Spaces:
Sleeping
Sleeping
File size: 2,006 Bytes
172064c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# from langchain_core.tools import tool
# from src.utils.helper import convert_list_context_source_to_str
# from src.utils.logger import logger
# from langchain_core.runnables import RunnableConfig
# from langchain_experimental.utilities import PythonREPL
# from langchain_community.tools import DuckDuckGoSearchRun
# duckduckgo_search = DuckDuckGoSearchRun(max_results=10, output_format="json")
# python_exec = PythonREPL()
# @tool
# def retrieve_document(query: str, config: RunnableConfig):
# """Ưu tiên truy xuất tài liệu từ vector store nếu câu hỏi liên quan đến vai trò của chatbot.
# Args:
# query (str): Câu truy vấn của người dùng bằng tiếng Việt
# Returns:
# str: Retrieved documents
# """
# configuration = config.get("configurable", {})
# bot_id = configuration.get("bot_id", None)
# if not bot_id:
# logger.error("Bot ID is not found")
# return {"context_str": "", "selected_documents": [], "selected_ids": []}
# retriever = test_rag_vector_store.as_retriever(
# search_type="similarity_score_threshold",
# search_kwargs={"k": 5, "score_threshold": 0.3},
# )
# documents = retriever.invoke(query, filter={"bot_id": bot_id})
# selected_documents = [doc.__dict__ for doc in documents]
# selected_ids = [doc["id"] for doc in selected_documents]
# context_str = convert_list_context_source_to_str(documents)
# return {
# "context_str": context_str,
# "selected_documents": selected_documents,
# "selected_ids": selected_ids,
# }
# @tool
# def python_repl(code: str):
# """
# A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.
# Args:
# code (str): Python code to execute
# Returns:
# str: Output of the Python code
# """
# return python_exec.run(code)
|