File size: 114,814 Bytes
11a221a
 
 
 
 
 
25e1b40
11a221a
 
 
 
1d23edb
11a221a
 
 
12f9f66
11a221a
 
497ca57
12f9f66
 
11a221a
1bdda7b
 
11a221a
 
 
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
11a221a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25e1b40
 
 
 
11a221a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d23edb
 
 
11a221a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84d50ff
1d23edb
 
1daf6b4
11a221a
 
 
 
 
 
 
 
 
 
 
84d50ff
1d23edb
 
11a221a
 
 
 
 
 
 
1bdda7b
 
11a221a
 
1d23edb
 
11a221a
84d50ff
1daf6b4
 
 
 
 
 
 
 
11a221a
 
 
 
 
 
 
 
 
 
 
12f9f66
84d50ff
12f9f66
84d50ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f9f66
11a221a
 
1d23edb
 
 
 
 
 
 
 
 
11a221a
84d50ff
 
 
 
1daf6b4
 
 
 
 
 
 
 
 
 
 
11a221a
 
12f9f66
1d23edb
 
 
 
 
11a221a
 
 
 
 
 
 
 
 
84d50ff
 
1d23edb
 
 
 
11a221a
 
 
1daf6b4
 
 
11a221a
 
 
 
 
 
1d23edb
 
 
 
11a221a
 
 
 
 
 
 
 
447806b
25e1b40
 
 
 
 
 
447806b
25e1b40
11a221a
 
447806b
25e1b40
 
 
 
 
1bdda7b
 
 
 
 
25e1b40
 
 
447806b
25e1b40
 
 
 
 
 
1bdda7b
 
 
 
 
 
25e1b40
 
 
447806b
25e1b40
 
 
11a221a
 
 
 
 
84d50ff
11a221a
1bdda7b
11a221a
 
 
 
 
 
 
 
84d50ff
1d23edb
 
 
11a221a
 
 
 
 
 
 
1d23edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a221a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25e1b40
 
 
 
11a221a
 
 
 
 
 
 
 
 
25e1b40
11a221a
25e1b40
11a221a
1d23edb
11a221a
25e1b40
 
447806b
25e1b40
11a221a
 
25e1b40
 
447806b
25e1b40
 
 
11a221a
 
 
 
25e1b40
11a221a
 
 
 
25e1b40
 
 
 
11a221a
447806b
25e1b40
11a221a
 
 
 
25e1b40
11a221a
 
447806b
25e1b40
11a221a
25e1b40
11a221a
 
 
1d23edb
11a221a
 
25e1b40
 
11a221a
 
 
 
 
25e1b40
11a221a
 
 
 
 
 
 
447806b
11a221a
25e1b40
11a221a
 
 
 
 
 
 
1d23edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a221a
 
 
 
25e1b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bdda7b
 
 
25e1b40
 
 
 
 
1bdda7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25e1b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a221a
 
25e1b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447806b
11a221a
 
 
 
 
25e1b40
11a221a
 
 
 
 
25e1b40
 
11a221a
25e1b40
11a221a
 
 
 
 
 
 
 
 
 
 
25e1b40
11a221a
25e1b40
11a221a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25e1b40
 
 
 
 
 
11a221a
 
12f9f66
11a221a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447806b
11a221a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d23edb
 
 
 
 
 
 
 
 
 
1bdda7b
1d23edb
 
 
 
 
 
 
 
11a221a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f9f66
 
 
 
 
 
 
 
 
11a221a
 
 
12f9f66
11a221a
 
12f9f66
11a221a
 
12f9f66
11a221a
 
12f9f66
11a221a
12f9f66
11a221a
12f9f66
11a221a
 
 
 
 
 
 
1d23edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a221a
 
12f9f66
 
 
 
 
 
 
 
447806b
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09e4f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f9f66
 
 
 
 
 
 
 
 
4166944
 
 
 
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447806b
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447806b
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a221a
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447806b
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d23edb
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d23edb
 
 
 
 
 
447806b
1d23edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447806b
1d23edb
 
 
 
 
 
 
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447806b
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84d50ff
 
 
 
 
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d23edb
 
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447806b
1d23edb
 
447806b
1d23edb
12f9f66
1d23edb
 
 
 
 
 
 
 
 
 
447806b
1d23edb
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447806b
1d23edb
 
12f9f66
 
497ca57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a221a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497ca57
11a221a
 
 
 
 
 
 
 
 
 
84d50ff
 
 
 
11a221a
 
12f9f66
 
 
 
 
 
 
11a221a
12f9f66
11a221a
 
447806b
12f9f66
 
447806b
1d23edb
 
 
11a221a
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
11a221a
12f9f66
 
 
 
 
 
447806b
12f9f66
 
 
 
 
 
 
11a221a
12f9f66
 
 
447806b
12f9f66
11a221a
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
11a221a
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
11a221a
12f9f66
11a221a
12f9f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a221a
447806b
11a221a
 
1d23edb
447806b
 
11a221a
 
447806b
11a221a
 
 
 
1d23edb
 
 
 
 
 
 
447806b
1d23edb
 
 
 
 
 
11a221a
 
 
 
1d23edb
 
 
447806b
11a221a
 
 
 
 
 
 
 
 
 
12f9f66
11a221a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f9f66
 
 
11a221a
447806b
11a221a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f9f66
11a221a
12f9f66
 
11a221a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
"""
Business Logic Handler
Encapsulates all data processing and business logic as a bridge between model and UI
"""
import os
import math
from copy import deepcopy
import tempfile
import traceback
import re
import random
from contextlib import contextmanager
from typing import Optional, Dict, Any, Tuple, List, Union

import torch
import torchaudio
import soundfile as sf
import time
from tqdm import tqdm
from loguru import logger
import warnings

from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
from transformers.generation.streamers import BaseStreamer
from diffusers.models import AutoencoderOobleck


warnings.filterwarnings("ignore")


SFT_GEN_PROMPT = """# Instruction
{}

# Caption
{}

# Metas
{}<|endoftext|>
"""

class AceStepHandler:
    """ACE-Step Business Logic Handler"""
    
    def __init__(self):
        self.model = None
        self.config = None
        self.device = "cpu"
        self.dtype = torch.float32  # Will be set based on device in initialize_service
        self.temp_dir = tempfile.mkdtemp()
        
        # VAE for audio encoding/decoding
        self.vae = None
        
        # Text encoder and tokenizer
        self.text_encoder = None
        self.text_tokenizer = None
        
        # Silence latent for initialization
        self.silence_latent = None
        
        # Sample rate
        self.sample_rate = 48000
        
        # 5Hz LM related
        self.llm = None
        self.llm_tokenizer = None
        self.llm_initialized = False
        self.llm_backend = None
        
        # Reward model (temporarily disabled)
        self.reward_model = None
        
        # Dataset related (temporarily disabled)
        self.dataset = None
        self.dataset_imported = False
        
        # Batch size
        self.batch_size = 2
        
        # Custom layers config
        self.custom_layers_config = {
            2: [6, 7],
            3: [10, 11],
            4: [3],
            5: [8, 9, 11],
            6: [8]
        }
        self.offload_to_cpu = False
        self.offload_dit_to_cpu = False
        self.current_offload_cost = 0.0
    
    def get_available_checkpoints(self) -> str:
        """Return project root directory path"""
        # Get project root (handler.py is in acestep/, so go up two levels to project root)
        current_file = os.path.abspath(__file__)
        project_root = os.path.dirname(os.path.dirname(current_file))
        # default checkpoints
        checkpoint_dir = os.path.join(project_root, "checkpoints")
        if os.path.exists(checkpoint_dir):
            return [checkpoint_dir]
        else:
            return []
    
    def get_available_acestep_v15_models(self) -> List[str]:
        """Scan and return all model directory names starting with 'acestep-v15-'"""
        # Get project root
        current_file = os.path.abspath(__file__)
        project_root = os.path.dirname(os.path.dirname(current_file))
        checkpoint_dir = os.path.join(project_root, "checkpoints")
        
        models = []
        if os.path.exists(checkpoint_dir):
            # Scan all directories starting with 'acestep-v15-' in checkpoints folder
            for item in os.listdir(checkpoint_dir):
                item_path = os.path.join(checkpoint_dir, item)
                if os.path.isdir(item_path) and item.startswith("acestep-v15-"):
                    models.append(item)
        
        # Sort by name
        models.sort()
        return models
    
    def get_available_5hz_lm_models(self) -> List[str]:
        """Scan and return all model directory names starting with 'acestep-5Hz-lm-'"""
        current_file = os.path.abspath(__file__)
        project_root = os.path.dirname(os.path.dirname(current_file))
        checkpoint_dir = os.path.join(project_root, "checkpoints")
        
        models = []
        if os.path.exists(checkpoint_dir):
            for item in os.listdir(checkpoint_dir):
                item_path = os.path.join(checkpoint_dir, item)
                if os.path.isdir(item_path) and item.startswith("acestep-5Hz-lm-"):
                    models.append(item)
        
        models.sort()
        return models
    
    def is_flash_attention_available(self) -> bool:
        """Check if flash attention is available on the system"""
        try:
            import flash_attn
            return True
        except ImportError:
            return False
    
    def initialize_service(
        self, 
        project_root: str,
        config_path: str,
        device: str = "auto",
        init_llm: bool = False,
        lm_model_path: str = "acestep-5Hz-lm-0.6B",
        use_flash_attention: bool = False,
        compile_model: bool = False,
        offload_to_cpu: bool = False,
        offload_dit_to_cpu: bool = False,
        quantization: Optional[str] = None,
    ) -> Tuple[str, bool]:
        """
        Initialize model service
        
        Args:
            project_root: Project root path (may be checkpoints directory, will be handled automatically)
            config_path: Model config directory name (e.g., "acestep-v15-turbo")
            device: Device type
            init_llm: Whether to initialize 5Hz LM model
            lm_model_path: 5Hz LM model path
            use_flash_attention: Whether to use flash attention (requires flash_attn package)
            compile_model: Whether to use torch.compile to optimize the model
            offload_to_cpu: Whether to offload models to CPU when not in use
            offload_dit_to_cpu: Whether to offload DiT model to CPU when not in use (only effective if offload_to_cpu is True)
        
        Returns:
            (status_message, enable_generate_button)
        """
        try:
            if device == "auto":
                device = "cuda" if torch.cuda.is_available() else "cpu"

            status_msg = ""
            
            self.device = device
            self.offload_to_cpu = offload_to_cpu
            self.offload_dit_to_cpu = offload_dit_to_cpu
            # Set dtype based on device: bfloat16 for cuda, float32 for cpu
            self.dtype = torch.bfloat16 if device in ["cuda","xpu"] else torch.float32
            self.quantization = quantization
            if self.quantization is not None:
                assert compile_model, "Quantization requires compile_model to be True"
                try:
                    import torchao
                except ImportError:
                    raise ImportError("torchao is required for quantization but is not installed. Please install torchao to use quantization features.")
                

