File size: 56,285 Bytes
0228d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbb4f62
 
 
 
 
0228d48
 
 
 
875a989
 
1241c80
 
 
 
ba6c5ba
 
 
 
7ef4a67
 
ba6c5ba
 
0228d48
 
 
 
 
 
 
 
 
1ff710f
 
 
 
 
e1ce8b3
 
7ef4a67
 
 
 
 
 
ae5026d
0228d48
51dc2aa
 
 
0228d48
 
 
 
 
 
 
 
51dc2aa
0228d48
 
 
 
 
 
 
1241c80
0228d48
 
 
 
 
 
f4d9d31
0228d48
 
 
 
1ff710f
ae5026d
 
 
bbb4f62
 
 
 
 
 
ae5026d
 
 
 
 
 
 
b3f1425
 
 
 
ae5026d
 
 
 
1241c80
 
ae5026d
 
0228d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae5026d
 
 
 
 
 
9e4bff7
 
 
 
ae5026d
0228d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ef4a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbb4f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0228d48
 
 
 
 
 
 
 
3f2c850
 
 
 
0228d48
 
 
 
 
 
 
 
 
 
3f2c850
 
 
 
0228d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf3621
25f8a0c
cdf3621
 
 
 
 
25f8a0c
cdf3621
0228d48
 
 
 
 
 
ae5026d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0228d48
ae5026d
0228d48
 
 
 
 
ae5026d
 
 
 
 
7ef4a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0228d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba6c5ba
 
 
 
0228d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbb4f62
0228d48
 
 
 
 
 
7ef4a67
0228d48
 
 
 
 
 
 
 
 
 
 
 
 
7ef4a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0228d48
 
 
 
 
 
 
 
 
 
 
 
ae5026d
0228d48
 
 
 
7ef4a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0228d48
 
ba6c5ba
 
e1ce8b3
ba6c5ba
e1ce8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba6c5ba
 
 
 
ae5026d
ba6c5ba
 
 
 
 
51dc2aa
ba6c5ba
 
 
 
 
ae5026d
ba6c5ba
 
 
ae5026d
ba6c5ba
 
 
 
 
 
 
 
 
 
e1ce8b3
 
 
 
7ef4a67
ba6c5ba
 
 
 
 
 
 
7ef4a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba6c5ba
 
 
 
e1ce8b3
ba6c5ba
7ef4a67
 
 
 
 
 
ba6c5ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4d9d31
ba6c5ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1ce8b3
ba6c5ba
 
 
 
 
 
 
 
bbb4f62
51dc2aa
ba6c5ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbb4f62
ba6c5ba
 
 
51dc2aa
ba6c5ba
 
ae5026d
ba6c5ba
 
 
 
4bcd037
ba6c5ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bcd037
b3f1425
 
 
 
 
 
 
ba6c5ba
7ef4a67
9e4bff7
7ef4a67
 
9e4bff7
0228d48
ba6c5ba
 
 
 
 
0228d48
b3f1425
ba6c5ba
 
b3f1425
 
 
9e4bff7
 
0228d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3f1425
51dc2aa
b3f1425
 
 
 
51dc2aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3f1425
 
51dc2aa
 
 
 
bbb4f62
 
 
 
 
0228d48
 
 
1ff710f
e1ce8b3
7ef4a67
 
 
51dc2aa
 
 
 
 
 
 
0228d48
 
 
51dc2aa
0228d48
51dc2aa
0228d48
 
ae5026d
51dc2aa
 
0228d48
 
 
f4d9d31
0228d48
51dc2aa
ae5026d
 
 
 
 
 
 
 
bbb4f62
 
 
 
 
0228d48
 
 
 
 
 
 
 
 
51dc2aa
 
 
0228d48
 
 
51dc2aa
 
 
0228d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51dc2aa
0228d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1ce8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0228d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
875a989
 
 
 
 
 
 
 
 
628f1e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0228d48
 
 
 
 
 
 
875a989
0228d48
 
875a989
 
 
 
 
 
 
 
 
 
 
 
 
0228d48
 
875a989
 
 
 
 
 
 
0228d48
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
"""FastAPI server for ACE-Step V1.5.

Endpoints:
- POST /v1/music/generate  Create an async music generation job (queued)
    - Supports application/json and multipart/form-data (with file upload)
- GET  /v1/jobs/{job_id}   Poll job status/result (+ queue position/eta when queued)

NOTE:
- In-memory queue and job store -> run uvicorn with workers=1.
"""

from __future__ import annotations

import asyncio
import json
import os
import sys
import time
import traceback
import tempfile
import urllib.parse
from collections import deque
from concurrent.futures import ThreadPoolExecutor
from contextlib import asynccontextmanager
from dataclasses import dataclass
from pathlib import Path
from threading import Lock
from typing import Any, Dict, Literal, Optional
from uuid import uuid4

try:
    from dotenv import load_dotenv
except ImportError:  # Optional dependency
    load_dotenv = None  # type: ignore

from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel, Field
from starlette.datastructures import UploadFile as StarletteUploadFile

from acestep.handler import AceStepHandler
from acestep.llm_inference import LLMHandler
from acestep.constants import (
    DEFAULT_DIT_INSTRUCTION,
    DEFAULT_LM_INSTRUCTION,
)
from acestep.inference import (
    GenerationParams,
    GenerationConfig,
    generate_music,
    create_sample,
    format_sample,
)
from acestep.gradio_ui.events.results_handlers import _build_generation_info


JobStatus = Literal["queued", "running", "succeeded", "failed"]


class GenerateMusicRequest(BaseModel):
    caption: str = Field(default="", description="Text caption describing the music")
    lyrics: str = Field(default="", description="Lyric text")

    # New API semantics:
    # - thinking=True: use 5Hz LM to generate audio codes (lm-dit behavior)
    # - thinking=False: do not use LM to generate codes (dit behavior)
    # Regardless of thinking, if some metas are missing, server may use LM to fill them.
    thinking: bool = False
    # Sample-mode requests auto-generate caption/lyrics/metas via LM (no user prompt).
    sample_mode: bool = False
    # Description for sample mode: auto-generate caption/lyrics from description query
    sample_query: str = Field(default="", description="Query/description for sample mode (use create_sample)")
    # Whether to use format_sample() to enhance input caption/lyrics
    use_format: bool = Field(default=False, description="Use format_sample() to enhance input (default: False)")
    # Model name for multi-model support (select which DiT model to use)
    model: Optional[str] = Field(default=None, description="Model name to use (e.g., 'acestep-v15-turbo')")

