Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Hybrid Task-Oriented Dialog System with Domain and Task Adaptive Pretraining
This paper describes our submission for the End-to-end Multi-domain Task Completion Dialog shared task at the 9th Dialog System Technology Challenge (DSTC-9). Participants in the shared task build an end-to-end task completion dialog system which is evaluated by human evaluation and a user simulator based automatic evaluation. Different from traditional pipelined approaches where modules are optimized individually and suffer from cascading failure, we propose an end-to-end dialog system that 1) uses Generative Pretraining 2 (GPT-2) as the backbone to jointly solve Natural Language Understanding, Dialog State Tracking, and Natural Language Generation tasks, 2) adopts Domain and Task Adaptive Pretraining to tailor GPT-2 to the dialog domain before finetuning, 3) utilizes heuristic pre/post-processing rules that greatly simplify the prediction tasks and improve generalizability, and 4) equips a fault tolerance module to correct errors and inappropriate responses. Our proposed method significantly outperforms baselines and ties for first place in the official evaluation. We make our source code publicly available.
ToolSandbox: A Stateful, Conversational, Interactive Evaluation Benchmark for LLM Tool Use Capabilities
Recent large language models (LLMs) advancements sparked a growing research interest in tool assisted LLMs solving real-world challenges, which calls for comprehensive evaluation of tool-use capabilities. While previous works focused on either evaluating over stateless web services (RESTful API), based on a single turn user prompt, or an off-policy dialog trajectory, ToolSandbox includes stateful tool execution, implicit state dependencies between tools, a built-in user simulator supporting on-policy conversational evaluation and a dynamic evaluation strategy for intermediate and final milestones over an arbitrary trajectory. We show that open source and proprietary models have a significant performance gap, and complex tasks like State Dependency, Canonicalization and Insufficient Information defined in ToolSandbox are challenging even the most capable SOTA LLMs, providing brand-new insights into tool-use LLM capabilities. ToolSandbox evaluation framework is released at https://github.com/apple/ToolSandbox
SimulatorArena: Are User Simulators Reliable Proxies for Multi-Turn Evaluation of AI Assistants?
Large language models (LLMs) are increasingly used in interactive applications, and human evaluation remains the gold standard for assessing their performance in multi-turn conversations. Since human studies are costly, time-consuming, and hard to reproduce, recent work explores using LLMs to simulate users for automatic assistant evaluation. However, there is no benchmark or systematic study to evaluate whether these simulated users are reliable stand-ins for real users. To address this, we introduce SimulatorArena, a benchmark of 909 annotated human-LLM conversations on two interactive tasks -- math tutoring and document creation. SimulatorArena evaluates simulators based on how closely their messages match human behavior and how well their assistant ratings align with human judgments. Experiments on various simulator methods show that simulators conditioned on user profiles, capturing traits like background and message styles, align closely with human judgments. They reach Spearman's rho of 0.7 on both tasks, providing a practical, scalable alternative to human evaluation. Using the best simulator for each task, we benchmark 18 assistants, including the latest LLMs such as GPT-5, Claude 4.1 Opus, and Gemini 2.5 Pro.
KAUCUS: Knowledge Augmented User Simulators for Training Language Model Assistants
An effective multi-turn instruction-following assistant can be developed by creating a simulator that can generate useful interaction data. Apart from relying on its intrinsic weights, an ideal user simulator should also be able to bootstrap external knowledge rapidly in its raw form to simulate the multifarious diversity of text available over the internet. Previous user simulators generally lacked diversity, were mostly closed domain, and necessitated rigid schema making them inefficient to rapidly scale to incorporate external knowledge. In this regard, we introduce, Kaucus, a Knowledge-Augmented User Simulator framework, to outline a process of creating diverse user simulators, that can seamlessly exploit external knowledge as well as benefit downstream assistant model training. Through two GPT-J based simulators viz., a Retrieval Augmented Simulator and a Summary Controlled Simulator we generate diverse simulator-assistant interactions. Through reward and preference model-based evaluations, we find that these interactions serve as useful training data and create more helpful downstream assistants. We also find that incorporating knowledge through retrieval augmentation or summary control helps create better assistants.
Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles
User simulators are crucial for replicating human interactions with dialogue systems, supporting both collaborative training and automatic evaluation, especially for large language models (LLMs). However, existing simulators often rely solely on text utterances, missing implicit user traits such as personality, speaking style, and goals. In contrast, persona-based methods lack generalizability, as they depend on predefined profiles of famous individuals or archetypes. To address these challenges, we propose User Simulator with implicit Profiles (USP), a framework that infers implicit user profiles from human-machine conversations and uses them to generate more personalized and realistic dialogues. We first develop an LLM-driven extractor with a comprehensive profile schema. Then, we refine the simulation through conditional supervised fine-tuning and reinforcement learning with cycle consistency, optimizing it at both the utterance and conversation levels. Finally, we adopt a diverse profile sampler to capture the distribution of real-world user profiles. Experimental results demonstrate that USP outperforms strong baselines in terms of authenticity and diversity while achieving comparable performance in consistency. Furthermore, dynamic multi-turn evaluations based on USP strongly align with mainstream benchmarks, demonstrating its effectiveness in real-world applications.
Goal Alignment in LLM-Based User Simulators for Conversational AI
User simulators are essential to conversational AI, enabling scalable agent development and evaluation through simulated interactions. While current Large Language Models (LLMs) have advanced user simulation capabilities, we reveal that they struggle to consistently demonstrate goal-oriented behavior across multi-turn conversations--a critical limitation that compromises their reliability in downstream applications. We introduce User Goal State Tracking (UGST), a novel framework that tracks user goal progression throughout conversations. Leveraging UGST, we present a three-stage methodology for developing user simulators that can autonomously track goal progression and reason to generate goal-aligned responses. Moreover, we establish comprehensive evaluation metrics for measuring goal alignment in user simulators, and demonstrate that our approach yields substantial improvements across two benchmarks (MultiWOZ 2.4 and {\tau}-Bench). Our contributions address a critical gap in conversational AI and establish UGST as an essential framework for developing goal-aligned user simulators.
Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs), which rely on natural language conversations to satisfy user needs. In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol. It might over-emphasize the matching with the ground-truth items or utterances generated by human annotators, while neglecting the interactive nature of being a capable CRS. To overcome the limitation, we further propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators. Our evaluation approach can simulate various interaction scenarios between users and systems. Through the experiments on two publicly available CRS datasets, we demonstrate notable improvements compared to the prevailing evaluation protocol. Furthermore, we emphasize the evaluation of explainability, and ChatGPT showcases persuasive explanation generation for its recommendations. Our study contributes to a deeper comprehension of the untapped potential of LLMs for CRSs and provides a more flexible and easy-to-use evaluation framework for future research endeavors. The codes and data are publicly available at https://github.com/RUCAIBox/iEvaLM-CRS.
BIRD-INTERACT: Re-imagining Text-to-SQL Evaluation for Large Language Models via Lens of Dynamic Interactions
Large language models (LLMs) have demonstrated remarkable performance on single-turn text-to-SQL tasks, but real-world database applications predominantly require multi-turn interactions to handle ambiguous queries, execution errors, and evolving user requirements. Existing multi-turn benchmarks fall short by treating conversation histories as static context or limiting evaluation to read-only operations, failing to reflect production-grade database assistant challenges. We introduce BIRD-INTERACT, a benchmark that restores this realism through: (1) a comprehensive interaction environment coupling each database with a hierarchical knowledge base, metadata files, and a function-driven user simulator, enabling models to solicit clarifications, retrieve knowledge, and recover from errors without human supervision; (2) two evaluation settings consisting of a pre-defined conversational protocol (c-Interact) and an open-ended agentic setting (a-Interact) where models autonomously decide when to query the user simulator or explore the environment; (3) a challenging task suite covering the full CRUD spectrum for business-intelligence and operational use cases, guarded by executable test cases. Each task features ambiguous and follow-up sub-tasks requiring dynamic interaction. The suite comprises BIRD-INTERACT-FULL (600 tasks, up to 11,796 interactions) for comprehensive performance assessment, and BIRD-INTERACT-LITE (300 tasks with simplified databases) for detailed behavioral analysis and rapid method development. Our empirical results highlight BIRD-INTERACT's difficulty: GPT-5 completes only 8.67% of tasks in c-Interact and 17.00% in a-Interact. Analysis via memory grafting and Interaction Test-time Scaling validates the importance of effective interaction for complex, dynamic text-to-SQL tasks.