            # Auto-detect project root (independent of passed project_root parameter)
            current_file = os.path.abspath(__file__)
            actual_project_root = os.path.dirname(os.path.dirname(current_file))
            checkpoint_dir = os.path.join(actual_project_root, "checkpoints")

            # 1. Load main model
            # config_path is relative path (e.g., "acestep-v15-turbo"), concatenate to checkpoints directory
            acestep_v15_checkpoint_path = os.path.join(checkpoint_dir, config_path)
            if os.path.exists(acestep_v15_checkpoint_path):
                # Determine attention implementation
                if use_flash_attention and self.is_flash_attention_available():
                    attn_implementation = "flash_attention_2"
                    self.dtype = torch.bfloat16
                else:
                    attn_implementation = "sdpa"

                try:
                    logger.info(f"Attempting to load model with attention implementation: {attn_implementation}")
                    self.model = AutoModel.from_pretrained(
                        acestep_v15_checkpoint_path, 
                        trust_remote_code=True, 
                        attn_implementation=attn_implementation
                    )
                except Exception as e:
                    logger.warning(f"Failed to load model with {attn_implementation}: {e}")
                    if attn_implementation == "sdpa":
                        logger.info("Falling back to eager attention")
                        attn_implementation = "eager"
                        self.model = AutoModel.from_pretrained(
                            acestep_v15_checkpoint_path, 
                            trust_remote_code=True, 
                            attn_implementation=attn_implementation
                        )
                    else:
                        raise e

                self.model.config._attn_implementation = attn_implementation
                self.config = self.model.config
                # Move model to device and set dtype
                if not self.offload_to_cpu:
                    self.model = self.model.to(device).to(self.dtype)
                else:
                    # If offload_to_cpu is True, check if we should keep DiT on GPU
                    if not self.offload_dit_to_cpu:
                        logger.info(f"Keeping main model on {device} (persistent)")
                        self.model = self.model.to(device).to(self.dtype)
                    else:
                        self.model = self.model.to("cpu").to(self.dtype)
                self.model.eval()
                
                if compile_model:
                    self.model = torch.compile(self.model)
                    
                    if self.quantization == "int8_weight_only":
                        from torchao.quantization import quantize_, Int8WeightOnlyConfig
                        quantize_(self.model, Int8WeightOnlyConfig())
                        logger.info("DiT quantized with Int8WeightOnlyConfig")
                    elif self.quantization == "fp8_weight_only":
                        from torchao.quantization import quantize_, Float8WeightOnlyConfig
                        quantize_(self.model, Float8WeightOnlyConfig())                        
                    elif self.quantization is not None:
                        raise ValueError(f"Unsupported quantization type: {self.quantization}")
                    
                    
                silence_latent_path = os.path.join(acestep_v15_checkpoint_path, "silence_latent.pt")
                if os.path.exists(silence_latent_path):
                    self.silence_latent = torch.load(silence_latent_path).transpose(1, 2)
                    # If DiT is on GPU, silence_latent should also be on GPU
                    if not self.offload_to_cpu or not self.offload_dit_to_cpu:
                        self.silence_latent = self.silence_latent.to(device).to(self.dtype)
                    else:
                        self.silence_latent = self.silence_latent.to("cpu").to(self.dtype)
                else:
                    raise FileNotFoundError(f"Silence latent not found at {silence_latent_path}")
            else:
                raise FileNotFoundError(f"ACE-Step V1.5 checkpoint not found at {acestep_v15_checkpoint_path}")
            
            # 2. Load VAE
            vae_checkpoint_path = os.path.join(checkpoint_dir, "vae")
            if os.path.exists(vae_checkpoint_path):
                self.vae = AutoencoderOobleck.from_pretrained(vae_checkpoint_path)
                # Use bfloat16 for VAE on GPU, otherwise use self.dtype (float32 on CPU)
                vae_dtype = torch.bfloat16 if device in ["cuda", "xpu"] else self.dtype
                if not self.offload_to_cpu:
                    self.vae = self.vae.to(device).to(vae_dtype)
                else:
                    self.vae = self.vae.to("cpu").to(vae_dtype)
                self.vae.eval()
            else:
                raise FileNotFoundError(f"VAE checkpoint not found at {vae_checkpoint_path}")

            if compile_model:
                self.vae = torch.compile(self.vae)
            
            # 3. Load text encoder and tokenizer
            text_encoder_path = os.path.join(checkpoint_dir, "Qwen3-Embedding-0.6B")
            if os.path.exists(text_encoder_path):
                self.text_tokenizer = AutoTokenizer.from_pretrained(text_encoder_path)
                self.text_encoder = AutoModel.from_pretrained(text_encoder_path)
                if not self.offload_to_cpu:
                    self.text_encoder = self.text_encoder.to(device).to(self.dtype)
                else:
                    self.text_encoder = self.text_encoder.to("cpu").to(self.dtype)
                self.text_encoder.eval()
            else:
                raise FileNotFoundError(f"Text encoder not found at {text_encoder_path}")
            
            # 4. Load 5Hz LM model (optional, only if init_llm is True)
            if init_llm:
                full_lm_model_path = os.path.join(checkpoint_dir, lm_model_path)
                if os.path.exists(full_lm_model_path):
                    logger.info("loading 5Hz LM tokenizer...")
                    start_time = time.time()
                    llm_tokenizer = deepcopy(self.text_tokenizer)
                    max_audio_length = 2**16 - 1
                    semantic_tokens = [f"<|audio_code_{i}|>" for i in range(max_audio_length)]
                    # 217204
                    llm_tokenizer.add_special_tokens({"additional_special_tokens": semantic_tokens})
                    logger.info(f"5Hz LM tokenizer loaded successfully in {time.time() - start_time:.2f} seconds")
                    self.llm_tokenizer = llm_tokenizer
                    if device == "cuda":
                        status_msg = self._initialize_5hz_lm_cuda(full_lm_model_path)
                        logger.info(f"5Hz LM status message: {status_msg}")
                        # Check if initialization failed (status_msg starts with ❌)
                        if status_msg.startswith("❌"):
                            # vllm initialization failed, fallback to PyTorch
                            if not self.llm_initialized:
                                try:
                                    self.llm = AutoModelForCausalLM.from_pretrained(full_lm_model_path, trust_remote_code=True)
                                    if not self.offload_to_cpu:
                                        self.llm = self.llm.to(device).to(self.dtype)
                                    else:
                                        self.llm = self.llm.to("cpu").to(self.dtype)
                                    self.llm.eval()
                                    self.llm_backend = "pt"
                                    self.llm_initialized = True
                                    logger.info("5Hz LM initialized successfully on CUDA device using Transformers backend")
                                except Exception as e:
                                    return f"❌ Error initializing 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}", False
                        # If vllm initialization succeeded, self.llm_initialized should already be True
                    else:
                        # For CPU or other devices, use PyTorch backend
                        try:
                            self.llm = AutoModelForCausalLM.from_pretrained(full_lm_model_path, trust_remote_code=True)
                            self.llm_tokenizer = AutoTokenizer.from_pretrained(full_lm_model_path, use_fast=True, trust_remote_code=True)
                            if not self.offload_to_cpu:
                                self.llm = self.llm.to(device).to(self.dtype)
                            else:
                                self.llm = self.llm.to("cpu").to(self.dtype)
                            self.llm.eval()
                            self.llm_backend = "pt"
                            self.llm_initialized = True
                            logger.info("5Hz LM initialized successfully on non-CUDA device using Transformers backend")
                        except Exception as e:
                            return f"❌ Error initializing 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}", False
                            
                else:
                    # 5Hz LM path not found
                    return f"❌ 5Hz LM model not found at {full_lm_model_path}", False

            # Determine actual attention implementation used
            actual_attn = getattr(self.config, "_attn_implementation", "eager")
            
            status_msg = f"✅ Model initialized successfully on {device}\n" + status_msg
            status_msg += f"Main model: {acestep_v15_checkpoint_path}\n"
            status_msg += f"VAE: {vae_checkpoint_path}\n"
            status_msg += f"Text encoder: {text_encoder_path}\n"
            if init_llm and hasattr(self, 'llm') and self.llm is not None:
                status_msg += f"5Hz LM model: {os.path.join(checkpoint_dir, lm_model_path)}\n"
            else:
                status_msg += f"5Hz LM model: Not loaded (checkbox not selected)\n"
            status_msg += f"Dtype: {self.dtype}\n"
            status_msg += f"Attention: {actual_attn}\n"
            status_msg += f"Compiled: {compile_model}\n"
            status_msg += f"Offload to CPU: {self.offload_to_cpu}\n"
            status_msg += f"Offload DiT to CPU: {self.offload_dit_to_cpu}"
            
            return status_msg, True
            
        except Exception as e:
            error_msg = f"❌ Error initializing model: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
            return error_msg, False
    
    @contextmanager
    def _load_model_context(self, model_name: str):
        """
        Context manager to load a model to GPU and offload it back to CPU after use.
        
