3 authors · Jan 28, 2022
- A Primer on Neural Network Models for Natural Language Processing Over the past few years, neural networks have re-emerged as powerful machine-learning models, yielding state-of-the-art results in fields such as image recognition and speech processing. More recently, neural network models started to be applied also to textual natural language signals, again with very promising results. This tutorial surveys neural network models from the perspective of natural language processing research, in an attempt to bring natural-language researchers up to speed with the neural techniques. The tutorial covers input encoding for natural language tasks, feed-forward networks, convolutional networks, recurrent networks and recursive networks, as well as the computation graph abstraction for automatic gradient computation. 1 authors · Oct 2, 2015
- How do Multimodal Foundation Models Encode Text and Speech? An Analysis of Cross-Lingual and Cross-Modal Representations Multimodal foundation models aim to create a unified representation space that abstracts away from surface features like language syntax or modality differences. To investigate this, we study the internal representations of three recent models, analyzing the model activations from semantically equivalent sentences across languages in the text and speech modalities. Our findings reveal that: 1) Cross-modal representations converge over model layers, except in the initial layers specialized at text and speech processing. 2) Length adaptation is crucial for reducing the cross-modal gap between text and speech, although current approaches' effectiveness is primarily limited to high-resource languages. 3) Speech exhibits larger cross-lingual differences than text. 4) For models not explicitly trained for modality-agnostic representations, the modality gap is more prominent than the language gap. 4 authors · Nov 26, 2024 3
- FunCodec: A Fundamental, Reproducible and Integrable Open-source Toolkit for Neural Speech Codec This paper presents FunCodec, a fundamental neural speech codec toolkit, which is an extension of the open-source speech processing toolkit FunASR. FunCodec provides reproducible training recipes and inference scripts for the latest neural speech codec models, such as SoundStream and Encodec. Thanks to the unified design with FunASR, FunCodec can be easily integrated into downstream tasks, such as speech recognition. Along with FunCodec, pre-trained models are also provided, which can be used for academic or generalized purposes. Based on the toolkit, we further propose the frequency-domain codec models, FreqCodec, which can achieve comparable speech quality with much lower computation and parameter complexity. Experimental results show that, under the same compression ratio, FunCodec can achieve better reconstruction quality compared with other toolkits and released models. We also demonstrate that the pre-trained models are suitable for downstream tasks, including automatic speech recognition and personalized text-to-speech synthesis. This toolkit is publicly available at https://github.com/alibaba-damo-academy/FunCodec. 4 authors · Sep 13, 2023
8 A Suite for Acoustic Language Model Evaluation Speech language models have recently demonstrated great potential as universal speech processing systems. Such models have the ability to model the rich acoustic information existing in audio signals, beyond spoken content, such as emotion, background noise, etc. Despite this, evaluation benchmarks which evaluate awareness to a wide range of acoustic aspects, are lacking. To help bridge this gap, we introduce SALMon, a novel evaluation suite encompassing background noise, emotion, speaker identity and room impulse response. The proposed benchmarks both evaluate the consistency of the inspected element and how much it matches the spoken text. We follow a modelling based approach, measuring whether a model gives correct samples higher scores than incorrect ones. This approach makes the benchmark fast to compute even for large models. We evaluated several speech language models on SALMon, thus highlighting the strengths and weaknesses of each evaluated method. Code and data are publicly available at https://pages.cs.huji.ac.il/adiyoss-lab/salmon/ . 3 authors · Sep 11, 2024
- How Does a Deep Neural Network Look at Lexical Stress? Despite their success in speech processing, neural networks often operate as black boxes, prompting the question: what informs their decisions, and how can we interpret them? This work examines this issue in the context of lexical stress. A dataset of English disyllabic words was automatically constructed from read and spontaneous speech. Several Convolutional Neural Network (CNN) architectures were trained to predict stress position from a spectrographic representation of disyllabic words lacking minimal stress pairs (e.g., initial stress WAllet, final stress exTEND), achieving up to 92% accuracy on held-out test data. Layerwise Relevance Propagation (LRP), a technique for CNN interpretability analysis, revealed that predictions for held-out minimal pairs (PROtest vs. proTEST ) were most strongly influenced by information in stressed versus unstressed syllables, particularly the spectral properties of stressed vowels. However, the classifiers also attended to information throughout the word. A feature-specific relevance analysis is proposed, and its results suggest that our best-performing classifier is strongly influenced by the stressed vowel's first and second formants, with some evidence that its pitch and third formant also contribute. These results reveal deep learning's ability to acquire distributed cues to stress from naturally occurring data, extending traditional phonetic work based around highly controlled stimuli. 8 authors · Aug 10