    bpm: Optional[int] = None
    # Accept common client keys via manual parsing (see _build_req_from_mapping).
    key_scale: str = ""
    time_signature: str = ""
    vocal_language: str = "en"
    inference_steps: int = 8
    guidance_scale: float = 7.0
    use_random_seed: bool = True
    seed: int = -1

    reference_audio_path: Optional[str] = None
    src_audio_path: Optional[str] = None
    audio_duration: Optional[float] = None
    batch_size: Optional[int] = None

    audio_code_string: str = ""

    repainting_start: float = 0.0
    repainting_end: Optional[float] = None

    instruction: str = DEFAULT_DIT_INSTRUCTION
    audio_cover_strength: float = 1.0
    task_type: str = "text2music"

    use_adg: bool = False
    cfg_interval_start: float = 0.0
    cfg_interval_end: float = 1.0
    infer_method: str = "ode"  # "ode" or "sde" - diffusion inference method

    audio_format: str = "mp3"
    use_tiled_decode: bool = True

    # 5Hz LM (server-side): used for metadata completion and (when thinking=True) codes generation.
    lm_model_path: Optional[str] = None  # e.g. "acestep-5Hz-lm-0.6B"
    lm_backend: Literal["vllm", "pt"] = "vllm"

    constrained_decoding: bool = True
    constrained_decoding_debug: bool = False
    use_cot_caption: bool = True
    use_cot_language: bool = True
    is_format_caption: bool = False

    lm_temperature: float = 0.85
    lm_cfg_scale: float = 2.0
    lm_top_k: Optional[int] = None
    lm_top_p: Optional[float] = 0.9
    lm_repetition_penalty: float = 1.0
    lm_negative_prompt: str = "NO USER INPUT"

    class Config:
        allow_population_by_field_name = True
        allow_population_by_alias = True


_LM_DEFAULT_TEMPERATURE = 0.85
_LM_DEFAULT_CFG_SCALE = 2.0
_LM_DEFAULT_TOP_P = 0.9
_DEFAULT_DIT_INSTRUCTION = DEFAULT_DIT_INSTRUCTION
_DEFAULT_LM_INSTRUCTION = DEFAULT_LM_INSTRUCTION


class CreateJobResponse(BaseModel):
    job_id: str
    status: JobStatus
    queue_position: int = 0  # 1-based best-effort position when queued


class JobResult(BaseModel):
    first_audio_path: Optional[str] = None
    second_audio_path: Optional[str] = None
    audio_paths: list[str] = Field(default_factory=list)

    generation_info: str = ""
    status_message: str = ""
    seed_value: str = ""

    metas: Dict[str, Any] = Field(default_factory=dict)
    bpm: Optional[int] = None
    duration: Optional[float] = None
    genres: Optional[str] = None
    keyscale: Optional[str] = None
    timesignature: Optional[str] = None
    
    # Model information
    lm_model: Optional[str] = None
    dit_model: Optional[str] = None


class JobResponse(BaseModel):
    job_id: str
    status: JobStatus
    created_at: float
    started_at: Optional[float] = None
    finished_at: Optional[float] = None

    # queue observability
    queue_position: int = 0
    eta_seconds: Optional[float] = None
    avg_job_seconds: Optional[float] = None

    result: Optional[JobResult] = None
    error: Optional[str] = None


@dataclass
class _JobRecord:
    job_id: str
    status: JobStatus
    created_at: float
    started_at: Optional[float] = None
    finished_at: Optional[float] = None
    result: Optional[Dict[str, Any]] = None
    error: Optional[str] = None


class _JobStore:
    def __init__(self) -> None:
        self._lock = Lock()
        self._jobs: Dict[str, _JobRecord] = {}

    def create(self) -> _JobRecord:
        job_id = str(uuid4())
        rec = _JobRecord(job_id=job_id, status="queued", created_at=time.time())
        with self._lock:
            self._jobs[job_id] = rec
        return rec

    def get(self, job_id: str) -> Optional[_JobRecord]:
        with self._lock:
            return self._jobs.get(job_id)

    def mark_running(self, job_id: str) -> None:
        with self._lock:
            rec = self._jobs[job_id]
            rec.status = "running"
            rec.started_at = time.time()

    def mark_succeeded(self, job_id: str, result: Dict[str, Any]) -> None:
        with self._lock:
            rec = self._jobs[job_id]
            rec.status = "succeeded"
            rec.finished_at = time.time()
            rec.result = result
            rec.error = None

    def mark_failed(self, job_id: str, error: str) -> None:
        with self._lock:
            rec = self._jobs[job_id]
            rec.status = "failed"
            rec.finished_at = time.time()
            rec.result = None
            rec.error = error


def _env_bool(name: str, default: bool) -> bool:
    v = os.getenv(name)
    if v is None:
        return default
    return v.strip().lower() in {"1", "true", "yes", "y", "on"}


def _get_project_root() -> str:
    current_file = os.path.abspath(__file__)
    return os.path.dirname(os.path.dirname(current_file))


def _get_model_name(config_path: str) -> str:
    """
    Extract model name from config_path.
    
    Args:
        config_path: Path like "acestep-v15-turbo" or "/path/to/acestep-v15-turbo"
        
    Returns:
        Model name (last directory name from config_path)
    """
    if not config_path:
        return ""
    normalized = config_path.rstrip("/\\")
    return os.path.basename(normalized)


def _load_project_env() -> None:
    if load_dotenv is None:
        return
    try:
        project_root = _get_project_root()
        env_path = os.path.join(project_root, ".env")
        if os.path.exists(env_path):
            load_dotenv(env_path, override=False)
    except Exception:
        # Optional best-effort: continue even if .env loading fails.
        pass


_load_project_env()


def _to_int(v: Any, default: Optional[int] = None) -> Optional[int]:
    if v is None:
        return default
    if isinstance(v, int):
        return v
    s = str(v).strip()
    if s == "":
        return default
    try:
        return int(s)
    except Exception:
        return default


def _to_float(v: Any, default: Optional[float] = None) -> Optional[float]:
    if v is None:
        return default
    if isinstance(v, float):
        return v
    s = str(v).strip()
    if s == "":
        return default
    try:
        return float(s)
    except Exception:
        return default


def _to_bool(v: Any, default: bool = False) -> bool:
    if v is None:
        return default
    if isinstance(v, bool):
        return v
    s = str(v).strip().lower()
    if s == "":
        return default
    return s in {"1", "true", "yes", "y", "on"}


async def _save_upload_to_temp(upload: StarletteUploadFile, *, prefix: str) -> str:
    suffix = Path(upload.filename or "").suffix
    fd, path = tempfile.mkstemp(prefix=f"{prefix}_", suffix=suffix)
    os.close(fd)
    try:
        with open(path, "wb") as f:
            while True:
                chunk = await upload.read(1024 * 1024)
                if not chunk:
                    break
                f.write(chunk)
    except Exception:
        try:
            os.remove(path)
        except Exception:
            pass
        raise
    finally:
        try:
            await upload.close()
        except Exception:
            pass
    return path


def create_app() -> FastAPI:
    store = _JobStore()