        Args:
            model_name: Name of the model to load ("text_encoder", "vae", "model", "llm")
        """
        if not self.offload_to_cpu:
            yield
            return

        # If model is DiT ("model") and offload_dit_to_cpu is False, do not offload
        if model_name == "model" and not self.offload_dit_to_cpu:
            # Ensure it's on device if not already (should be handled by init, but safe to check)
            model = getattr(self, model_name, None)
            if model is not None:
                # Check if model is on CPU, if so move to device (one-time move if it was somehow on CPU)
                # We check the first parameter's device
                try:
                    param = next(model.parameters())
                    if param.device.type == "cpu":
                        logger.info(f"Moving {model_name} to {self.device} (persistent)")
                        model.to(self.device).to(self.dtype)
                        if hasattr(self, "silence_latent"):
                            self.silence_latent = self.silence_latent.to(self.device).to(self.dtype)
                except StopIteration:
                    pass
            yield
            return

        # If model is LLM and using nanovllm, do not offload (it stays on GPU)
        if model_name == "llm" and getattr(self, "llm_type", None) == "nanovllm":
            yield
            return

        model = getattr(self, model_name, None)
        if model is None:
            yield
            return

        # Load to GPU
        logger.info(f"Loading {model_name} to {self.device}")
        start_time = time.time()
        if model_name == "vae":
            vae_dtype = torch.bfloat16 if self.device in ["cuda", "xpu"] else self.dtype
            model.to(self.device).to(vae_dtype)
        elif model_name == "llm" and hasattr(model, "to"):
             # Special handling for nanovllm LLM which might have custom to() method or structure
             # Assuming it has a .to() method based on our previous edits to nanovllm
             model.to(self.device)
        else:
            model.to(self.device).to(self.dtype)
        
        if model_name == "model" and hasattr(self, "silence_latent"):
             self.silence_latent = self.silence_latent.to(self.device).to(self.dtype)
        
        load_time = time.time() - start_time
        self.current_offload_cost += load_time
        logger.info(f"Loaded {model_name} to {self.device} in {load_time:.4f}s")

        try:
            yield
        finally:
            # Offload to CPU
            logger.info(f"Offloading {model_name} to CPU")
            start_time = time.time()
            if model_name == "llm" and hasattr(model, "to"):
                 model.to("cpu")
            else:
                 model.to("cpu")
            
            if model_name == "model" and hasattr(self, "silence_latent"):
                 self.silence_latent = self.silence_latent.to("cpu")
            
            torch.cuda.empty_cache()
            offload_time = time.time() - start_time
            self.current_offload_cost += offload_time
            logger.info(f"Offloaded {model_name} to CPU in {offload_time:.4f}s")

    def import_dataset(self, dataset_type: str) -> str:
        """Import dataset (temporarily disabled)"""
        self.dataset_imported = False
        return f"⚠️ Dataset import is currently disabled. Text2MusicDataset dependency not available."
    
    def get_item_data(self, *args, **kwargs):
        """Get dataset item (temporarily disabled)"""
        return "", "", "", "", "", None, None, None, "❌ Dataset not available", "", 0, "", None, None, None, {}, "text2music"

    def get_gpu_memory_utilization(self, minimal_gpu: float = 8, min_ratio: float = 0.2, max_ratio: float = 0.9) -> float:
        """Get GPU memory utilization ratio"""
        try:
            device = torch.device("cuda:0")
            total_gpu_mem_bytes = torch.cuda.get_device_properties(device).total_memory
            allocated_mem_bytes = torch.cuda.memory_allocated(device)
            reserved_mem_bytes = torch.cuda.memory_reserved(device)
            
            total_gpu = total_gpu_mem_bytes / 1024**3
            low_gpu_memory_mode = False
            if total_gpu < minimal_gpu:
                minimal_gpu = 0.5 * total_gpu
                low_gpu_memory_mode = True
            allocated_gpu = allocated_mem_bytes / 1024**3
            reserved_gpu = reserved_mem_bytes / 1024**3
            available_gpu = total_gpu - reserved_gpu
            
            if available_gpu >= minimal_gpu:
                ratio = min(max_ratio, max(min_ratio, minimal_gpu / total_gpu))
            else:
                ratio = min(max_ratio, max(min_ratio, (available_gpu * 0.8) / total_gpu))
            
            return ratio, low_gpu_memory_mode
        except Exception as e:
            return 0.9, low_gpu_memory_mode
    
    def _initialize_5hz_lm(self, model_path: str) -> str:
        """Initialize 5Hz LM model"""
        if not torch.cuda.is_available():
            self.llm_initialized = False
            logger.error("CUDA is not available. Please check your GPU setup.")
            return "❌ CUDA is not available. Please check your GPU setup."
        try:
            from nanovllm import LLM, SamplingParams
        except ImportError:
            self.llm_initialized = False
            logger.error("nano-vllm is not installed. Please install it using 'cd acestep/third_parts/nano-vllm && pip install .")
            return "❌ nano-vllm is not installed. Please install it using 'cd acestep/third_parts/nano-vllm && pip install ."
        
        try:
            current_device = torch.cuda.current_device()
            device_name = torch.cuda.get_device_name(current_device)
            
            torch.cuda.empty_cache()
            gpu_memory_utilization, low_gpu_memory_mode = self.get_gpu_memory_utilization(
                minimal_gpu=8, 
                min_ratio=0.2, 
                max_ratio=0.9
            )
            if low_gpu_memory_mode:
                self.max_model_len = 1024
            else:
                self.max_model_len = 2048
            
            logger.info(f"Initializing 5Hz LM with model: {model_path}, enforce_eager: False, tensor_parallel_size: 1, max_model_len: {self.max_model_len}, gpu_memory_utilization: {gpu_memory_utilization}")
            start_time = time.time()
            self.llm = LLM(
                model=model_path,
                enforce_eager=False,
                tensor_parallel_size=1,
                max_model_len=self.max_model_len,
                gpu_memory_utilization=gpu_memory_utilization,
            )
            logger.info(f"5Hz LM initialized successfully in {time.time() - start_time:.2f} seconds")
            self.llm.tokenizer = self.llm_tokenizer
            self.llm_initialized = True
            self.llm_backend = "vllm"
            return f"✅ 5Hz LM initialized successfully\nModel: {model_path}\nDevice: {device_name}\nGPU Memory Utilization: {gpu_memory_utilization:.2f}"
        except Exception as e:
            self.llm_initialized = False
            self.llm_type = None
            error_msg = f"❌ Error initializing 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
            return error_msg

    def generate_with_5hz_lm_vllm(self, caption: str, lyrics: str, temperature: float = 0.6) -> Tuple[Dict[str, Any], str, str]:
        try:
            from nanovllm import SamplingParams
            
            prompt = f"# Caption\n{caption}\n\n# Lyric\n{lyrics}\n"
            
            formatted_prompt = self.llm_tokenizer.apply_chat_template(
                [
                    {"role": "system", "content": "# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n"},
                    {"role": "user", "content": prompt}
                ],
                tokenize=False,
                add_generation_prompt=True,
            )
            logger.debug(f"[debug] formatted_prompt: {formatted_prompt}")
            
            sampling_params = SamplingParams(max_tokens=self.max_model_len, temperature=temperature)
            outputs = self.llm.generate([formatted_prompt], sampling_params)
            if isinstance(outputs, list) and len(outputs) > 0:
                if hasattr(outputs[0], 'outputs') and len(outputs[0].outputs) > 0:
                    output_text = outputs[0].outputs[0].text
                elif hasattr(outputs[0], 'text'):
                    output_text = outputs[0].text
                else:
                    # Transformers generation
                    inputs = self.llm_tokenizer(formatted_prompt, return_tensors="pt").to(self.llm.device)
                    
                    # Generate
                    with torch.no_grad():
                        outputs = self.llm.generate(
                            **inputs,
                            max_new_tokens=3072,
                            temperature=temperature,
                            do_sample=True,
                            pad_token_id=self.llm_tokenizer.pad_token_id,
                            eos_token_id=self.llm_tokenizer.eos_token_id
                        )
                    
                    # Decode
                    generated_ids = outputs[0][inputs.input_ids.shape[1]:]
                    output_text = self.llm_tokenizer.decode(generated_ids, skip_special_tokens=False)
                
                metadata, audio_codes = self.parse_lm_output(output_text)
                codes_count = len(audio_codes.split('<|audio_code_')) - 1 if audio_codes else 0
                return metadata, audio_codes, f"✅ Generated successfully\nOutput length: {len(output_text)} chars\nCodes count: {codes_count}"
            
        except Exception as e:
            error_msg = f"❌ Error generating with 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
            return {}, "", error_msg
        
    def generate_with_5hz_lm_pt(self, caption: str, lyrics: str, temperature: float = 0.6) -> Tuple[Dict[str, Any], str, str]:
        try:
            prompt = f"# Caption\n{caption}\n\n# Lyric\n{lyrics}\n"
            
            formatted_prompt = self.llm_tokenizer.apply_chat_template(
                [
                    {"role": "system", "content": "# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n"},
                    {"role": "user", "content": prompt}
                ],
                tokenize=False,
                add_generation_prompt=True,
            )
            