- ESPnet-SLU: Advancing Spoken Language Understanding through ESPnet As Automatic Speech Processing (ASR) systems are getting better, there is an increasing interest of using the ASR output to do downstream Natural Language Processing (NLP) tasks. However, there are few open source toolkits that can be used to generate reproducible results on different Spoken Language Understanding (SLU) benchmarks. Hence, there is a need to build an open source standard that can be used to have a faster start into SLU research. We present ESPnet-SLU, which is designed for quick development of spoken language understanding in a single framework. ESPnet-SLU is a project inside end-to-end speech processing toolkit, ESPnet, which is a widely used open-source standard for various speech processing tasks like ASR, Text to Speech (TTS) and Speech Translation (ST). We enhance the toolkit to provide implementations for various SLU benchmarks that enable researchers to seamlessly mix-and-match different ASR and NLU models. We also provide pretrained models with intensively tuned hyper-parameters that can match or even outperform the current state-of-the-art performances. The toolkit is publicly available at https://github.com/espnet/espnet. 13 authors · Nov 29, 2021
102 Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics. Lychee Team · Nov 16 3
- Voice2Series: Reprogramming Acoustic Models for Time Series Classification Learning to classify time series with limited data is a practical yet challenging problem. Current methods are primarily based on hand-designed feature extraction rules or domain-specific data augmentation. Motivated by the advances in deep speech processing models and the fact that voice data are univariate temporal signals, in this paper, we propose Voice2Series (V2S), a novel end-to-end approach that reprograms acoustic models for time series classification, through input transformation learning and output label mapping. Leveraging the representation learning power of a large-scale pre-trained speech processing model, on 30 different time series tasks we show that V2S performs competitive results on 19 time series classification tasks. We further provide a theoretical justification of V2S by proving its population risk is upper bounded by the source risk and a Wasserstein distance accounting for feature alignment via reprogramming. Our results offer new and effective means to time series classification. 3 authors · Jun 17, 2021
40 EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions GPT-4o, an omni-modal model that enables vocal conversations with diverse emotions and tones, marks a milestone for omni-modal foundation models. However, empowering Large Language Models to perceive and generate images, texts, and speeches end-to-end with publicly available data remains challenging in the open-source community. Existing vision-language models rely on external tools for the speech processing, while speech-language models still suffer from limited or even without vision-understanding abilities. To address this gap, we propose EMOVA (EMotionally Omni-present Voice Assistant), to enable Large Language Models with end-to-end speech capabilities while maintaining the leading vision-language performance. With a semantic-acoustic disentangled speech tokenizer, we notice surprisingly that omni-modal alignment can further enhance vision-language and speech abilities compared with the corresponding bi-modal aligned counterparts. Moreover, a lightweight style module is proposed for flexible speech style controls (e.g., emotions and pitches). For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks, and meanwhile, supporting omni-modal spoken dialogue with vivid emotions. 30 authors · Sep 26, 2024 13
8 Attention Is Not Always the Answer: Optimizing Voice Activity Detection with Simple Feature Fusion Voice Activity Detection (VAD) plays a key role in speech processing, often utilizing hand-crafted or neural features. This study examines the effectiveness of Mel-Frequency Cepstral Coefficients (MFCCs) and pre-trained model (PTM) features, including wav2vec 2.0, HuBERT, WavLM, UniSpeech, MMS, and Whisper. We propose FusionVAD, a unified framework that combines both feature types using three fusion strategies: concatenation, addition, and cross-attention (CA). Experimental results reveal that simple fusion techniques, particularly addition, outperform CA in both accuracy and efficiency. Fusion-based models consistently surpass single-feature models, highlighting the complementary nature of MFCCs and PTM features. Notably, our best-performing fusion model exceeds the state-of-the-art Pyannote across multiple datasets, achieving an absolute average improvement of 2.04%. These results confirm that simple feature fusion enhances VAD robustness while maintaining computational efficiency. 3 authors · Jun 2