    QUEUE_MAXSIZE = int(os.getenv("ACESTEP_QUEUE_MAXSIZE", "200"))
    WORKER_COUNT = int(os.getenv("ACESTEP_QUEUE_WORKERS", "1"))  # 单 GPU 建议 1

    INITIAL_AVG_JOB_SECONDS = float(os.getenv("ACESTEP_AVG_JOB_SECONDS", "5.0"))
    AVG_WINDOW = int(os.getenv("ACESTEP_AVG_WINDOW", "50"))

    def _path_to_audio_url(path: str) -> str:
        """将本地文件路径转换为可下载的相对 URL"""
        if not path:
            return path
        if path.startswith("http://") or path.startswith("https://"):
            return path
        encoded_path = urllib.parse.quote(path, safe="")
        return f"/v1/audio?path={encoded_path}"

    @asynccontextmanager
    async def lifespan(app: FastAPI):
        # Clear proxy env that may affect downstream libs
        for proxy_var in ["http_proxy", "https_proxy", "HTTP_PROXY", "HTTPS_PROXY", "ALL_PROXY"]:
            os.environ.pop(proxy_var, None)

        # Ensure compilation/temp caches do not fill up small default /tmp.
        # Triton/Inductor (and the system compiler) can create large temporary files.
        project_root = _get_project_root()
        cache_root = os.path.join(project_root, ".cache", "acestep")
        tmp_root = (os.getenv("ACESTEP_TMPDIR") or os.path.join(cache_root, "tmp")).strip()
        triton_cache_root = (os.getenv("TRITON_CACHE_DIR") or os.path.join(cache_root, "triton")).strip()
        inductor_cache_root = (os.getenv("TORCHINDUCTOR_CACHE_DIR") or os.path.join(cache_root, "torchinductor")).strip()

        for p in [cache_root, tmp_root, triton_cache_root, inductor_cache_root]:
            try:
                os.makedirs(p, exist_ok=True)
            except Exception:
                # Best-effort: do not block startup if directory creation fails.
                pass

        # Respect explicit user overrides; if ACESTEP_TMPDIR is set, it should win.
        if os.getenv("ACESTEP_TMPDIR"):
            os.environ["TMPDIR"] = tmp_root
            os.environ["TEMP"] = tmp_root
            os.environ["TMP"] = tmp_root
        else:
            os.environ.setdefault("TMPDIR", tmp_root)
            os.environ.setdefault("TEMP", tmp_root)
            os.environ.setdefault("TMP", tmp_root)

        os.environ.setdefault("TRITON_CACHE_DIR", triton_cache_root)
        os.environ.setdefault("TORCHINDUCTOR_CACHE_DIR", inductor_cache_root)

        handler = AceStepHandler()
        llm_handler = LLMHandler()
        init_lock = asyncio.Lock()
        app.state._initialized = False
        app.state._init_error = None
        app.state._init_lock = init_lock

        app.state.llm_handler = llm_handler
        app.state._llm_initialized = False
        app.state._llm_init_error = None
        app.state._llm_init_lock = Lock()

        # Multi-model support: secondary DiT handlers
        handler2 = None
        handler3 = None
        config_path2 = os.getenv("ACESTEP_CONFIG_PATH2", "").strip()
        config_path3 = os.getenv("ACESTEP_CONFIG_PATH3", "").strip()
        
        if config_path2:
            handler2 = AceStepHandler()
        if config_path3:
            handler3 = AceStepHandler()
        
        app.state.handler2 = handler2
        app.state.handler3 = handler3
        app.state._initialized2 = False
        app.state._initialized3 = False
        app.state._config_path = os.getenv("ACESTEP_CONFIG_PATH", "acestep-v15-turbo-rl")
        app.state._config_path2 = config_path2
        app.state._config_path3 = config_path3

        max_workers = int(os.getenv("ACESTEP_API_WORKERS", "1"))
        executor = ThreadPoolExecutor(max_workers=max_workers)

        # Queue & observability
        app.state.job_queue = asyncio.Queue(maxsize=QUEUE_MAXSIZE)  # (job_id, req)
        app.state.pending_ids = deque()  # queued job_ids
        app.state.pending_lock = asyncio.Lock()

        # temp files per job (from multipart uploads)
        app.state.job_temp_files = {}  # job_id -> list[path]
        app.state.job_temp_files_lock = asyncio.Lock()

        # stats
        app.state.stats_lock = asyncio.Lock()
        app.state.recent_durations = deque(maxlen=AVG_WINDOW)
        app.state.avg_job_seconds = INITIAL_AVG_JOB_SECONDS

        app.state.handler = handler
        app.state.executor = executor
        app.state.job_store = store
        app.state._python_executable = sys.executable
        
        # Temporary directory for saving generated audio files
        app.state.temp_audio_dir = os.path.join(tmp_root, "api_audio")
        os.makedirs(app.state.temp_audio_dir, exist_ok=True)

        async def _ensure_initialized() -> None:
            h: AceStepHandler = app.state.handler

            if getattr(app.state, "_initialized", False):
                return
            if getattr(app.state, "_init_error", None):
                raise RuntimeError(app.state._init_error)

            async with app.state._init_lock:
                if getattr(app.state, "_initialized", False):
                    return
                if getattr(app.state, "_init_error", None):
                    raise RuntimeError(app.state._init_error)

                project_root = _get_project_root()
                config_path = os.getenv("ACESTEP_CONFIG_PATH", "acestep-v15-turbo-rl")
                device = os.getenv("ACESTEP_DEVICE", "auto")

                use_flash_attention = _env_bool("ACESTEP_USE_FLASH_ATTENTION", True)
                offload_to_cpu = _env_bool("ACESTEP_OFFLOAD_TO_CPU", False)
                offload_dit_to_cpu = _env_bool("ACESTEP_OFFLOAD_DIT_TO_CPU", False)

                # Initialize primary model
                status_msg, ok = h.initialize_service(
                    project_root=project_root,
                    config_path=config_path,
                    device=device,
                    use_flash_attention=use_flash_attention,
                    compile_model=False,
                    offload_to_cpu=offload_to_cpu,
                    offload_dit_to_cpu=offload_dit_to_cpu,
                )
                if not ok:
                    app.state._init_error = status_msg
                    raise RuntimeError(status_msg)
                app.state._initialized = True
                