            # Tokenize the prompt
            inputs = self.llm_tokenizer(
                formatted_prompt,
                return_tensors="pt",
                padding=False,
                truncation=True,
            )
            
            # Generate with the model
            with self._load_model_context("llm"):
                inputs = {k: v.to(self.device) for k, v in inputs.items()}
                
                # Get max_new_tokens from model config or use a default
                max_new_tokens = getattr(self.llm.config, 'max_new_tokens', 4096)
                if hasattr(self, 'max_model_len'):
                    max_new_tokens = min(max_new_tokens, self.max_model_len)
                
                # Define custom streamer for tqdm
                class TqdmTokenStreamer(BaseStreamer):
                    def __init__(self, total):
                        self.pbar = tqdm(total=total, desc="Generating 5Hz tokens", unit="token", maxinterval=1)
                        
                    def put(self, value):
                        # value is tensor of token ids
                        if value.dim() > 1:
                            num_tokens = value.numel()
                        else:
                            num_tokens = len(value)
                        self.pbar.update(num_tokens)
                        
                    def end(self):
                        self.pbar.close()

                streamer = TqdmTokenStreamer(total=max_new_tokens)

                with torch.no_grad():
                    outputs = self.llm.generate(
                        **inputs,
                        max_new_tokens=max_new_tokens,
                        temperature=temperature,
                        do_sample=True if temperature > 0 else False,
                        pad_token_id=self.llm_tokenizer.pad_token_id or self.llm_tokenizer.eos_token_id,
                        streamer=streamer,
                    )
            
            # Decode the generated tokens
            # Only decode the newly generated tokens (skip the input prompt)
            generated_ids = outputs[0][inputs['input_ids'].shape[1]:]
            output_text = self.llm_tokenizer.decode(generated_ids, skip_special_tokens=False)
            
            metadata, audio_codes = self.parse_lm_output(output_text)
            codes_count = len(audio_codes.split('<|audio_code_')) - 1 if audio_codes else 0
            return metadata, audio_codes, f"✅ Generated successfully\nOutput length: {len(output_text)} chars\nCodes count: {codes_count}"
            
        except Exception as e:
            error_msg = f"❌ Error generating with 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
            return {}, "", error_msg
        
    def generate_with_5hz_lm(self, caption: str, lyrics: str, temperature: float = 0.6) -> Tuple[Dict[str, Any], str, str]:
        """Generate metadata and audio codes using 5Hz LM"""
        # Check if 5Hz LM is initialized
        if not hasattr(self, 'llm_initialized') or not self.llm_initialized:
            debug_info = f"llm_initialized={getattr(self, 'llm_initialized', 'not set')}, "
            debug_info += f"has_llm={hasattr(self, 'llm')}, "
            debug_info += f"llm_is_none={getattr(self, 'llm', None) is None}, "
            debug_info += f"llm_backend={getattr(self, 'llm_backend', 'not set')}"
            return {}, "", f"❌ 5Hz LM not initialized. Please initialize it first. Debug: {debug_info}"
        
        if not hasattr(self, 'llm') or self.llm is None:
            return {}, "", "❌ 5Hz LM model not loaded. Please initialize it first."
        
        if not hasattr(self, 'llm_backend'):
            return {}, "", "❌ 5Hz LM backend not set. Please initialize it first."
        
        if self.llm_backend == "vllm":
            return self.generate_with_5hz_lm_vllm(caption, lyrics, temperature)
        else:
            return self.generate_with_5hz_lm_pt(caption, lyrics, temperature)
    
    def parse_lm_output(self, output_text: str) -> Tuple[Dict[str, Any], str]:
        """
        Parse LM output to extract metadata and audio codes.
        
        Expected format:
        <think>
        bpm: 73
        duration: 273
        genres: Chinese folk
        keyscale: G major
        timesignature: 4
        </think>
        
        <|audio_code_56535|><|audio_code_62918|>...
        
        Returns:
            Tuple of (metadata_dict, audio_codes_string)
        """
        debug_output_text = output_text.split("</think>")[0]
        logger.debug(f"Debug output text: {debug_output_text}")
        metadata = {}
        audio_codes = ""
        
        import re
        
        # Extract audio codes - find all <|audio_code_XXX|> patterns
        code_pattern = r'<\|audio_code_\d+\|>'
        code_matches = re.findall(code_pattern, output_text)
        if code_matches:
            audio_codes = "".join(code_matches)
        
        # Extract metadata from reasoning section
        # Try different reasoning tag patterns
        reasoning_patterns = [
            r'<think>(.*?)</think>',
            r'<think>(.*?)</think>',
            r'<reasoning>(.*?)</reasoning>',
        ]
        
        reasoning_text = None
        for pattern in reasoning_patterns:
            match = re.search(pattern, output_text, re.DOTALL)
            if match:
                reasoning_text = match.group(1).strip()
                break
        
        # If no reasoning tags found, try to parse metadata from the beginning of output
        if not reasoning_text:
            # Look for metadata lines before audio codes
            lines_before_codes = output_text.split('<|audio_code_')[0] if '<|audio_code_' in output_text else output_text
            reasoning_text = lines_before_codes.strip()
        
        # Parse metadata fields
        if reasoning_text:
            for line in reasoning_text.split('\n'):
                line = line.strip()
                if ':' in line and not line.startswith('<'):
                    parts = line.split(':', 1)
                    if len(parts) == 2:
                        key = parts[0].strip().lower()
                        value = parts[1].strip()
                        
                        if key == 'bpm':
                            try:
                                metadata['bpm'] = int(value)
                            except:
                                metadata['bpm'] = value
                        elif key == 'duration':
                            try:
                                metadata['duration'] = int(value)
                            except:
                                metadata['duration'] = value
                        elif key == 'genres':
                            metadata['genres'] = value
                        elif key == 'keyscale':
                            metadata['keyscale'] = value
                        elif key == 'timesignature':
                            metadata['timesignature'] = value
        
        return metadata, audio_codes

    def process_target_audio(self, audio_file) -> Optional[torch.Tensor]:
        """Process target audio"""
        if audio_file is None:
            return None
        
        try:
            # Load audio using soundfile
            audio_np, sr = sf.read(audio_file, dtype='float32')
            # Convert to torch: [samples, channels] or [samples] -> [channels, samples]
            if audio_np.ndim == 1:
                audio = torch.from_numpy(audio_np).unsqueeze(0)
            else:
                audio = torch.from_numpy(audio_np.T)
            
            if audio.shape[0] == 1:
                audio = torch.cat([audio, audio], dim=0)
            
            audio = audio[:2]
            
            # Resample if needed
            if sr != 48000:
                import torch.nn.functional as F
                ratio = 48000 / sr
                new_length = int(audio.shape[-1] * ratio)
                audio = F.interpolate(audio.unsqueeze(0), size=new_length, mode='linear', align_corners=False).squeeze(0)
            
            audio = torch.clamp(audio, -1.0, 1.0)
            
            return audio
        except Exception as e:
            logger.error(f"Error processing target audio: {e}")
            return None
    
    def _parse_audio_code_string(self, code_str: str) -> List[int]:
        """Extract integer audio codes from prompt tokens like <|audio_code_123|>."""
        if not code_str:
            return []
        try:
            return [int(x) for x in re.findall(r"<\|audio_code_(\d+)\|>", code_str)]
        except Exception:
            return []
    
    def _decode_audio_codes_to_latents(self, code_str: str) -> Optional[torch.Tensor]:
        """
        Convert serialized audio code string into 25Hz latents using model quantizer/detokenizer.
        """
        if not self.model or not hasattr(self.model, 'tokenizer') or not hasattr(self.model, 'detokenizer'):
            return None
        
        code_ids = self._parse_audio_code_string(code_str)
        if len(code_ids) == 0:
            return None
        
        with self._load_model_context("model"):
            quantizer = self.model.tokenizer.quantizer
            detokenizer = self.model.detokenizer
            
            num_quantizers = getattr(quantizer, "num_quantizers", 1)
            indices = torch.tensor(code_ids, device=self.device, dtype=torch.long).unsqueeze(0)  # [1, T_5Hz]
            
            # Expand to include quantizer dimension: [1, T_5Hz, num_quantizers]
            if indices.dim() == 2:
                indices = indices.unsqueeze(-1).expand(-1, -1, num_quantizers)
            print(indices.shape)
            # Get quantized representation from indices: [1, T_5Hz, dim]
            quantized = quantizer.get_output_from_indices(indices)
            if quantized.dtype != self.dtype:
                quantized = quantized.to(self.dtype)
            
            # Detokenize to 25Hz: [1, T_5Hz, dim] -> [1, T_25Hz, dim]
            lm_hints_25hz = detokenizer(quantized)
            return lm_hints_25hz
    
    def _create_default_meta(self) -> str:
        """Create default metadata string."""
        return (
            "- bpm: N/A\n"
            "- timesignature: N/A\n" 
            "- keyscale: N/A\n"
            "- duration: 30 seconds\n"
        )
    
    def _dict_to_meta_string(self, meta_dict: Dict[str, Any]) -> str:
        """Convert metadata dict to formatted string."""
        bpm = meta_dict.get('bpm', meta_dict.get('tempo', 'N/A'))
        timesignature = meta_dict.get('timesignature', meta_dict.get('time_signature', 'N/A'))
        keyscale = meta_dict.get('keyscale', meta_dict.get('key', meta_dict.get('scale', 'N/A')))
        duration = meta_dict.get('duration', meta_dict.get('length', 30))

        # Format duration
        if isinstance(duration, (int, float)):
            duration = f"{int(duration)} seconds"
        elif not isinstance(duration, str):
            duration = "30 seconds"
        
        return (
            f"- bpm: {bpm}\n"
            f"- timesignature: {timesignature}\n"
            f"- keyscale: {keyscale}\n"
            f"- duration: {duration}\n"
        )
    
    def _parse_metas(self, metas: List[Union[str, Dict[str, Any]]]) -> List[str]:
        """
        Parse and normalize metadata with fallbacks.
        