ConvLab-3: A Flexible Dialogue System Toolkit Based on a Unified Data Format
Task-oriented dialogue (TOD) systems function as digital assistants, guiding users through various tasks such as booking flights or finding restaurants. Existing toolkits for building TOD systems often fall short of in delivering comprehensive arrays of data, models, and experimental environments with a user-friendly experience. We introduce ConvLab-3: a multifaceted dialogue system toolkit crafted to bridge this gap. Our unified data format simplifies the integration of diverse datasets and models, significantly reducing complexity and cost for studying generalization and transfer. Enhanced with robust reinforcement learning (RL) tools, featuring a streamlined training process, in-depth evaluation tools, and a selection of user simulators, ConvLab-3 supports the rapid development and evaluation of robust dialogue policies. Through an extensive study, we demonstrate the efficacy of transfer learning and RL and showcase that ConvLab-3 is not only a powerful tool for seasoned researchers but also an accessible platform for newcomers.
GS-LTS: 3D Gaussian Splatting-Based Adaptive Modeling for Long-Term Service Robots
3D Gaussian Splatting (3DGS) has garnered significant attention in robotics for its explicit, high fidelity dense scene representation, demonstrating strong potential for robotic applications. However, 3DGS-based methods in robotics primarily focus on static scenes, with limited attention to the dynamic scene changes essential for long-term service robots. These robots demand sustained task execution and efficient scene updates-challenges current approaches fail to meet. To address these limitations, we propose GS-LTS (Gaussian Splatting for Long-Term Service), a 3DGS-based system enabling indoor robots to manage diverse tasks in dynamic environments over time. GS-LTS detects scene changes (e.g., object addition or removal) via single-image change detection, employs a rule-based policy to autonomously collect multi-view observations, and efficiently updates the scene representation through Gaussian editing. Additionally, we propose a simulation-based benchmark that automatically generates scene change data as compact configuration scripts, providing a standardized, user-friendly evaluation benchmark. Experimental results demonstrate GS-LTS's advantages in reconstruction, navigation, and superior scene updates-faster and higher quality than the image training baseline-advancing 3DGS for long-term robotic operations. Code and benchmark are available at: https://vipl-vsu.github.io/3DGS-LTS.
Simulating User Agents for Embodied Conversational-AI
Embodied agents designed to assist users with tasks must engage in natural language interactions, interpret instructions, execute actions, and communicate effectively to resolve issues. However, collecting large-scale, diverse datasets of situated human-robot dialogues to train and evaluate such agents is expensive, labor-intensive, and time-consuming. To address this challenge, we propose building a large language model (LLM)-based user agent that can simulate user behavior during interactions with an embodied agent in a virtual environment. Given a user goal (e.g., make breakfast), at each time step, the user agent may observe" the robot actions or speak" to either intervene with the robot or answer questions. Such a user agent assists in improving the scalability and efficiency of embodied dialogues dataset generation and is critical for enhancing and evaluating the robot's interaction and task completion ability, as well as for research in reinforcement learning using AI feedback. We evaluate our user agent's ability to generate human-like behaviors by comparing its simulated dialogues with the TEACh dataset. We perform three experiments: zero-shot prompting to predict dialogue acts, few-shot prompting, and fine-tuning on the TEACh training subset. Results show the LLM-based user agent achieves an F-measure of 42% with zero-shot prompting and 43.4% with few-shot prompting in mimicking human speaking behavior. Through fine-tuning, performance in deciding when to speak remained stable, while deciding what to say improved from 51.1% to 62.5%. These findings showcase the feasibility of the proposed approach for assessing and enhancing the effectiveness of robot task completion through natural language communication.