                # Initialize secondary model if configured
                if app.state.handler2 and app.state._config_path2:
                    try:
                        status_msg2, ok2 = app.state.handler2.initialize_service(
                            project_root=project_root,
                            config_path=app.state._config_path2,
                            device=device,
                            use_flash_attention=use_flash_attention,
                            compile_model=False,
                            offload_to_cpu=offload_to_cpu,
                            offload_dit_to_cpu=offload_dit_to_cpu,
                        )
                        app.state._initialized2 = ok2
                        if ok2:
                            print(f"[API Server] Secondary model loaded: {_get_model_name(app.state._config_path2)}")
                        else:
                            print(f"[API Server] Warning: Secondary model failed to load: {status_msg2}")
                    except Exception as e:
                        print(f"[API Server] Warning: Failed to initialize secondary model: {e}")
                        app.state._initialized2 = False
                
                # Initialize third model if configured
                if app.state.handler3 and app.state._config_path3:
                    try:
                        status_msg3, ok3 = app.state.handler3.initialize_service(
                            project_root=project_root,
                            config_path=app.state._config_path3,
                            device=device,
                            use_flash_attention=use_flash_attention,
                            compile_model=False,
                            offload_to_cpu=offload_to_cpu,
                            offload_dit_to_cpu=offload_dit_to_cpu,
                        )
                        app.state._initialized3 = ok3
                        if ok3:
                            print(f"[API Server] Third model loaded: {_get_model_name(app.state._config_path3)}")
                        else:
                            print(f"[API Server] Warning: Third model failed to load: {status_msg3}")
                    except Exception as e:
                        print(f"[API Server] Warning: Failed to initialize third model: {e}")
                        app.state._initialized3 = False

        async def _cleanup_job_temp_files(job_id: str) -> None:
            async with app.state.job_temp_files_lock:
                paths = app.state.job_temp_files.pop(job_id, [])
            for p in paths:
                try:
                    os.remove(p)
                except Exception:
                    pass

        async def _run_one_job(job_id: str, req: GenerateMusicRequest) -> None:
            job_store: _JobStore = app.state.job_store
            llm: LLMHandler = app.state.llm_handler
            executor: ThreadPoolExecutor = app.state.executor

            await _ensure_initialized()
            job_store.mark_running(job_id)
            
            # Select DiT handler based on user's model choice
            # Default: use primary handler
            selected_handler: AceStepHandler = app.state.handler
            selected_model_name = _get_model_name(app.state._config_path)
            
            if req.model:
                model_matched = False
                
                # Check if it matches the second model
                if app.state.handler2 and getattr(app.state, "_initialized2", False):
                    model2_name = _get_model_name(app.state._config_path2)
                    if req.model == model2_name:
                        selected_handler = app.state.handler2
                        selected_model_name = model2_name
                        model_matched = True
                        print(f"[API Server] Job {job_id}: Using second model: {model2_name}")
                
                # Check if it matches the third model
                if not model_matched and app.state.handler3 and getattr(app.state, "_initialized3", False):
                    model3_name = _get_model_name(app.state._config_path3)
                    if req.model == model3_name:
                        selected_handler = app.state.handler3
                        selected_model_name = model3_name
                        model_matched = True
                        print(f"[API Server] Job {job_id}: Using third model: {model3_name}")
                
                if not model_matched:
                    available_models = [_get_model_name(app.state._config_path)]
                    if app.state.handler2 and getattr(app.state, "_initialized2", False):
                        available_models.append(_get_model_name(app.state._config_path2))
                    if app.state.handler3 and getattr(app.state, "_initialized3", False):
                        available_models.append(_get_model_name(app.state._config_path3))
                    print(f"[API Server] Job {job_id}: Model '{req.model}' not found in {available_models}, using primary: {selected_model_name}")
            
            # Use selected handler for generation
            h: AceStepHandler = selected_handler

            def _blocking_generate() -> Dict[str, Any]:
                """Generate music using unified inference logic from acestep.inference"""
                
                def _ensure_llm_ready() -> None:
                    """Ensure LLM handler is initialized when needed"""
                    with app.state._llm_init_lock:
                        initialized = getattr(app.state, "_llm_initialized", False)
                        had_error = getattr(app.state, "_llm_init_error", None)
                        if initialized or had_error is not None:
                            return

                        project_root = _get_project_root()
                        checkpoint_dir = os.path.join(project_root, "checkpoints")
                        lm_model_path = (req.lm_model_path or os.getenv("ACESTEP_LM_MODEL_PATH") or "acestep-5Hz-lm-0.6B-v3").strip()
                        backend = (req.lm_backend or os.getenv("ACESTEP_LM_BACKEND") or "vllm").strip().lower()
                        if backend not in {"vllm", "pt"}:
                            backend = "vllm"

                        lm_device = os.getenv("ACESTEP_LM_DEVICE", os.getenv("ACESTEP_DEVICE", "auto"))
                        lm_offload = _env_bool("ACESTEP_LM_OFFLOAD_TO_CPU", False)

                        status, ok = llm.initialize(
                            checkpoint_dir=checkpoint_dir,
                            lm_model_path=lm_model_path,
                            backend=backend,
                            device=lm_device,
                            offload_to_cpu=lm_offload,
                            dtype=h.dtype,
                        )
                        if not ok:
                            app.state._llm_init_error = status
                        else:
                            app.state._llm_initialized = True

                def _normalize_metas(meta: Dict[str, Any]) -> Dict[str, Any]:
                    """Ensure a stable `metas` dict (keys always present)."""
                    meta = meta or {}
                    out: Dict[str, Any] = dict(meta)

                    # Normalize key aliases
                    if "keyscale" not in out and "key_scale" in out:
                        out["keyscale"] = out.get("key_scale")
                    if "timesignature" not in out and "time_signature" in out:
                        out["timesignature"] = out.get("time_signature")

                    # Ensure required keys exist
                    for k in ["bpm", "duration", "genres", "keyscale", "timesignature"]:
                        if out.get(k) in (None, ""):
                            out[k] = "N/A"
                    return out

                # Normalize LM sampling parameters
                lm_top_k = req.lm_top_k if req.lm_top_k and req.lm_top_k > 0 else 0
                lm_top_p = req.lm_top_p if req.lm_top_p and req.lm_top_p < 1.0 else 0.9

                # Determine if LLM is needed
                thinking = bool(req.thinking)
                sample_mode = bool(req.sample_mode)
                need_llm = thinking or sample_mode
                
                print(f"[api_server] Request params: req.thinking={req.thinking}, req.sample_mode={req.sample_mode}")
                print(f"[api_server] Determined: thinking={thinking}, sample_mode={sample_mode}, need_llm={need_llm}")
                