        Args:
            metas: List of metadata (can be strings, dicts, or None)
            
        Returns:
            List of formatted metadata strings
        """
        parsed_metas = []
        for meta in metas:
            if meta is None:
                # Default fallback metadata
                parsed_meta = self._create_default_meta()
            elif isinstance(meta, str):
                # Already formatted string
                parsed_meta = meta
            elif isinstance(meta, dict):
                # Convert dict to formatted string
                parsed_meta = self._dict_to_meta_string(meta)
            else:
                # Fallback for any other type
                parsed_meta = self._create_default_meta()
            
            parsed_metas.append(parsed_meta)
        
        return parsed_metas
    
    def _get_text_hidden_states(self, text_prompt: str) -> Tuple[torch.Tensor, torch.Tensor]:
        """Get text hidden states from text encoder."""
        if self.text_tokenizer is None or self.text_encoder is None:
            raise ValueError("Text encoder not initialized")
        
        with self._load_model_context("text_encoder"):
            # Tokenize
            text_inputs = self.text_tokenizer(
                text_prompt,
                padding="longest",
                truncation=True,
                max_length=256,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids.to(self.device)
            text_attention_mask = text_inputs.attention_mask.to(self.device).bool()
            
            # Encode
            with torch.no_grad():
                text_outputs = self.text_encoder(text_input_ids)
                if hasattr(text_outputs, 'last_hidden_state'):
                    text_hidden_states = text_outputs.last_hidden_state
                elif isinstance(text_outputs, tuple):
                    text_hidden_states = text_outputs[0]
                else:
                    text_hidden_states = text_outputs
            
            text_hidden_states = text_hidden_states.to(self.dtype)
            
            return text_hidden_states, text_attention_mask
    
    def extract_caption_from_sft_format(self, caption: str) -> str:
        try:
            if "# Instruction" in caption and "# Caption" in caption:
                pattern = r'#\s*Caption\s*\n(.*?)(?:\n\s*#\s*Metas|$)'
                match = re.search(pattern, caption, re.DOTALL)
                if match:
                    return match.group(1).strip()
            return caption
        except Exception as e:
            logger.error(f"Error extracting caption: {e}")
            return caption

    def prepare_seeds(self, actual_batch_size, seed, use_random_seed):
        actual_seed_list: List[int] = []
        seed_value_for_ui = ""

        if use_random_seed:
            # Generate brand new seeds and expose them back to the UI
            actual_seed_list = [random.randint(0, 2 ** 32 - 1) for _ in range(actual_batch_size)]
            seed_value_for_ui = ", ".join(str(s) for s in actual_seed_list)
        else:
            # Parse seed input: can be a single number, comma-separated numbers, or -1
            # If seed is a string, try to parse it as comma-separated values
            seed_list = []
            if isinstance(seed, str):
                # Handle string input (e.g., "123,456" or "-1")
                seed_str_list = [s.strip() for s in seed.split(",")]
                for s in seed_str_list:
                    if s == "-1" or s == "":
                        seed_list.append(-1)
                    else:
                        try:
                            seed_list.append(int(float(s)))
                        except (ValueError, TypeError):
                            seed_list.append(-1)
            elif seed is None or (isinstance(seed, (int, float)) and seed < 0):
                # If seed is None or negative, use -1 for all items
                seed_list = [-1] * actual_batch_size
            elif isinstance(seed, (int, float)):
                # Single seed value
                seed_list = [int(seed)]
            else:
                # Fallback: use -1
                seed_list = [-1] * actual_batch_size

            # Process seed list according to rules:
            # 1. If all are -1, generate different random seeds for each batch item
            # 2. If one non-negative seed is provided and batch_size > 1, first uses that seed, rest are random
            # 3. If more seeds than batch_size, use first batch_size seeds
            # Check if user provided only one non-negative seed (not -1)
            has_single_non_negative_seed = (len(seed_list) == 1 and seed_list[0] != -1)

            for i in range(actual_batch_size):
                if i < len(seed_list):
                    seed_val = seed_list[i]
                else:
                    # If not enough seeds provided, use -1 (will generate random)
                    seed_val = -1

                # Special case: if only one non-negative seed was provided and batch_size > 1,
                # only the first item uses that seed, others are random
                if has_single_non_negative_seed and actual_batch_size > 1 and i > 0:
                    # Generate random seed for remaining items
                    actual_seed_list.append(random.randint(0, 2 ** 32 - 1))
                elif seed_val == -1:
                    # Generate a random seed for this item
                    actual_seed_list.append(random.randint(0, 2 ** 32 - 1))
                else:
                    actual_seed_list.append(int(seed_val))

            seed_value_for_ui = ", ".join(str(s) for s in actual_seed_list)
        return actual_seed_list, seed_value_for_ui
    
    def prepare_metadata(self, bpm, key_scale, time_signature):
        # Build metadata dict - use "N/A" as default for empty fields
        metadata_dict = {}
        if bpm:
            metadata_dict["bpm"] = bpm
        else:
            metadata_dict["bpm"] = "N/A"

        if key_scale.strip():
            metadata_dict["keyscale"] = key_scale
        else:
            metadata_dict["keyscale"] = "N/A"

        if time_signature.strip() and time_signature != "N/A" and time_signature:
            metadata_dict["timesignature"] = time_signature
        else:
            metadata_dict["timesignature"] = "N/A"
        return metadata_dict
    
    def is_silence(self, audio):
        return torch.all(audio.abs() < 1e-6)

    def generate_instruction(
        self,
        task_type: str,
        track_name: Optional[str] = None,
        complete_track_classes: Optional[List[str]] = None
    ) -> str:
        TRACK_NAMES = [
            "woodwinds", "brass", "fx", "synth", "strings", "percussion",
            "keyboard", "guitar", "bass", "drums", "backing_vocals", "vocals"
        ]
        
        if task_type == "text2music":
            return "Fill the audio semantic mask based on the given conditions:"
        elif task_type == "repaint":
            return "Repaint the mask area based on the given conditions:"
        elif task_type == "cover":
            return "Generate audio semantic tokens based on the given conditions:"
        elif task_type == "extract":
            if track_name:
                # Convert to uppercase
                track_name_upper = track_name.upper()
                return f"Extract the {track_name_upper} track from the audio:"
            else:
                return "Extract the track from the audio:"
        elif task_type == "lego":
            if track_name:
                # Convert to uppercase
                track_name_upper = track_name.upper()
                return f"Generate the {track_name_upper} track based on the audio context:"
            else:
                return "Generate the track based on the audio context:"
        elif task_type == "complete":
            if complete_track_classes and len(complete_track_classes) > 0:
                # Convert to uppercase and join with " | "
                track_classes_upper = [t.upper() for t in complete_track_classes]
                complete_track_classes_str = " | ".join(track_classes_upper)
                return f"Complete the input track with {complete_track_classes_str}:"
            else:
                return "Complete the input track:"
        else:
            return "Fill the audio semantic mask based on the given conditions:"
    
    def process_reference_audio(self, audio_file) -> Optional[torch.Tensor]:
        if audio_file is None:
            return None
            
        try:
            # Load audio file
            audio, sr = torchaudio.load(audio_file)
            
            logger.info(f"Reference audio shape: {audio.shape}")
            logger.info(f"Reference audio sample rate: {sr}")
            logger.info(f"Reference audio duration: {audio.shape[-1] / 48000.0} seconds")
            
            # Convert to stereo (duplicate channel if mono)
            if audio.shape[0] == 1:
                audio = torch.cat([audio, audio], dim=0)
            
            # Keep only first 2 channels
            audio = audio[:2]
            
            # Resample to 48kHz if needed
            if sr != 48000:
                audio = torchaudio.transforms.Resample(sr, 48000)(audio)
            
            # Clamp values to [-1.0, 1.0]
            audio = torch.clamp(audio, -1.0, 1.0)
            
            is_silence = self.is_silence(audio)
            if is_silence:
                return None
            
            # Target length: 30 seconds at 48kHz
            target_frames = 30 * 48000
            segment_frames = 10 * 48000  # 10 seconds per segment
            
            # If audio is less than 30 seconds, repeat to at least 30 seconds
            if audio.shape[-1] < target_frames:
                repeat_times = math.ceil(target_frames / audio.shape[-1])
                audio = audio.repeat(1, repeat_times)
            # If audio is greater than or equal to 30 seconds, no operation needed
            
            # For all cases, select random 10-second segments from front, middle, and back
            # then concatenate them to form 30 seconds
            total_frames = audio.shape[-1]
            segment_size = total_frames // 3
            
            # Front segment: [0, segment_size]
            front_start = random.randint(0, max(0, segment_size - segment_frames))
            front_audio = audio[:, front_start:front_start + segment_frames]
            
            # Middle segment: [segment_size, 2*segment_size]
            middle_start = segment_size + random.randint(0, max(0, segment_size - segment_frames))
            middle_audio = audio[:, middle_start:middle_start + segment_frames]
            
            # Back segment: [2*segment_size, total_frames]
            back_start = 2 * segment_size + random.randint(0, max(0, (total_frames - 2 * segment_size) - segment_frames))
            back_audio = audio[:, back_start:back_start + segment_frames]
            