ClarifyGPT: Empowering LLM-based Code Generation with Intention Clarification
We introduce a novel framework named ClarifyGPT, which aims to enhance code generation by empowering LLMs with the ability to identify ambiguous requirements and ask targeted clarifying questions. In particular, ClarifyGPT first detects whether a given requirement is ambiguous by performing a code consistency check. If it is ambiguous, ClarifyGPT prompts an LLM to generate targeted clarifying questions. After receiving question responses, ClarifyGPT refines the ambiguous requirement and inputs it into the same LLM to generate a final code solution. To evaluate our ClarifyGPT, we first conduct a human evaluation involving ten participants who use ClarifyGPT for code generation on two publicly available benchmarks: MBPP-sanitized and MBPP-ET. The results show that ClarifyGPT elevates the performance (Pass@1) of GPT-4 from 70.96% to 80.80% on MBPP-sanitized. Furthermore, to perform large-scale automated evaluations of ClarifyGPT across different LLMs and benchmarks without requiring user participation, we introduce a high-fidelity simulation method to simulate user responses. The automated evaluation results also demonstrate that ClarifyGPT can significantly enhance code generation performance compared to the baselines. In particular, ClarifyGPT improves the average performance of GPT-4 and ChatGPT across four benchmarks from 68.02% to 75.75% and from 58.55% to 67.22%, respectively. We believe that ClarifyGPT can effectively facilitate the practical application of LLMs in real-world development environments.
Sketch2Code: Evaluating Vision-Language Models for Interactive Web Design Prototyping
Sketches are a natural and accessible medium for UI designers to conceptualize early-stage ideas. However, existing research on UI/UX automation often requires high-fidelity inputs like Figma designs or detailed screenshots, limiting accessibility and impeding efficient design iteration. To bridge this gap, we introduce Sketch2Code, a benchmark that evaluates state-of-the-art Vision Language Models (VLMs) on automating the conversion of rudimentary sketches into webpage prototypes. Beyond end-to-end benchmarking, Sketch2Code supports interactive agent evaluation that mimics real-world design workflows, where a VLM-based agent iteratively refines its generations by communicating with a simulated user, either passively receiving feedback instructions or proactively asking clarification questions. We comprehensively analyze ten commercial and open-source models, showing that Sketch2Code is challenging for existing VLMs; even the most capable models struggle to accurately interpret sketches and formulate effective questions that lead to steady improvement. Nevertheless, a user study with UI/UX experts reveals a significant preference for proactive question-asking over passive feedback reception, highlighting the need to develop more effective paradigms for multi-turn conversational agents.
Who's Asking? Simulating Role-Based Questions for Conversational AI Evaluation
Language model users often embed personal and social context in their questions. The asker's role -- implicit in how the question is framed -- creates specific needs for an appropriate response. However, most evaluations, while capturing the model's capability to respond, often ignore who is asking. This gap is especially critical in stigmatized domains such as opioid use disorder (OUD), where accounting for users' contexts is essential to provide accessible, stigma-free responses. We propose CoRUS (COmmunity-driven Roles for User-centric Question Simulation), a framework for simulating role-based questions. Drawing on role theory and posts from an online OUD recovery community (r/OpiatesRecovery), we first build a taxonomy of asker roles -- patients, caregivers, practitioners. Next, we use it to simulate 15,321 questions that embed each role's goals, behaviors, and experiences. Our evaluations show that these questions are both highly believable and comparable to real-world data. When used to evaluate five LLMs, for the same question but differing roles, we find systematic differences: vulnerable roles, such as patients and caregivers, elicit more supportive responses (+17%) and reduced knowledge content (-19%) in comparison to practitioners. Our work demonstrates how implicitly signaling a user's role shapes model responses, and provides a methodology for role-informed evaluation of conversational AI.