                # Ensure LLM is ready if needed
                if need_llm:
                    _ensure_llm_ready()
                    if getattr(app.state, "_llm_init_error", None):
                        raise RuntimeError(f"5Hz LM init failed: {app.state._llm_init_error}")

                # Handle sample mode or description: generate caption/lyrics/metas via LM
                caption = req.caption
                lyrics = req.lyrics
                bpm = req.bpm
                key_scale = req.key_scale
                time_signature = req.time_signature
                audio_duration = req.audio_duration
                
                # Check if sample_query (description) is provided for create_sample
                has_sample_query = bool(req.sample_query and req.sample_query.strip())
                
                if sample_mode or has_sample_query:
                    if has_sample_query:
                        # Use create_sample() with description query
                        print(f"[api_server] Description mode: generating sample from query: {req.sample_query[:100]}")
                        sample_result = create_sample(
                            llm_handler=llm,
                            query=req.sample_query,
                            instrumental=False,  # Could be extracted from description
                            vocal_language=req.vocal_language if req.vocal_language != "en" else None,
                            temperature=req.lm_temperature,
                            top_k=lm_top_k if lm_top_k > 0 else None,
                            top_p=lm_top_p if lm_top_p < 1.0 else None,
                            use_constrained_decoding=req.constrained_decoding,
                        )
                        
                        if not sample_result.success:
                            raise RuntimeError(f"create_sample failed: {sample_result.error or sample_result.status_message}")
                        
                        # Use generated sample data
                        caption = sample_result.caption
                        lyrics = sample_result.lyrics
                        bpm = sample_result.bpm
                        key_scale = sample_result.keyscale
                        time_signature = sample_result.timesignature
                        audio_duration = sample_result.duration
                        
                        print(f"[api_server] Sample from description generated: caption_len={len(caption)}, lyrics_len={len(lyrics)}, bpm={bpm}")
                    else:
                        # Original sample_mode behavior: random generation
                        print("[api_server] Sample mode: generating random caption/lyrics via LM")
                        sample_metadata, sample_status = llm.understand_audio_from_codes(
                            audio_codes="NO USER INPUT",
                            temperature=req.lm_temperature,
                            top_k=lm_top_k if lm_top_k > 0 else None,
                            top_p=lm_top_p if lm_top_p < 1.0 else None,
                            repetition_penalty=req.lm_repetition_penalty,
                            use_constrained_decoding=req.constrained_decoding,
                            constrained_decoding_debug=req.constrained_decoding_debug,
                        )

                        if not sample_metadata or str(sample_status).startswith("❌"):
                            raise RuntimeError(f"Sample generation failed: {sample_status}")

                        # Use generated values with fallback defaults
                        caption = sample_metadata.get("caption", "")
                        lyrics = sample_metadata.get("lyrics", "")
                        bpm = _to_int(sample_metadata.get("bpm"), None) or _to_int(os.getenv("ACESTEP_SAMPLE_DEFAULT_BPM", "120"), 120)
                        key_scale = sample_metadata.get("keyscale", "") or os.getenv("ACESTEP_SAMPLE_DEFAULT_KEY", "C Major")
                        time_signature = sample_metadata.get("timesignature", "") or os.getenv("ACESTEP_SAMPLE_DEFAULT_TIMESIGNATURE", "4/4")
                        audio_duration = _to_float(sample_metadata.get("duration"), None) or _to_float(os.getenv("ACESTEP_SAMPLE_DEFAULT_DURATION_SECONDS", "120"), 120.0)
                        
                        print(f"[api_server] Sample generated: caption_len={len(caption)}, lyrics_len={len(lyrics)}, bpm={bpm}, duration={audio_duration}")
                
                # Apply format_sample() if use_format is True and caption/lyrics are provided
                if req.use_format and (caption or lyrics):
                    print(f"[api_server] Applying format_sample to enhance input...")
                    _ensure_llm_ready()
                    if getattr(app.state, "_llm_init_error", None):
                        raise RuntimeError(f"5Hz LM init failed (needed for format): {app.state._llm_init_error}")
                    
                    format_result = format_sample(
                        llm_handler=llm,
                        caption=caption,
                        lyrics=lyrics,
                        temperature=req.lm_temperature,
                        top_k=lm_top_k if lm_top_k > 0 else None,
                        top_p=lm_top_p if lm_top_p < 1.0 else None,
                        use_constrained_decoding=req.constrained_decoding,
                    )
                    
                    if format_result.success:
                        caption = format_result.caption
                        lyrics = format_result.lyrics
                        print(f"[api_server] Format applied: new caption_len={len(caption)}, lyrics_len={len(lyrics)}")
                    else:
                        print(f"[api_server] Warning: format_sample failed: {format_result.error}, using original input")
                
                print(f"[api_server] Before GenerationParams: thinking={thinking}, sample_mode={sample_mode}")
                print(f"[api_server] Caption/Lyrics to use: caption_len={len(caption)}, lyrics_len={len(lyrics)}")

                # Build GenerationParams using unified interface
                # Note: thinking controls LM code generation, sample_mode only affects CoT metas
                params = GenerationParams(
                    task_type=req.task_type,
                    instruction=req.instruction,
                    reference_audio=req.reference_audio_path,
                    src_audio=req.src_audio_path,
                    audio_codes=req.audio_code_string,
                    caption=caption,
                    lyrics=lyrics,
                    instrumental=False,
                    vocal_language=req.vocal_language,
                    bpm=bpm,
                    keyscale=key_scale,
                    timesignature=time_signature,
                    duration=audio_duration if audio_duration else -1.0,
                    inference_steps=req.inference_steps,
                    seed=req.seed,
                    guidance_scale=req.guidance_scale,
                    use_adg=req.use_adg,
                    cfg_interval_start=req.cfg_interval_start,
                    cfg_interval_end=req.cfg_interval_end,
                    infer_method=req.infer_method,
                    repainting_start=req.repainting_start,
                    repainting_end=req.repainting_end if req.repainting_end else -1,
                    audio_cover_strength=req.audio_cover_strength,
                    # LM parameters
                    thinking=thinking,  # Use LM for code generation when thinking=True
                    lm_temperature=req.lm_temperature,
                    lm_cfg_scale=req.lm_cfg_scale,
                    lm_top_k=lm_top_k,
                    lm_top_p=lm_top_p,
                    lm_negative_prompt=req.lm_negative_prompt,
                    use_cot_metas=not sample_mode,  # Sample mode already generated metas, don't regenerate
                    use_cot_caption=req.use_cot_caption,
                    use_cot_language=req.use_cot_language,
                    use_constrained_decoding=req.constrained_decoding,
                )