            # Concatenate three segments to form 30 seconds
            audio = torch.cat([front_audio, middle_audio, back_audio], dim=-1)
            
            return audio
            
        except Exception as e:
            logger.error(f"Error processing reference audio: {e}")
            return None

    def process_src_audio(self, audio_file) -> Optional[torch.Tensor]:
        if audio_file is None:
            return None
            
        try:
            # Load audio file
            audio, sr = torchaudio.load(audio_file)
            
            # Convert to stereo (duplicate channel if mono)
            if audio.shape[0] == 1:
                audio = torch.cat([audio, audio], dim=0)
            
            # Keep only first 2 channels
            audio = audio[:2]
            
            # Resample to 48kHz if needed
            if sr != 48000:
                audio = torchaudio.transforms.Resample(sr, 48000)(audio)
            
            # Clamp values to [-1.0, 1.0]
            audio = torch.clamp(audio, -1.0, 1.0)
            
            return audio
            
        except Exception as e:
            logger.error(f"Error processing target audio: {e}")
            return None
        
    def prepare_batch_data(
        self,
        actual_batch_size,
        processed_src_audio,
        audio_duration,
        captions,
        lyrics,
        vocal_language,
        instruction,
        bpm,
        key_scale,
        time_signature
    ):
        pure_caption = self.extract_caption_from_sft_format(captions)
        captions_batch = [pure_caption] * actual_batch_size
        instructions_batch = [instruction] * actual_batch_size
        lyrics_batch = [lyrics] * actual_batch_size
        vocal_languages_batch = [vocal_language] * actual_batch_size
        # Calculate duration for metadata
        calculated_duration = None
        if processed_src_audio is not None:
            calculated_duration = processed_src_audio.shape[-1] / 48000.0
        elif audio_duration is not None and audio_duration > 0:
            calculated_duration = audio_duration

        # Build metadata dict - use "N/A" as default for empty fields
        metadata_dict = {}
        if bpm:
            metadata_dict["bpm"] = bpm
        else:
            metadata_dict["bpm"] = "N/A"

        if key_scale.strip():
            metadata_dict["keyscale"] = key_scale
        else:
            metadata_dict["keyscale"] = "N/A"

        if time_signature.strip() and time_signature != "N/A" and time_signature:
            metadata_dict["timesignature"] = time_signature
        else:
            metadata_dict["timesignature"] = "N/A"

        # Add duration to metadata if available (inference service format: "30 seconds")
        if calculated_duration is not None:
            metadata_dict["duration"] = f"{int(calculated_duration)} seconds"
        # If duration not set, inference service will use default (30 seconds)

        # Format metadata - inference service accepts dict and will convert to string
        # Create a copy for each batch item (in case we modify it)
        metas_batch = [metadata_dict.copy() for _ in range(actual_batch_size)]
        return captions_batch, instructions_batch, lyrics_batch, vocal_languages_batch, metas_batch
    
    def determine_task_type(self, task_type, audio_code_string):
        # Determine task type - repaint and lego tasks can have repainting parameters
        # Other tasks (cover, text2music, extract, complete) should NOT have repainting
        is_repaint_task = (task_type == "repaint")
        is_lego_task = (task_type == "lego")
        is_cover_task = (task_type == "cover")
        if audio_code_string and str(audio_code_string).strip():
            is_cover_task = True
        # Both repaint and lego tasks can use repainting parameters for chunk mask
        can_use_repainting = is_repaint_task or is_lego_task
        return is_repaint_task, is_lego_task, is_cover_task, can_use_repainting

    def create_target_wavs(self, duration_seconds: float) -> torch.Tensor:
        try:
            # Ensure minimum precision of 100ms
            duration_seconds = max(0.1, round(duration_seconds, 1))
            # Calculate frames for 48kHz stereo
            frames = int(duration_seconds * 48000)
            # Create silent stereo audio
            target_wavs = torch.zeros(2, frames)
            return target_wavs
        except Exception as e:
            logger.error(f"Error creating target audio: {e}")
            # Fallback to 30 seconds if error
            return torch.zeros(2, 30 * 48000)
    
    def prepare_padding_info(
        self,
        actual_batch_size,
        processed_src_audio,
        audio_duration,
        repainting_start,
        repainting_end,
        is_repaint_task,
        is_lego_task,
        is_cover_task,
        can_use_repainting,
    ):
        target_wavs_batch = []
        # Store padding info for each batch item to adjust repainting coordinates
        padding_info_batch = []
        for i in range(actual_batch_size):
            if processed_src_audio is not None:
                if is_cover_task:
                    # Cover task: Use src_audio directly without padding
                    batch_target_wavs = processed_src_audio
                    padding_info_batch.append({
                        'left_padding_duration': 0.0,
                        'right_padding_duration': 0.0
                    })
                elif is_repaint_task or is_lego_task:
                    # Repaint/lego task: May need padding for outpainting
                    src_audio_duration = processed_src_audio.shape[-1] / 48000.0

                    # Determine actual end time
                    if repainting_end is None or repainting_end < 0:
                        actual_end = src_audio_duration
                    else:
                        actual_end = repainting_end

                    left_padding_duration = max(0, -repainting_start) if repainting_start is not None else 0
                    right_padding_duration = max(0, actual_end - src_audio_duration)

                    # Create padded audio
                    left_padding_frames = int(left_padding_duration * 48000)
                    right_padding_frames = int(right_padding_duration * 48000)

                    if left_padding_frames > 0 or right_padding_frames > 0:
                        # Pad the src audio
                        batch_target_wavs = torch.nn.functional.pad(
                            processed_src_audio,
                            (left_padding_frames, right_padding_frames),
                            'constant', 0
                        )
                    else:
                        batch_target_wavs = processed_src_audio

                    # Store padding info for coordinate adjustment
                    padding_info_batch.append({
                        'left_padding_duration': left_padding_duration,
                        'right_padding_duration': right_padding_duration
                    })
                else:
                    # Other tasks: Use src_audio directly without padding
                    batch_target_wavs = processed_src_audio
                    padding_info_batch.append({
                        'left_padding_duration': 0.0,
                        'right_padding_duration': 0.0
                    })
            else:
                padding_info_batch.append({
                    'left_padding_duration': 0.0,
                    'right_padding_duration': 0.0
                })
                if audio_duration is not None and audio_duration > 0:
                    batch_target_wavs = self.create_target_wavs(audio_duration)
                else:
                    import random
                    random_duration = random.uniform(10.0, 120.0)
                    batch_target_wavs = self.create_target_wavs(random_duration)
            target_wavs_batch.append(batch_target_wavs)

        # Stack target_wavs into batch tensor
        # Ensure all tensors have the same shape by padding to max length
        max_frames = max(wav.shape[-1] for wav in target_wavs_batch)
        padded_target_wavs = []
        for wav in target_wavs_batch:
            if wav.shape[-1] < max_frames:
                pad_frames = max_frames - wav.shape[-1]
                padded_wav = torch.nn.functional.pad(wav, (0, pad_frames), 'constant', 0)
                padded_target_wavs.append(padded_wav)
            else:
                padded_target_wavs.append(wav)

        target_wavs_tensor = torch.stack(padded_target_wavs, dim=0)  # [batch_size, 2, frames]

        if can_use_repainting:
            # Repaint task: Set repainting parameters
            if repainting_start is None:
                repainting_start_batch = None
            elif isinstance(repainting_start, (int, float)):
                if processed_src_audio is not None:
                    adjusted_start = repainting_start + padding_info_batch[0]['left_padding_duration']
                    repainting_start_batch = [adjusted_start] * actual_batch_size
                else:
                    repainting_start_batch = [repainting_start] * actual_batch_size
            else:
                # List input - adjust each item
                repainting_start_batch = []
                for i in range(actual_batch_size):
                    if processed_src_audio is not None:
                        adjusted_start = repainting_start[i] + padding_info_batch[i]['left_padding_duration']
                        repainting_start_batch.append(adjusted_start)
                    else:
                        repainting_start_batch.append(repainting_start[i])

            # Handle repainting_end - use src audio duration if not specified or negative
            if processed_src_audio is not None:
                # If src audio is provided, use its duration as default end
                src_audio_duration = processed_src_audio.shape[-1] / 48000.0
                if repainting_end is None or repainting_end < 0:
                    # Use src audio duration (before padding), then adjust for padding
                    adjusted_end = src_audio_duration + padding_info_batch[0]['left_padding_duration']
                    repainting_end_batch = [adjusted_end] * actual_batch_size
                else:
                    # Adjust repainting_end to be relative to padded audio
                    adjusted_end = repainting_end + padding_info_batch[0]['left_padding_duration']
                    repainting_end_batch = [adjusted_end] * actual_batch_size
            else:
                # No src audio - repainting doesn't make sense without it
                if repainting_end is None or repainting_end < 0:
                    repainting_end_batch = None
                elif isinstance(repainting_end, (int, float)):
                    repainting_end_batch = [repainting_end] * actual_batch_size
                else:
                    # List input - adjust each item
                    repainting_end_batch = []
                    for i in range(actual_batch_size):
                        if processed_src_audio is not None:
                            adjusted_end = repainting_end[i] + padding_info_batch[i]['left_padding_duration']
                            repainting_end_batch.append(adjusted_end)
                        else:
                            repainting_end_batch.append(repainting_end[i])
        else:
            # All other tasks (cover, text2music, extract, complete): No repainting
            # Only repaint and lego tasks should have repainting parameters
            repainting_start_batch = None
            repainting_end_batch = None
            
        return repainting_start_batch, repainting_end_batch, target_wavs_tensor

    def _prepare_batch(
        self,
        captions: List[str],
        lyrics: List[str],
        keys: Optional[List[str]] = None,
        target_wavs: Optional[torch.Tensor] = None,
        refer_audios: Optional[List[List[torch.Tensor]]] = None,
        metas: Optional[List[Union[str, Dict[str, Any]]]] = None,
        vocal_languages: Optional[List[str]] = None,
        repainting_start: Optional[List[float]] = None,
        repainting_end: Optional[List[float]] = None,
        instructions: Optional[List[str]] = None,
        audio_code_hints: Optional[List[Optional[str]]] = None,
        audio_cover_strength: float = 1.0,
    ) -> Dict[str, Any]:
        """
        Prepare batch data with fallbacks for missing inputs.
        