Federated Learning-based Semantic Segmentation for Lane and Object Detection in Autonomous Driving
Autonomous Vehicles (AVs) require precise lane and object detection to ensure safe navigation. However, centralized deep learning (DL) approaches for semantic segmentation raise privacy and scalability challenges, particularly when handling sensitive data. This research presents a new federated learning (FL) framework that integrates secure deep Convolutional Neural Networks (CNNs) and Differential Privacy (DP) to address these issues. The core contribution of this work involves: (1) developing a new hybrid UNet-ResNet34 architecture for centralized semantic segmentation to achieve high accuracy and tackle privacy concerns due to centralized training, and (2) implementing the privacy-preserving FL model, distributed across AVs to enhance performance through secure CNNs and DP mechanisms. In the proposed FL framework, the methodology distinguishes itself from the existing approach through the following: (a) ensuring data decentralization through FL to uphold user privacy by eliminating the need for centralized data aggregation, (b) integrating DP mechanisms to secure sensitive model updates against potential adversarial inference attacks, and (c) evaluating the frameworks performance and generalizability using RGB and semantic segmentation datasets derived from the CARLA simulator. Experimental results show significant improvements in accuracy, from 81.5% to 88.7% for the RGB dataset and from 79.3% to 86.9% for the SEG dataset over 20 to 70 Communication Rounds (CRs). Global loss was reduced by over 60%, and minor accuracy trade-offs from DP were observed. This study contributes by offering a scalable, privacy-preserving FL framework tailored for AVs, optimizing communication efficiency while balancing performance and data security.
You Don't Know Until You Click:Automated GUI Testing for Production-Ready Software Evaluation
Large Language Models (LLMs) and code agents in software development are rapidly evolving from generating isolated code snippets to producing full-fledged software applications with graphical interfaces, interactive logic, and dynamic behaviors. However, current benchmarks fall short in evaluating such production-ready software, as they often rely on static checks or binary pass/fail scripts, failing to capture the interactive behaviors and runtime dynamics that define real-world usability - qualities that only emerge when an application is actively used. This is the blind spot of current evaluation: you don't know if an app works until you click through it, interact with it, and observe how it responds. To bridge this gap, we introduce RealDevWorld, a novel evaluation framework for automated end-to-end assessment of LLMs' ability to generate production-ready repositories from scratch. It features two key components: (1) RealDevBench, a diverse collection of 194 open-ended software engineering tasks across multiple domains, incorporating multimodal elements to reflect real-world complexity; and (2) AppEvalPilot, a new agent-as-a-judge evaluation system that simulates realistic, GUI-based user interactions to automatically and holistically assess software functional correctness, visual fidelity, and runtime behavior. The framework delivers fine-grained, task-specific diagnostic feedback, supporting nuanced evaluation beyond simple success/failure judgments. Empirical results show that RealDevWorld delivers effective, automatic, and human-aligned evaluations, achieving an accuracy of 0.92 and a correlation of 0.85 with expert human assessments, while significantly reducing the reliance on manual review. This enables scalable, human-aligned assessment of production-level software generated by LLMs. Our code is available on GitHub.
Expectation Confirmation Preference Optimization for Multi-Turn Conversational Recommendation Agent
Recent advancements in Large Language Models (LLMs) have significantly propelled the development of Conversational Recommendation Agents (CRAs). However, these agents often generate short-sighted responses that fail to sustain user guidance and meet expectations. Although preference optimization has proven effective in aligning LLMs with user expectations, it remains costly and performs poorly in multi-turn dialogue. To address this challenge, we introduce a novel multi-turn preference optimization (MTPO) paradigm ECPO, which leverages Expectation Confirmation Theory to explicitly model the evolution of user satisfaction throughout multi-turn dialogues, uncovering the underlying causes of dissatisfaction. These causes can be utilized to support targeted optimization of unsatisfactory responses, thereby achieving turn-level preference optimization. ECPO ingeniously eliminates the significant sampling overhead of existing MTPO methods while ensuring the optimization process drives meaningful improvements. To support ECPO, we introduce an LLM-based user simulator, AILO, to simulate user feedback and perform expectation confirmation during conversational recommendations. Experimental results show that ECPO significantly enhances CRA's interaction capabilities, delivering notable improvements in both efficiency and effectiveness over existing MTPO methods.