                # Build GenerationConfig - default to 2 audios like gradio_ui
                batch_size = req.batch_size if req.batch_size is not None else 2
                config = GenerationConfig(
                    batch_size=batch_size,
                    use_random_seed=req.use_random_seed,
                    seeds=None,  # Let unified logic handle seed generation
                    audio_format=req.audio_format,
                    constrained_decoding_debug=req.constrained_decoding_debug,
                )

                # Check LLM initialization status
                llm_is_initialized = getattr(app.state, "_llm_initialized", False)
                llm_to_pass = llm if llm_is_initialized else None
                
                print(f"[api_server] Generating music with unified interface:")
                print(f"  - thinking={params.thinking}")
                print(f"  - batch_size={batch_size}")
                print(f"  - llm_initialized={llm_is_initialized}")
                print(f"  - llm_handler={'Available' if llm_to_pass else 'None'}")

                # Generate music using unified interface
                result = generate_music(
                    dit_handler=h,
                    llm_handler=llm_to_pass,
                    params=params,
                    config=config,
                    save_dir=app.state.temp_audio_dir,
                    progress=None,
                )
                
                print(f"[api_server] Generation completed. Success={result.success}, Audios={len(result.audios)}")
                print(f"[api_server] Time costs keys: {list(result.extra_outputs.get('time_costs', {}).keys())}")

                if not result.success:
                    raise RuntimeError(f"Music generation failed: {result.error or result.status_message}")

                # Extract results
                audio_paths = [audio["path"] for audio in result.audios if audio.get("path")]
                first_audio = audio_paths[0] if len(audio_paths) > 0 else None
                second_audio = audio_paths[1] if len(audio_paths) > 1 else None

                # Get metadata from LM or CoT results
                lm_metadata = result.extra_outputs.get("lm_metadata", {})
                metas_out = _normalize_metas(lm_metadata)
                
                # Update metas with actual values used
                if params.cot_bpm:
                    metas_out["bpm"] = params.cot_bpm
                elif bpm:
                    metas_out["bpm"] = bpm
                    
                if params.cot_duration:
                    metas_out["duration"] = params.cot_duration
                elif audio_duration:
                    metas_out["duration"] = audio_duration
                    
                if params.cot_keyscale:
                    metas_out["keyscale"] = params.cot_keyscale
                elif key_scale:
                    metas_out["keyscale"] = key_scale
                    
                if params.cot_timesignature:
                    metas_out["timesignature"] = params.cot_timesignature
                elif time_signature:
                    metas_out["timesignature"] = time_signature

                # Ensure caption and lyrics are in metas
                if caption:
                    metas_out["caption"] = caption
                if lyrics:
                    metas_out["lyrics"] = lyrics

                # Extract seed values for response (comma-separated for multiple audios)
                seed_values = []
                for audio in result.audios:
                    audio_params = audio.get("params", {})
                    seed = audio_params.get("seed")
                    if seed is not None:
                        seed_values.append(str(seed))
                seed_value = ",".join(seed_values) if seed_values else ""

                # Build generation_info using the helper function (like gradio_ui)
                time_costs = result.extra_outputs.get("time_costs", {})
                generation_info = _build_generation_info(
                    lm_metadata=lm_metadata,
                    time_costs=time_costs,
                    seed_value=seed_value,
                    inference_steps=req.inference_steps,
                    num_audios=len(result.audios),
                )

                def _none_if_na_str(v: Any) -> Optional[str]:
                    if v is None:
                        return None
                    s = str(v).strip()
                    if s in {"", "N/A"}:
                        return None
                    return s

                # Get model information
                lm_model_name = os.getenv("ACESTEP_LM_MODEL_PATH", "acestep-5Hz-lm-0.6B-v3")
                # Use selected_model_name (set at the beginning of _run_one_job)
                dit_model_name = selected_model_name
                
                return {
                    "first_audio_path": _path_to_audio_url(first_audio) if first_audio else None,
                    "second_audio_path": _path_to_audio_url(second_audio) if second_audio else None,
                    "audio_paths": [_path_to_audio_url(p) for p in audio_paths],
                    "generation_info": generation_info,
                    "status_message": result.status_message,
                    "seed_value": seed_value,
                    "metas": metas_out,
                    "bpm": metas_out.get("bpm") if isinstance(metas_out.get("bpm"), int) else None,
                    "duration": metas_out.get("duration") if isinstance(metas_out.get("duration"), (int, float)) else None,
                    "genres": _none_if_na_str(metas_out.get("genres")),
                    "keyscale": _none_if_na_str(metas_out.get("keyscale")),
                    "timesignature": _none_if_na_str(metas_out.get("timesignature")),
                    "lm_model": lm_model_name,
                    "dit_model": dit_model_name,
                }

            t0 = time.time()
            try:
                loop = asyncio.get_running_loop()
                result = await loop.run_in_executor(executor, _blocking_generate)
                job_store.mark_succeeded(job_id, result)
            except Exception:
                job_store.mark_failed(job_id, traceback.format_exc())
            finally:
                dt = max(0.0, time.time() - t0)
                async with app.state.stats_lock:
                    app.state.recent_durations.append(dt)
                    if app.state.recent_durations:
                        app.state.avg_job_seconds = sum(app.state.recent_durations) / len(app.state.recent_durations)

        async def _queue_worker(worker_idx: int) -> None:
            while True:
                job_id, req = await app.state.job_queue.get()
                try:
                    async with app.state.pending_lock:
                        try:
                            app.state.pending_ids.remove(job_id)
                        except ValueError:
                            pass

                    await _run_one_job(job_id, req)
                finally:
                    await _cleanup_job_temp_files(job_id)
                    app.state.job_queue.task_done()

        worker_count = max(1, WORKER_COUNT)
        workers = [asyncio.create_task(_queue_worker(i)) for i in range(worker_count)]
        app.state.worker_tasks = workers

        try:
            yield
        finally:
            for t in workers:
                t.cancel()
            executor.shutdown(wait=False, cancel_futures=True)

    app = FastAPI(title="ACE-Step API", version="1.0", lifespan=lifespan)

    async def _queue_position(job_id: str) -> int:
        async with app.state.pending_lock:
            try:
                return list(app.state.pending_ids).index(job_id) + 1
            except ValueError:
                return 0

    async def _eta_seconds_for_position(pos: int) -> Optional[float]:
        if pos <= 0:
            return None
        async with app.state.stats_lock:
            avg = float(getattr(app.state, "avg_job_seconds", INITIAL_AVG_JOB_SECONDS))
        return pos * avg