        Args:
            captions: List of text captions (optional, can be empty strings)
            lyrics: List of lyrics (optional, can be empty strings)
            keys: List of unique identifiers (optional)
            target_wavs: Target audio tensors (optional, will use silence if not provided)
            refer_audios: Reference audio tensors (optional, will use silence if not provided)
            metas: Metadata (optional, will use defaults if not provided)
            vocal_languages: Vocal languages (optional, will default to 'en')
            
        Returns:
            Batch dictionary ready for model input
        """
        batch_size = len(captions)

        # Ensure audio_code_hints is a list of the correct length
        if audio_code_hints is None:
            audio_code_hints = [None] * batch_size
        elif len(audio_code_hints) != batch_size:
            if len(audio_code_hints) == 1:
                audio_code_hints = audio_code_hints * batch_size
            else:
                audio_code_hints = audio_code_hints[:batch_size]
                while len(audio_code_hints) < batch_size:
                    audio_code_hints.append(None)
        
        for ii, refer_audio_list in enumerate(refer_audios):
            if isinstance(refer_audio_list, list):
                for idx, refer_audio in enumerate(refer_audio_list):
                    refer_audio_list[idx] = refer_audio_list[idx].to(self.device).to(torch.bfloat16)
            elif isinstance(refer_audio_list, torch.Tensor):
                refer_audios[ii] = refer_audios[ii].to(self.device)
        
        if vocal_languages is None:
            vocal_languages = self._create_fallback_vocal_languages(batch_size)
        
        # Normalize audio_code_hints to batch list
        if audio_code_hints is None:
            audio_code_hints = [None] * batch_size
        elif not isinstance(audio_code_hints, list):
            audio_code_hints = [audio_code_hints] * batch_size
        elif len(audio_code_hints) == 1 and batch_size > 1:
            audio_code_hints = audio_code_hints * batch_size
        else:
            audio_code_hints = (audio_code_hints + [None] * batch_size)[:batch_size]
        audio_code_hints = [hint if isinstance(hint, str) and hint.strip() else None for hint in audio_code_hints]
        
        # Parse metas with fallbacks
        parsed_metas = self._parse_metas(metas)
        
        # Encode target_wavs to get target_latents
        with torch.no_grad():
            target_latents_list = []
            latent_lengths = []
            # Use per-item wavs (may be adjusted if audio_code_hints are provided)
            target_wavs_list = [target_wavs[i].clone() for i in range(batch_size)]
            if target_wavs.device != self.device:
                target_wavs = target_wavs.to(self.device)
            
            with self._load_model_context("vae"):
                for i in range(batch_size):
                    code_hint = audio_code_hints[i]
                    # Prefer decoding from provided audio codes
                    if code_hint:
                        logger.info(f"[generate_music] Decoding audio codes for item {i}...")
                        decoded_latents = self._decode_audio_codes_to_latents(code_hint)
                        if decoded_latents is not None:
                            decoded_latents = decoded_latents.squeeze(0)
                            target_latents_list.append(decoded_latents)
                            latent_lengths.append(decoded_latents.shape[0])
                            # Create a silent wav matching the latent length for downstream scaling
                            frames_from_codes = max(1, int(decoded_latents.shape[0] * 1920))
                            target_wavs_list[i] = torch.zeros(2, frames_from_codes)
                            continue
                    # Fallback to VAE encode from audio
                    current_wav = target_wavs_list[i].to(self.device).unsqueeze(0)
                    if self.is_silence(current_wav):
                        expected_latent_length = current_wav.shape[-1] // 1920
                        target_latent = self.silence_latent[0, :expected_latent_length, :]
                    else:
                        # Ensure input is in VAE's dtype
                        logger.info(f"[generate_music] Encoding target audio to latents for item {i}...")
                        vae_input = current_wav.to(self.device).to(self.vae.dtype)
                        target_latent = self.vae.encode(vae_input).latent_dist.sample()
                        # Cast back to model dtype
                        target_latent = target_latent.to(self.dtype)
                        target_latent = target_latent.squeeze(0).transpose(0, 1)
                    target_latents_list.append(target_latent)
                    latent_lengths.append(target_latent.shape[0])
             
            # Pad target_wavs to consistent length for outputs
            max_target_frames = max(wav.shape[-1] for wav in target_wavs_list)
            padded_target_wavs = []
            for wav in target_wavs_list:
                if wav.shape[-1] < max_target_frames:
                    pad_frames = max_target_frames - wav.shape[-1]
                    wav = torch.nn.functional.pad(wav, (0, pad_frames), "constant", 0)
                padded_target_wavs.append(wav)
            target_wavs = torch.stack(padded_target_wavs)
            wav_lengths = torch.tensor([target_wavs.shape[-1]] * batch_size, dtype=torch.long)
            
            # Pad latents to same length
            max_latent_length = max(latent.shape[0] for latent in target_latents_list)
            max_latent_length = max(128, max_latent_length)
            
            padded_latents = []
            for latent in target_latents_list:
                latent_length = latent.shape[0]
                
                if latent.shape[0] < max_latent_length:
                    pad_length = max_latent_length - latent.shape[0]
                    latent = torch.cat([latent, self.silence_latent[0, :pad_length, :]], dim=0)
                padded_latents.append(latent)
            
            target_latents = torch.stack(padded_latents)
            latent_masks = torch.stack([
                torch.cat([
                    torch.ones(l, dtype=torch.long, device=self.device),
                    torch.zeros(max_latent_length - l, dtype=torch.long, device=self.device)
                ])
                for l in latent_lengths
            ])
        
        # Process instructions early so we can use them for task type detection
        # Use custom instructions if provided, otherwise use default
        if instructions is None:
            instructions = ["Fill the audio semantic mask based on the given conditions:"] * batch_size
        
        # Ensure instructions list has the same length as batch_size
        if len(instructions) != batch_size:
            if len(instructions) == 1:
                instructions = instructions * batch_size
            else:
                # Pad or truncate to match batch_size
                instructions = instructions[:batch_size]
                while len(instructions) < batch_size:
                    instructions.append("Fill the audio semantic mask based on the given conditions:")
        
        # Generate chunk_masks and spans based on repainting parameters
        # Also determine if this is a cover task (target audio provided without repainting)
        chunk_masks = []
        spans = []
        is_covers = []
        # Store repainting latent ranges for later use in src_latents creation
        repainting_ranges = {}  # {batch_idx: (start_latent, end_latent)}
        
        for i in range(batch_size):
            has_code_hint = audio_code_hints[i] is not None
            # Check if repainting is enabled for this batch item
            has_repainting = False
            if repainting_start is not None and repainting_end is not None:
                start_sec = repainting_start[i] if repainting_start[i] is not None else 0.0
                end_sec = repainting_end[i]
                
                if end_sec is not None and end_sec > start_sec:
                    # Repainting mode with outpainting support
                    # The target_wavs may have been padded for outpainting
                    # Need to calculate the actual position in the padded audio
                    
                    # Calculate padding (if start < 0, there's left padding)
                    left_padding_sec = max(0, -start_sec)
                    
                    # Adjust positions to account for padding
                    # In the padded audio, the original start is shifted by left_padding
                    adjusted_start_sec = start_sec + left_padding_sec
                    adjusted_end_sec = end_sec + left_padding_sec
                    
                    # Convert seconds to latent frames (audio_frames / 1920 = latent_frames)
                    start_latent = int(adjusted_start_sec * self.sample_rate // 1920)
                    end_latent = int(adjusted_end_sec * self.sample_rate // 1920)

                    # Clamp to valid range
                    start_latent = max(0, min(start_latent, max_latent_length - 1))
                    end_latent = max(start_latent + 1, min(end_latent, max_latent_length))
                    # Create mask: False = keep original, True = generate new
                    mask = torch.zeros(max_latent_length, dtype=torch.bool, device=self.device)
                    mask[start_latent:end_latent] = True
                    chunk_masks.append(mask)
                    spans.append(("repainting", start_latent, end_latent))
                    # Store repainting range for later use
                    repainting_ranges[i] = (start_latent, end_latent)
                    has_repainting = True
                    is_covers.append(False)  # Repainting is not cover task
                else:
                    # Full generation (no valid repainting range)
                    chunk_masks.append(torch.ones(max_latent_length, dtype=torch.bool, device=self.device))
                    spans.append(("full", 0, max_latent_length))
                    # Determine task type from instruction, not from target_wavs
                    # Only cover task should have is_cover=True
                    instruction_i = instructions[i] if instructions and i < len(instructions) else ""
                    instruction_lower = instruction_i.lower()
                    # Cover task instruction: "Generate audio semantic tokens based on the given conditions:"
                    is_cover = ("generate audio semantic tokens" in instruction_lower and 
                               "based on the given conditions" in instruction_lower) or has_code_hint
                    is_covers.append(is_cover)
            else:
                # Full generation (no repainting parameters)
                chunk_masks.append(torch.ones(max_latent_length, dtype=torch.bool, device=self.device))
                spans.append(("full", 0, max_latent_length))
                # Determine task type from instruction, not from target_wavs
                # Only cover task should have is_cover=True
                instruction_i = instructions[i] if instructions and i < len(instructions) else ""
                instruction_lower = instruction_i.lower()
                # Cover task instruction: "Generate audio semantic tokens based on the given conditions:"
                is_cover = ("generate audio semantic tokens" in instruction_lower and 
                           "based on the given conditions" in instruction_lower) or has_code_hint
                is_covers.append(is_cover)
        
        chunk_masks = torch.stack(chunk_masks)
        is_covers = torch.BoolTensor(is_covers).to(self.device)
        