2 Finite Scalar Quantization Enables Redundant and Transmission-Robust Neural Audio Compression at Low Bit-rates Neural Audio Codecs (NACs) have become increasingly adopted in speech processing tasks due to their excellent rate-distortion performance and compatibility with Large Language Models (LLMs) as discrete feature representations for audio generation. While most existing codecs rely on Residual Vector Quantization (RVQ), Finite Scalar Quantization (FSQ) has recently emerged as a compelling alternative that simplifies training and natively supports single codebooks. We introduce NeuCodec, an FSQ-based NAC, and show that FSQ encodes baked-in redundancy which produces an encoding which is robust when transmitted through noisy channels. First, through an encoder distillation experiment, we show that two different encoders can learn to encode identical audio into vastly different code sequences whilst maintaining comparable reconstruction quality with the same quantizer and decoder. Second, we demonstrate that FSQ has vastly superior bit-level perturbation robustness by comparing the performance of RVQ and FSQ codecs when simulating the transmission of code sequences through a noisy channel. 5 authors · Sep 11
2 LLM-Powered Grapheme-to-Phoneme Conversion: Benchmark and Case Study Grapheme-to-phoneme (G2P) conversion is critical in speech processing, particularly for applications like speech synthesis. G2P systems must possess linguistic understanding and contextual awareness of languages with polyphone words and context-dependent phonemes. Large language models (LLMs) have recently demonstrated significant potential in various language tasks, suggesting that their phonetic knowledge could be leveraged for G2P. In this paper, we evaluate the performance of LLMs in G2P conversion and introduce prompting and post-processing methods that enhance LLM outputs without additional training or labeled data. We also present a benchmarking dataset designed to assess G2P performance on sentence-level phonetic challenges of the Persian language. Our results show that by applying the proposed methods, LLMs can outperform traditional G2P tools, even in an underrepresented language like Persian, highlighting the potential of developing LLM-aided G2P systems. 3 authors · Sep 13, 2024 1
2 SeqXGPT: Sentence-Level AI-Generated Text Detection Widely applied large language models (LLMs) can generate human-like content, raising concerns about the abuse of LLMs. Therefore, it is important to build strong AI-generated text (AIGT) detectors. Current works only consider document-level AIGT detection, therefore, in this paper, we first introduce a sentence-level detection challenge by synthesizing a dataset that contains documents that are polished with LLMs, that is, the documents contain sentences written by humans and sentences modified by LLMs. Then we propose Sequence X (Check) GPT, a novel method that utilizes log probability lists from white-box LLMs as features for sentence-level AIGT detection. These features are composed like waves in speech processing and cannot be studied by LLMs. Therefore, we build SeqXGPT based on convolution and self-attention networks. We test it in both sentence and document-level detection challenges. Experimental results show that previous methods struggle in solving sentence-level AIGT detection, while our method not only significantly surpasses baseline methods in both sentence and document-level detection challenges but also exhibits strong generalization capabilities. 6 authors · Oct 13, 2023
1 Semi-Autoregressive Streaming ASR With Label Context Non-autoregressive (NAR) modeling has gained significant interest in speech processing since these models achieve dramatically lower inference time than autoregressive (AR) models while also achieving good transcription accuracy. Since NAR automatic speech recognition (ASR) models must wait for the completion of the entire utterance before processing, some works explore streaming NAR models based on blockwise attention for low-latency applications. However, streaming NAR models significantly lag in accuracy compared to streaming AR and non-streaming NAR models. To address this, we propose a streaming "semi-autoregressive" ASR model that incorporates the labels emitted in previous blocks as additional context using a Language Model (LM) subnetwork. We also introduce a novel greedy decoding algorithm that addresses insertion and deletion errors near block boundaries while not significantly increasing the inference time. Experiments show that our method outperforms the existing streaming NAR model by 19% relative on Tedlium2, 16%/8% on Librispeech-100 clean/other test sets, and 19%/8% on the Switchboard(SWB) / Callhome(CH) test sets. It also reduced the accuracy gap with streaming AR and non-streaming NAR models while achieving 2.5x lower latency. We also demonstrate that our approach can effectively utilize external text data to pre-train the LM subnetwork to further improve streaming ASR accuracy. 4 authors · Sep 19, 2023
1 Exploration on HuBERT with Multiple Resolutions Hidden-unit BERT (HuBERT) is a widely-used self-supervised learning (SSL) model in speech processing. However, we argue that its fixed 20ms resolution for hidden representations would not be optimal for various speech-processing tasks since their attributes (e.g., speaker characteristics and semantics) are based on different time scales. To address this limitation, we propose utilizing HuBERT representations at multiple resolutions for downstream tasks. We explore two approaches, namely the parallel and hierarchical approaches, for integrating HuBERT features with different resolutions. Through experiments, we demonstrate that HuBERT with multiple resolutions outperforms the original model. This highlights the potential of utilizing multiple resolutions in SSL models like HuBERT to capture diverse information from speech signals. 6 authors · Jun 1, 2023