    @app.post("/v1/music/generate", response_model=CreateJobResponse)
    async def create_music_generate_job(request: Request) -> CreateJobResponse:
        content_type = (request.headers.get("content-type") or "").lower()
        temp_files: list[str] = []

        def _build_req_from_mapping(mapping: Any, *, reference_audio_path: Optional[str], src_audio_path: Optional[str]) -> GenerateMusicRequest:
            get = getattr(mapping, "get", None)
            if not callable(get):
                raise HTTPException(status_code=400, detail="Invalid request payload")

            def _get_any(*keys: str, default: Any = None) -> Any:
                # 1) Top-level keys
                for k in keys:
                    v = get(k, None)
                    if v is not None:
                        return v

                # 2) Nested metas/metadata/user_metadata (dict or JSON string)
                nested = (
                    get("metas", None)
                    or get("meta", None)
                    or get("metadata", None)
                    or get("user_metadata", None)
                    or get("userMetadata", None)
                )

                if isinstance(nested, str):
                    s = nested.strip()
                    if s.startswith("{") and s.endswith("}"):
                        try:
                            nested = json.loads(s)
                        except Exception:
                            nested = None

                if isinstance(nested, dict):
                    g2 = nested.get
                    for k in keys:
                        v = g2(k, None)
                        if v is not None:
                            return v

                return default

            normalized_audio_duration = _to_float(_get_any("audio_duration", "duration", "audioDuration"), None)
            normalized_bpm = _to_int(_get_any("bpm"), None)
            normalized_keyscale = str(_get_any("key_scale", "keyscale", "keyScale", default="") or "")
            normalized_timesig = str(_get_any("time_signature", "timesignature", "timeSignature", default="") or "")

            # Accept it as an alias to avoid clients needing to special-case server.
            if normalized_audio_duration is None:
                normalized_audio_duration = _to_float(_get_any("target_duration", "targetDuration"), None)

            return GenerateMusicRequest(
                caption=str(get("caption", "") or ""),
                lyrics=str(get("lyrics", "") or ""),
                thinking=_to_bool(get("thinking"), False),
                sample_mode=_to_bool(_get_any("sample_mode", "sampleMode"), False),
                sample_query=str(_get_any("sample_query", "sampleQuery", "description", "desc", default="") or ""),
                use_format=_to_bool(_get_any("use_format", "useFormat", "format"), False),
                model=str(_get_any("model", "dit_model", "ditModel", default="") or "").strip() or None,
                bpm=normalized_bpm,
                key_scale=normalized_keyscale,
                time_signature=normalized_timesig,
                vocal_language=str(_get_any("vocal_language", "vocalLanguage", default="en") or "en"),
                inference_steps=_to_int(_get_any("inference_steps", "inferenceSteps"), 8) or 8,
                guidance_scale=_to_float(_get_any("guidance_scale", "guidanceScale"), 7.0) or 7.0,
                use_random_seed=_to_bool(_get_any("use_random_seed", "useRandomSeed"), True),
                seed=_to_int(get("seed"), -1) or -1,
                reference_audio_path=reference_audio_path,
                src_audio_path=src_audio_path,
                audio_duration=normalized_audio_duration,
                batch_size=_to_int(get("batch_size"), None),
                audio_code_string=str(_get_any("audio_code_string", "audioCodeString", default="") or ""),
                repainting_start=_to_float(get("repainting_start"), 0.0) or 0.0,
                repainting_end=_to_float(get("repainting_end"), None),
                instruction=str(get("instruction", _DEFAULT_DIT_INSTRUCTION) or ""),
                audio_cover_strength=_to_float(_get_any("audio_cover_strength", "audioCoverStrength"), 1.0) or 1.0,
                task_type=str(_get_any("task_type", "taskType", default="text2music") or "text2music"),
                use_adg=_to_bool(get("use_adg"), False),
                cfg_interval_start=_to_float(get("cfg_interval_start"), 0.0) or 0.0,
                cfg_interval_end=_to_float(get("cfg_interval_end"), 1.0) or 1.0,
                infer_method=str(_get_any("infer_method", "inferMethod", default="ode") or "ode"),
                audio_format=str(get("audio_format", "mp3") or "mp3"),
                use_tiled_decode=_to_bool(_get_any("use_tiled_decode", "useTiledDecode"), True),
                lm_model_path=str(get("lm_model_path") or "").strip() or None,
                lm_backend=str(get("lm_backend", "vllm") or "vllm"),
                lm_temperature=_to_float(get("lm_temperature"), _LM_DEFAULT_TEMPERATURE) or _LM_DEFAULT_TEMPERATURE,
                lm_cfg_scale=_to_float(get("lm_cfg_scale"), _LM_DEFAULT_CFG_SCALE) or _LM_DEFAULT_CFG_SCALE,
                lm_top_k=_to_int(get("lm_top_k"), None),
                lm_top_p=_to_float(get("lm_top_p"), _LM_DEFAULT_TOP_P),
                lm_repetition_penalty=_to_float(get("lm_repetition_penalty"), 1.0) or 1.0,
                lm_negative_prompt=str(get("lm_negative_prompt", "NO USER INPUT") or "NO USER INPUT"),
                constrained_decoding=_to_bool(_get_any("constrained_decoding", "constrainedDecoding", "constrained"), True),
                constrained_decoding_debug=_to_bool(_get_any("constrained_decoding_debug", "constrainedDecodingDebug"), False),
                use_cot_caption=_to_bool(_get_any("use_cot_caption", "cot_caption", "cot-caption"), True),
                use_cot_language=_to_bool(_get_any("use_cot_language", "cot_language", "cot-language"), True),
                is_format_caption=_to_bool(_get_any("is_format_caption", "isFormatCaption"), False),
            )

        def _first_value(v: Any) -> Any:
            if isinstance(v, list) and v:
                return v[0]
            return v

        if content_type.startswith("application/json"):
            body = await request.json()
            if not isinstance(body, dict):
                raise HTTPException(status_code=400, detail="JSON payload must be an object")
            req = _build_req_from_mapping(body, reference_audio_path=None, src_audio_path=None)

        elif content_type.endswith("+json"):
            body = await request.json()
            if not isinstance(body, dict):
                raise HTTPException(status_code=400, detail="JSON payload must be an object")
            req = _build_req_from_mapping(body, reference_audio_path=None, src_audio_path=None)

        elif content_type.startswith("multipart/form-data"):
            form = await request.form()

            ref_up = form.get("reference_audio")
            src_up = form.get("src_audio")

            reference_audio_path = None
            src_audio_path = None

            if isinstance(ref_up, StarletteUploadFile):
                reference_audio_path = await _save_upload_to_temp(ref_up, prefix="reference_audio")
                temp_files.append(reference_audio_path)
            else:
                reference_audio_path = str(form.get("reference_audio_path") or "").strip() or None

