File size: 7,329 Bytes
af4c42c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# Rax 4.0 Chat - Enterprise Deployment Guide
**RaxCore Technologies - Premier AI Innovation Company**
## π Enterprise Deployment Options
### **Cloud Deployment**
#### **AWS Deployment**
```bash
# Install AWS CLI and configure
pip install boto3 sagemaker
# Deploy to SageMaker
python deploy_aws.py --instance-type ml.g4dn.xlarge --model-name rax-4.0-chat
```
#### **Azure Deployment**
```bash
# Azure Machine Learning deployment
az ml model deploy --name rax-4.0-chat --model rax-4.0:1 --compute-target aks-cluster
```
#### **Google Cloud Deployment**
```bash
# Vertex AI deployment
gcloud ai models upload --region=us-central1 --display-name=rax-4.0-chat
```
### **On-Premises Deployment**
#### **Docker Container**
```dockerfile
FROM nvidia/cuda:11.8-runtime-ubuntu20.04
# Install dependencies
RUN pip install transformers torch accelerate
# Copy model
COPY . /app/rax-4.0-chat
# Set environment
ENV MODEL_PATH=/app/rax-4.0-chat
ENV CUDA_VISIBLE_DEVICES=0
# Run inference server
CMD ["python", "inference_server.py"]
```
#### **Kubernetes Deployment**
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: rax-4.0-chat
spec:
replicas: 3
selector:
matchLabels:
app: rax-4.0-chat
template:
metadata:
labels:
app: rax-4.0-chat
spec:
containers:
- name: rax-4.0
image: raxcore/rax-4.0-chat:latest
resources:
limits:
nvidia.com/gpu: 1
memory: "32Gi"
requests:
nvidia.com/gpu: 1
memory: "16Gi"
```
## π‘οΈ Security Configuration
### **Enterprise Security Settings**
```python
# Security configuration
SECURITY_CONFIG = {
"encryption": "AES-256",
"authentication": "OAuth2",
"audit_logging": True,
"data_retention": "90_days",
"compliance": ["GDPR", "CCPA", "SOC2"]
}
```
### **Access Control**
```python
# Role-based access control
RBAC_CONFIG = {
"admin": ["read", "write", "deploy", "monitor"],
"developer": ["read", "write", "test"],
"user": ["read", "inference"],
"viewer": ["read"]
}
```
## π Monitoring & Analytics
### **Performance Monitoring**
```python
# Monitoring configuration
MONITORING_CONFIG = {
"metrics": ["latency", "throughput", "accuracy", "resource_usage"],
"alerts": {
"high_latency": "> 2000ms",
"low_accuracy": "< 85%",
"resource_usage": "> 90%"
},
"dashboards": ["grafana", "prometheus", "custom"]
}
```
### **Logging Configuration**
```python
# Enterprise logging
LOGGING_CONFIG = {
"level": "INFO",
"format": "json",
"destinations": ["file", "elasticsearch", "splunk"],
"retention": "1_year",
"compliance": True
}
```
## π§ Performance Optimization
### **GPU Optimization**
```python
# GPU configuration for optimal performance
GPU_CONFIG = {
"precision": "bfloat16",
"batch_size": 8,
"max_sequence_length": 4096,
"gradient_checkpointing": True,
"mixed_precision": True
}
```
### **Memory Optimization**
```python
# Memory optimization settings
MEMORY_CONFIG = {
"model_sharding": True,
"cpu_offload": False,
"cache_size": "8GB",
"garbage_collection": "aggressive"
}
```
## π Load Balancing & Scaling
### **Auto-scaling Configuration**
```yaml
# Horizontal Pod Autoscaler
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: rax-4.0-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: rax-4.0-chat
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
```
### **Load Balancer Configuration**
```nginx
# NGINX load balancer
upstream rax_4_0_backend {
least_conn;
server rax-4.0-1:8000 weight=1 max_fails=3 fail_timeout=30s;
server rax-4.0-2:8000 weight=1 max_fails=3 fail_timeout=30s;
server rax-4.0-3:8000 weight=1 max_fails=3 fail_timeout=30s;
}
server {
listen 443 ssl http2;
server_name api.raxcore.dev;
location /v1/chat {
proxy_pass http://rax_4_0_backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}
```
## π Compliance & Governance
### **Data Governance**
```python
# Data governance policies
DATA_GOVERNANCE = {
"data_classification": "confidential",
"retention_policy": "7_years",
"encryption_at_rest": True,
"encryption_in_transit": True,
"audit_trail": True,
"data_lineage": True
}
```
### **Compliance Frameworks**
- **GDPR**: European data protection compliance
- **CCPA**: California privacy compliance
- **SOC 2**: Security and availability controls
- **ISO 27001**: Information security management
- **HIPAA**: Healthcare data protection (optional)
## π CI/CD Pipeline
### **Deployment Pipeline**
```yaml
# GitHub Actions workflow
name: Deploy Rax 4.0 Chat
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Build Docker image
run: docker build -t raxcore/rax-4.0-chat:${{ github.sha }} .
- name: Run security scan
run: docker scan raxcore/rax-4.0-chat:${{ github.sha }}
- name: Deploy to staging
run: kubectl apply -f k8s/staging/
- name: Run integration tests
run: python test_integration.py
- name: Deploy to production
if: success()
run: kubectl apply -f k8s/production/
```
## π Enterprise Support
### **24/7 Support Channels**
- **Critical Issues**: +1-800-RAX-CORE (24/7)
- **Technical Support**: support@raxcore.dev
- **Enterprise Sales**: enterprise@raxcore.dev
- **Professional Services**: consulting@raxcore.dev
### **Support Tiers**
1. **Enterprise Premium**: 15-minute response time
2. **Enterprise Standard**: 2-hour response time
3. **Professional**: 8-hour response time
4. **Community**: Best effort support
### **Professional Services**
- **Implementation Consulting**: Custom deployment assistance
- **Performance Optimization**: Tuning for specific workloads
- **Custom Training**: Domain-specific model fine-tuning
- **Integration Services**: API and system integration
- **Training Programs**: Team training and certification
## π― Best Practices
### **Security Best Practices**
1. Enable all security features by default
2. Use strong authentication and authorization
3. Implement comprehensive audit logging
4. Regular security assessments and updates
5. Data encryption at rest and in transit
### **Performance Best Practices**
1. Use appropriate hardware for workload
2. Implement proper caching strategies
3. Monitor and optimize resource usage
4. Use batch processing for high throughput
5. Implement circuit breakers for resilience
### **Operational Best Practices**
1. Comprehensive monitoring and alerting
2. Regular backups and disaster recovery testing
3. Automated deployment and rollback procedures
4. Capacity planning and scaling strategies
5. Regular performance and security reviews
---
**RaxCore Technologies** - Pioneering AI Innovation from Africa to the World
π **Enterprise Support**: +1-800-RAX-CORE | enterprise@raxcore.dev
π **Website**: [www.raxcore.dev](https://www.raxcore.dev/)
*Rax 4.0 Chat - Enterprise-Ready AI for Mission-Critical Applications*
|