1 Analysis of Data Augmentation Methods for Low-Resource Maltese ASR Recent years have seen an increased interest in the computational speech processing of Maltese, but resources remain sparse. In this paper, we consider data augmentation techniques for improving speech recognition for low-resource languages, focusing on Maltese as a test case. We consider three different types of data augmentation: unsupervised training, multilingual training and the use of synthesized speech as training data. The goal is to determine which of these techniques, or combination of them, is the most effective to improve speech recognition for languages where the starting point is a small corpus of approximately 7 hours of transcribed speech. Our results show that combining the data augmentation techniques studied here lead us to an absolute WER improvement of 15% without the use of a language model. 6 authors · Nov 15, 2021
- LibriConvo: Simulating Conversations from Read Literature for ASR and Diarization We introduce LibriConvo, a simulated multi-speaker conversational dataset based on speaker-aware conversation simulation (SASC), designed to support training and evaluation of speaker diarization and automatic speech recognition (ASR) systems. Unlike prior resources that mostly rely on semantically disconnected utterances and implausible temporal gaps, LibriConvo ensures semantic coherence and realistic conversational timing. Our pipeline leverages CallHome with external VAD for reliable boundaries, applies compression to reduce unnaturally long silences, and organizes LibriTTS utterances by book to maintain contextual consistency. Acoustic realism is enhanced via a novel room impulse response selection procedure that ranks speaker-microphone configurations by spatial plausibility, balancing realism and diversity. The dataset comprises 240.1 hours across 1,496 dialogues with 830 unique speakers, split in a speaker-disjoint manner for robust evaluation. Baselines show that the sortformer model outperforms the pyannote pipeline in diarization, while a fine-tuned Fast Conformer-CTC XLarge with Serialized Output Training achieves 7.29\% WER for ASR, surpassing zero-shot Whisper-large-v3. LibriConvo provides a valuable resource for advancing multi-speaker speech processing research with realistic conversational dynamics and controlled experimental conditions. 2 authors · Oct 27
- Contrastive Learning for Task-Independent SpeechLLM-Pretraining Large language models (LLMs) excel in natural language processing but adapting these LLMs to speech processing tasks efficiently is not straightforward. Direct task-specific fine-tuning is limited by overfitting risks, data requirements, and computational costs. To address these challenges, we propose a scalable, two-stage training approach: (1) A task-independent speech pretraining stage using contrastive learning to align text and speech representations over all layers, followed by (2) a task-specific fine-tuning stage requiring minimal data. This approach outperforms traditional ASR pretraining and enables the model to surpass models specialized on speech translation and question answering while being trained on only 10% of the task-specific data. 2 authors · Dec 20, 2024
- Noise-Robust DSP-Assisted Neural Pitch Estimation with Very Low Complexity Pitch estimation is an essential step of many speech processing algorithms, including speech coding, synthesis, and enhancement. Recently, pitch estimators based on deep neural networks (DNNs) have have been outperforming well-established DSP-based techniques. Unfortunately, these new estimators can be impractical to deploy in real-time systems, both because of their relatively high complexity, and the fact that some require significant lookahead. We show that a hybrid estimator using a small deep neural network (DNN) with traditional DSP-based features can match or exceed the performance of pure DNN-based models, with a complexity and algorithmic delay comparable to traditional DSP-based algorithms. We further demonstrate that this hybrid approach can provide benefits for a neural vocoding task. 5 authors · Sep 25, 2023
- An open-source voice type classifier for child-centered daylong recordings Spontaneous conversations in real-world settings such as those found in child-centered recordings have been shown to be amongst the most challenging audio files to process. Nevertheless, building speech processing models handling such a wide variety of conditions would be particularly useful for language acquisition studies in which researchers are interested in the quantity and quality of the speech that children hear and produce, as well as for early diagnosis and measuring effects of remediation. In this paper, we present our approach to designing an open-source neural network to classify audio segments into vocalizations produced by the child wearing the recording device, vocalizations produced by other children, adult male speech, and adult female speech. To this end, we gathered diverse child-centered corpora which sums up to a total of 260 hours of recordings and covers 10 languages. Our model can be used as input for downstream tasks such as estimating the number of words produced by adult speakers, or the number of linguistic units produced by children. Our architecture combines SincNet filters with a stack of recurrent layers and outperforms by a large margin the state-of-the-art system, the Language ENvironment Analysis (LENA) that has been used in numerous child language studies. 5 authors · May 26, 2020