            if isinstance(src_up, StarletteUploadFile):
                src_audio_path = await _save_upload_to_temp(src_up, prefix="src_audio")
                temp_files.append(src_audio_path)
            else:
                src_audio_path = str(form.get("src_audio_path") or "").strip() or None

            req = _build_req_from_mapping(form, reference_audio_path=reference_audio_path, src_audio_path=src_audio_path)

        elif content_type.startswith("application/x-www-form-urlencoded"):
            form = await request.form()
            reference_audio_path = str(form.get("reference_audio_path") or "").strip() or None
            src_audio_path = str(form.get("src_audio_path") or "").strip() or None
            req = _build_req_from_mapping(form, reference_audio_path=reference_audio_path, src_audio_path=src_audio_path)

        else:
            raw = await request.body()
            raw_stripped = raw.lstrip()
            # Best-effort: accept missing/incorrect Content-Type if payload is valid JSON.
            if raw_stripped.startswith(b"{") or raw_stripped.startswith(b"["):
                try:
                    body = json.loads(raw.decode("utf-8"))
                    if isinstance(body, dict):
                        req = _build_req_from_mapping(body, reference_audio_path=None, src_audio_path=None)
                    else:
                        raise HTTPException(status_code=400, detail="JSON payload must be an object")
                except HTTPException:
                    raise
                except Exception:
                    raise HTTPException(
                        status_code=400,
                        detail="Invalid JSON body (hint: set 'Content-Type: application/json')",
                    )
            # Best-effort: parse key=value bodies even if Content-Type is missing.
            elif raw_stripped and b"=" in raw:
                parsed = urllib.parse.parse_qs(raw.decode("utf-8"), keep_blank_values=True)
                flat = {k: _first_value(v) for k, v in parsed.items()}
                reference_audio_path = str(flat.get("reference_audio_path") or "").strip() or None
                src_audio_path = str(flat.get("src_audio_path") or "").strip() or None
                req = _build_req_from_mapping(flat, reference_audio_path=reference_audio_path, src_audio_path=src_audio_path)
            else:
                raise HTTPException(
                    status_code=415,
                    detail=(
                        f"Unsupported Content-Type: {content_type or '(missing)'}; "
                        "use application/json, application/x-www-form-urlencoded, or multipart/form-data"
                    ),
                )

        rec = store.create()

        q: asyncio.Queue = app.state.job_queue
        if q.full():
            for p in temp_files:
                try:
                    os.remove(p)
                except Exception:
                    pass
            raise HTTPException(status_code=429, detail="Server busy: queue is full")

        if temp_files:
            async with app.state.job_temp_files_lock:
                app.state.job_temp_files[rec.job_id] = temp_files

        async with app.state.pending_lock:
            app.state.pending_ids.append(rec.job_id)
            position = len(app.state.pending_ids)

        await q.put((rec.job_id, req))
        return CreateJobResponse(job_id=rec.job_id, status="queued", queue_position=position)

    @app.post("/v1/music/random", response_model=CreateJobResponse)
    async def create_random_sample_job(request: Request) -> CreateJobResponse:
        """Create a sample-mode job that auto-generates caption/lyrics via LM."""

        thinking_value: Any = None
        content_type = (request.headers.get("content-type") or "").lower()
        body_dict: Dict[str, Any] = {}

        if "json" in content_type:
            try:
                payload = await request.json()
                if isinstance(payload, dict):
                    body_dict = payload
            except Exception:
                body_dict = {}

        if not body_dict and request.query_params:
            body_dict = dict(request.query_params)

        thinking_value = body_dict.get("thinking")
        if thinking_value is None:
            thinking_value = body_dict.get("Thinking")

        thinking_flag = _to_bool(thinking_value, True)

        req = GenerateMusicRequest(
            caption="",
            lyrics="",
            thinking=thinking_flag,
            sample_mode=True,
        )

        rec = store.create()
        q: asyncio.Queue = app.state.job_queue
        if q.full():
            raise HTTPException(status_code=429, detail="Server busy: queue is full")

        async with app.state.pending_lock:
            app.state.pending_ids.append(rec.job_id)
            position = len(app.state.pending_ids)

        await q.put((rec.job_id, req))
        return CreateJobResponse(job_id=rec.job_id, status="queued", queue_position=position)

    @app.get("/v1/jobs/{job_id}", response_model=JobResponse)
    async def get_job(job_id: str) -> JobResponse:
        rec = store.get(job_id)
        if rec is None:
            raise HTTPException(status_code=404, detail="Job not found")

        pos = 0
        eta = None
        async with app.state.stats_lock:
            avg = float(getattr(app.state, "avg_job_seconds", INITIAL_AVG_JOB_SECONDS))

        if rec.status == "queued":
            pos = await _queue_position(job_id)
            eta = await _eta_seconds_for_position(pos)

        return JobResponse(
            job_id=rec.job_id,
            status=rec.status,
            created_at=rec.created_at,
            started_at=rec.started_at,
            finished_at=rec.finished_at,
            queue_position=pos,
            eta_seconds=eta,
            avg_job_seconds=avg,
            result=JobResult(**rec.result) if rec.result else None,
            error=rec.error,
        )

    @app.get("/health")
    async def health_check():
        """Health check endpoint for service status."""
        return {
            "status": "ok",
            "service": "ACE-Step API",
            "version": "1.0",
        }

    @app.get("/v1/audio")
    async def get_audio(path: str):
        """Serve audio file by path."""
        from fastapi.responses import FileResponse

        if not os.path.exists(path):
            raise HTTPException(status_code=404, detail=f"Audio file not found: {path}")

        ext = os.path.splitext(path)[1].lower()
        media_types = {
            ".mp3": "audio/mpeg",
            ".wav": "audio/wav",
            ".flac": "audio/flac",
            ".ogg": "audio/ogg",
        }
        media_type = media_types.get(ext, "audio/mpeg")

        return FileResponse(path, media_type=media_type)

    return app


app = create_app()


def main() -> None:
    import argparse
    import uvicorn

    parser = argparse.ArgumentParser(description="ACE-Step API server")
    parser.add_argument(
        "--host",
        default=os.getenv("ACESTEP_API_HOST", "127.0.0.1"),
        help="Bind host (default from ACESTEP_API_HOST or 127.0.0.1)",
    )
    parser.add_argument(
        "--port",
        type=int,
        default=int(os.getenv("ACESTEP_API_PORT", "8001")),
        help="Bind port (default from ACESTEP_API_PORT or 8001)",
    )
    args = parser.parse_args()

    # IMPORTANT: in-memory queue/store -> workers MUST be 1
    uvicorn.run(
        "acestep.api_server:app",
        host=str(args.host),
        port=int(args.port),
        reload=False,
        workers=1,
    )


if __name__ == "__main__":
    main()