LikeBench: Evaluating Subjective Likability in LLMs for Personalization
A personalized LLM should remember user facts, apply them correctly, and adapt over time to provide responses that the user prefers. Existing LLM personalization benchmarks are largely centered on two axes: accurately recalling user information and accurately applying remembered information in downstream tasks. We argue that a third axis, likability, is both subjective and central to user experience, yet under-measured by current benchmarks. To measure likability holistically, we introduce LikeBench, a multi-session, dynamic evaluation framework that measures likability across multiple dimensions by how much an LLM can adapt over time to a user's preferences to provide more likable responses. In LikeBench, the LLMs engage in conversation with a simulated user and learn preferences only from the ongoing dialogue. As the interaction unfolds, models try to adapt to responses, and after each turn, they are evaluated for likability across seven dimensions by the same simulated user. To the best of our knowledge, we are the first to decompose likability into multiple diagnostic metrics: emotional adaptation, formality matching, knowledge adaptation, reference understanding, conversation length fit, humor fit, and callback, which makes it easier to pinpoint where a model falls short. To make the simulated user more realistic and discriminative, LikeBench uses fine-grained, psychologically grounded descriptive personas rather than the coarse high/low trait rating based personas used in prior work. Our benchmark shows that strong memory performance does not guarantee high likability: DeepSeek R1, with lower memory accuracy (86%, 17 facts/profile), outperformed Qwen3 by 28% on likability score despite Qwen3's higher memory accuracy (93%, 43 facts/profile). Even SOTA models like GPT-5 adapt well in short exchanges but show only limited robustness in longer, noisier interactions.
RLHS: Mitigating Misalignment in RLHF with Hindsight Simulation
Generative AI systems like foundation models (FMs) must align well with human values to ensure their behavior is helpful and trustworthy. While Reinforcement Learning from Human Feedback (RLHF) has shown promise for optimizing model performance using human judgments, existing RLHF pipelines predominantly rely on immediate feedback, which can fail to accurately reflect the downstream impact of an interaction on users' utility. We demonstrate that feedback based on evaluators' foresight estimates of downstream consequences systematically induces Goodhart's Law dynamics, incentivizing misaligned behaviors like sycophancy and deception and ultimately degrading user outcomes. To alleviate this, we propose decoupling evaluation from prediction by refocusing RLHF on hindsight feedback. Our theoretical analysis reveals that conditioning evaluator feedback on downstream observations mitigates misalignment and improves expected human utility, even when these observations are simulated by the AI system itself. To leverage this insight in a practical alignment algorithm, we introduce Reinforcement Learning from Hindsight Simulation (RLHS), which first simulates plausible consequences and then elicits feedback to assess what behaviors were genuinely beneficial in hindsight. We apply RLHS to two widely-employed online and offline preference optimization methods -- Proximal Policy Optimization (PPO) and Direct Preference Optimization (DPO) -- and show empirically that misalignment is significantly reduced with both methods. Through an online human user study, we show that RLHS consistently outperforms RLHF in helping users achieve their goals and earns higher satisfaction ratings, despite being trained solely with simulated hindsight feedback. These results underscore the importance of focusing on long-term consequences, even simulated ones, to mitigate misalignment in RLHF.
Yo'City: Personalized and Boundless 3D Realistic City Scene Generation via Self-Critic Expansion
Realistic 3D city generation is fundamental to a wide range of applications, including virtual reality and digital twins. However, most existing methods rely on training a single diffusion model, which limits their ability to generate personalized and boundless city-scale scenes. In this paper, we present Yo'City, a novel agentic framework that enables user-customized and infinitely expandable 3D city generation by leveraging the reasoning and compositional capabilities of off-the-shelf large models. Specifically, Yo'City first conceptualize the city through a top-down planning strategy that defines a hierarchical "City-District-Grid" structure. The Global Planner determines the overall layout and potential functional districts, while the Local Designer further refines each district with detailed grid-level descriptions. Subsequently, the grid-level 3D generation is achieved through a "produce-refine-evaluate" isometric image synthesis loop, followed by image-to-3D generation. To simulate continuous city evolution, Yo'City further introduces a user-interactive, relationship-guided expansion mechanism, which performs scene graph-based distance- and semantics-aware layout optimization, ensuring spatially coherent city growth. To comprehensively evaluate our method, we construct a diverse benchmark dataset and design six multi-dimensional metrics that assess generation quality from the perspectives of semantics, geometry, texture, and layout. Extensive experiments demonstrate that Yo'City consistently outperforms existing state-of-the-art methods across all evaluation aspects.