1 XLSR-Mamba: A Dual-Column Bidirectional State Space Model for Spoofing Attack Detection Transformers and their variants have achieved great success in speech processing. However, their multi-head self-attention mechanism is computationally expensive. Therefore, one novel selective state space model, Mamba, has been proposed as an alternative. Building on its success in automatic speech recognition, we apply Mamba for spoofing attack detection. Mamba is well-suited for this task as it can capture the artifacts in spoofed speech signals by handling long-length sequences. However, Mamba's performance may suffer when it is trained with limited labeled data. To mitigate this, we propose combining a new structure of Mamba based on a dual-column architecture with self-supervised learning, using the pre-trained wav2vec 2.0 model. The experiments show that our proposed approach achieves competitive results and faster inference on the ASVspoof 2021 LA and DF datasets, and on the more challenging In-the-Wild dataset, it emerges as the strongest candidate for spoofing attack detection. The code has been publicly released in https://github.com/swagshaw/XLSR-Mamba. 2 authors · Nov 15, 2024
7 mHuBERT-147: A Compact Multilingual HuBERT Model We present mHuBERT-147, the first general-purpose massively multilingual HuBERT speech representation model trained on 90K hours of clean, open-license data. To scale up the multi-iteration HuBERT approach, we use faiss-based clustering, achieving 5.2x faster label assignment over the original method. We also apply a new multilingual batching up-sampling strategy, leveraging both language and dataset diversity. After 3 training iterations and with only 95M parameters, mHuBERT-147 outperforms larger models trained on substantially more data. We rank second and first on the ML-SUPERB 10min/1h leaderboards respectively, with SOTA scores for all LID tasks. Across ASR/LID tasks, our model consistently surpasses XLS-R (300M params; 436K hours) and demonstrates strong competitiveness against the much larger MMS (1B params; 491K hours). Our findings suggest that mHuBERT-147 is a promising model for multilingual speech processing tasks, offering an unprecedented balance between high performance and parameter efficiency. 5 authors · Jun 10, 2024
- Benchmarking Arabic AI with Large Language Models With large Foundation Models (FMs), language technologies (AI in general) are entering a new paradigm: eliminating the need for developing large-scale task-specific datasets and supporting a variety of tasks through set-ups ranging from zero-shot to few-shot learning. However, understanding FMs capabilities requires a systematic benchmarking effort by comparing FMs performance with the state-of-the-art (SOTA) task-specific models. With that goal, past work focused on the English language and included a few efforts with multiple languages. Our study contributes to ongoing research by evaluating FMs performance for standard Arabic NLP and Speech processing, including a range of tasks from sequence tagging to content classification across diverse domains. We start with zero-shot learning using GPT-3.5-turbo, Whisper, and USM, addressing 33 unique tasks using 59 publicly available datasets resulting in 96 test setups. For a few tasks, FMs performs on par or exceeds the performance of the SOTA models but for the majority it under-performs. Given the importance of prompt for the FMs performance, we discuss our prompt strategies in detail and elaborate on our findings. Our future work on Arabic AI will explore few-shot prompting, expand the range of tasks, and investigate additional open-source models. 16 authors · May 24, 2023
- TGAVC: Improving Autoencoder Voice Conversion with Text-Guided and Adversarial Training Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Recently, AutoVC, a conditional autoencoder based method, achieved excellent conversion results by disentangling the speaker identity and the speech content using information-constraining bottlenecks. However, due to the pure autoencoder training method, it is difficult to evaluate the separation effect of content and speaker identity. In this paper, a novel voice conversion framework, named boldsymbol Text boldsymbol Guided boldsymbol AutoVC(TGAVC), is proposed to more effectively separate content and timbre from speech, where an expected content embedding produced based on the text transcriptions is designed to guide the extraction of voice content. In addition, the adversarial training is applied to eliminate the speaker identity information in the estimated content embedding extracted from speech. Under the guidance of the expected content embedding and the adversarial training, the content encoder is trained to extract speaker-independent content embedding from speech. Experiments on AIShell-3 dataset show that the proposed model outperforms AutoVC in terms of naturalness and similarity of converted speech. 7 authors · Aug 8, 2022
- Recent Developments on ESPnet Toolkit Boosted by Conformer In this study, we present recent developments on ESPnet: End-to-End Speech Processing toolkit, which mainly involves a recently proposed architecture called Conformer, Convolution-augmented Transformer. This paper shows the results for a wide range of end-to-end speech processing applications, such as automatic speech recognition (ASR), speech translations (ST), speech separation (SS) and text-to-speech (TTS). Our experiments reveal various training tips and significant performance benefits obtained with the Conformer on different tasks. These results are competitive or even outperform the current state-of-art Transformer models. We are preparing to release all-in-one recipes using open source and publicly available corpora for all the above tasks with pre-trained models. Our aim for this work is to contribute to our research community by reducing the burden of preparing state-of-the-art research environments usually requiring high resources. 15 authors · Oct 26, 2020