        # Create src_latents based on task type
        # For cover/extract/complete/lego/repaint tasks: src_latents = target_latents.clone() (if target_wavs provided)
        # For text2music task: src_latents = silence_latent (if no target_wavs or silence)
        # For repaint task: additionally replace inpainting region with silence_latent
        src_latents_list = []
        silence_latent_tiled = self.silence_latent[0, :max_latent_length, :]
        for i in range(batch_size):
            # Check if target_wavs is provided and not silent (for extract/complete/lego/cover/repaint tasks)
            has_code_hint = audio_code_hints[i] is not None
            has_target_audio = has_code_hint or (target_wavs is not None and target_wavs[i].abs().sum() > 1e-6)
            
            if has_target_audio:
                # For tasks that use input audio (cover/extract/complete/lego/repaint)
                # Check if this item has repainting
                item_has_repainting = (i in repainting_ranges)
                
                if item_has_repainting:
                    # Repaint task: src_latents = target_latents with inpainting region replaced by silence_latent
                    # 1. Clone target_latents (encoded from src audio, preserving original audio)
                    src_latent = target_latents[i].clone()
                    # 2. Replace inpainting region with silence_latent
                    start_latent, end_latent = repainting_ranges[i]
                    src_latent[start_latent:end_latent] = silence_latent_tiled[start_latent:end_latent]
                    src_latents_list.append(src_latent)
                else:
                    # Cover/extract/complete/lego tasks: src_latents = target_latents.clone()
                    # All these tasks need to base on input audio
                    src_latents_list.append(target_latents[i].clone())
            else:
                # Text2music task: src_latents = silence_latent (no input audio)
                # Use silence_latent for the full length
                src_latents_list.append(silence_latent_tiled.clone())
        
        src_latents = torch.stack(src_latents_list)
        
        # Process audio_code_hints to generate precomputed_lm_hints_25Hz
        precomputed_lm_hints_25Hz_list = []
        for i in range(batch_size):
            if audio_code_hints[i] is not None:
                # Decode audio codes to 25Hz latents
                logger.info(f"[generate_music] Decoding audio codes for LM hints for item {i}...")
                hints = self._decode_audio_codes_to_latents(audio_code_hints[i])
                if hints is not None:
                    # Pad or crop to match max_latent_length
                    if hints.shape[1] < max_latent_length:
                        pad_length = max_latent_length - hints.shape[1]
                        hints = torch.cat([
                            hints,
                            self.silence_latent[0, :pad_length, :]
                        ], dim=1)
                    elif hints.shape[1] > max_latent_length:
                        hints = hints[:, :max_latent_length, :]
                    precomputed_lm_hints_25Hz_list.append(hints[0])  # Remove batch dimension
                else:
                    precomputed_lm_hints_25Hz_list.append(None)
            else:
                precomputed_lm_hints_25Hz_list.append(None)
        
        # Stack precomputed hints if any exist, otherwise set to None
        if any(h is not None for h in precomputed_lm_hints_25Hz_list):
            # For items without hints, use silence_latent as placeholder
            precomputed_lm_hints_25Hz = torch.stack([
                h if h is not None else silence_latent_tiled
                for h in precomputed_lm_hints_25Hz_list
            ])
        else:
            precomputed_lm_hints_25Hz = None
        
        # Format text_inputs
        text_inputs = []
        text_token_idss = []
        text_attention_masks = []
        lyric_token_idss = []
        lyric_attention_masks = []
        
        for i in range(batch_size):
            # Use custom instruction for this batch item
            instruction = instructions[i] if i < len(instructions) else "Fill the audio semantic mask based on the given conditions:"
            # Ensure instruction ends with ":"
            if not instruction.endswith(":"):
                instruction = instruction + ":"
            
            # Format text prompt with custom instruction
            text_prompt = SFT_GEN_PROMPT.format(instruction, captions[i], parsed_metas[i])
            
            # Tokenize text
            text_inputs_dict = self.text_tokenizer(
                text_prompt,
                padding="longest",
                truncation=True,
                max_length=256,
                return_tensors="pt",
            )
            text_token_ids = text_inputs_dict.input_ids[0]
            text_attention_mask = text_inputs_dict.attention_mask[0].bool()
            
            # Format and tokenize lyrics
            lyrics_text = f"# Languages\n{vocal_languages[i]}\n\n# Lyric\n{lyrics[i]}<|endoftext|>"
            lyrics_inputs_dict = self.text_tokenizer(
                lyrics_text,
                padding="longest",
                truncation=True,
                max_length=2048,
                return_tensors="pt",
            )
            lyric_token_ids = lyrics_inputs_dict.input_ids[0]
            lyric_attention_mask = lyrics_inputs_dict.attention_mask[0].bool()
            
            # Build full text input
            text_input = text_prompt + "\n\n" + lyrics_text
            
            text_inputs.append(text_input)
            text_token_idss.append(text_token_ids)
            text_attention_masks.append(text_attention_mask)
            lyric_token_idss.append(lyric_token_ids)
            lyric_attention_masks.append(lyric_attention_mask)
            
        # Pad tokenized sequences
        max_text_length = max(len(seq) for seq in text_token_idss)
        padded_text_token_idss = torch.stack([
            torch.nn.functional.pad(
                seq, (0, max_text_length - len(seq)), 'constant',
                self.text_tokenizer.pad_token_id
            )
            for seq in text_token_idss
        ])
        
        padded_text_attention_masks = torch.stack([
            torch.nn.functional.pad(
                seq, (0, max_text_length - len(seq)), 'constant', 0
            )
            for seq in text_attention_masks
        ])
        
        max_lyric_length = max(len(seq) for seq in lyric_token_idss)
        padded_lyric_token_idss = torch.stack([
            torch.nn.functional.pad(
                seq, (0, max_lyric_length - len(seq)), 'constant',
                self.text_tokenizer.pad_token_id
            )
            for seq in lyric_token_idss
        ])
        
        padded_lyric_attention_masks = torch.stack([
            torch.nn.functional.pad(
                seq, (0, max_lyric_length - len(seq)), 'constant', 0
            )
            for seq in lyric_attention_masks
        ])

        padded_non_cover_text_input_ids = None
        padded_non_cover_text_attention_masks = None
        if audio_cover_strength < 1.0 and is_covers is not None and is_covers.any():
            non_cover_text_input_ids = []
            non_cover_text_attention_masks = []
            for i in range(batch_size):
                # Use custom instruction for this batch item
                instruction = "Fill the audio semantic mask based on the given conditions:"
                
                # Format text prompt with custom instruction
                text_prompt = SFT_GEN_PROMPT.format(instruction, captions[i], parsed_metas[i])
                
                # Tokenize text
                text_inputs_dict = self.text_tokenizer(
                    text_prompt,
                    padding="longest",
                    truncation=True,
                    max_length=256,
                    return_tensors="pt",
                )
                text_token_ids = text_inputs_dict.input_ids[0]
                non_cover_text_input_ids.append(text_token_ids)
                non_cover_text_attention_masks.append(text_attention_mask)
            
            padded_non_cover_text_input_ids = torch.stack([
                torch.nn.functional.pad(
                    seq, (0, max_text_length - len(seq)), 'constant',
                    self.text_tokenizer.pad_token_id
                )
                for seq in non_cover_text_input_ids
            ])
            padded_non_cover_text_attention_masks = torch.stack([
                torch.nn.functional.pad(
                    seq, (0, max_text_length - len(seq)), 'constant', 0
                )
                for seq in non_cover_text_attention_masks
            ])
        
        # Prepare batch
        batch = {
            "keys": keys,
            "target_wavs": target_wavs.to(self.device),
            "refer_audioss": refer_audios,
            "wav_lengths": wav_lengths.to(self.device),
            "captions": captions,
            "lyrics": lyrics,
            "metas": parsed_metas,
            "vocal_languages": vocal_languages,
            "target_latents": target_latents,
            "src_latents": src_latents,
            "latent_masks": latent_masks,
            "chunk_masks": chunk_masks,
            "spans": spans,
            "text_inputs": text_inputs,
            "text_token_idss": padded_text_token_idss,
            "text_attention_masks": padded_text_attention_masks,
            "lyric_token_idss": padded_lyric_token_idss,
            "lyric_attention_masks": padded_lyric_attention_masks,
            "is_covers": is_covers,
            "precomputed_lm_hints_25Hz": precomputed_lm_hints_25Hz,
            "non_cover_text_input_ids": padded_non_cover_text_input_ids,
            "non_cover_text_attention_masks": padded_non_cover_text_attention_masks,
        }
        # to device
        for k, v in batch.items():
            if isinstance(v, torch.Tensor):
                batch[k] = v.to(self.device)
                if torch.is_floating_point(v):
                    batch[k] = v.to(self.dtype)
        return batch
    
    def infer_refer_latent(self, refer_audioss):
        refer_audio_order_mask = []
        refer_audio_latents = []
        for batch_idx, refer_audios in enumerate(refer_audioss):
            if len(refer_audios) == 1 and torch.all(refer_audios[0] == 0.0):
                refer_audio_latent = self.silence_latent[:, :750, :]
                refer_audio_latents.append(refer_audio_latent)
                refer_audio_order_mask.append(batch_idx)
            else:
                for refer_audio in refer_audios:
                    # Ensure input is in VAE's dtype
                    vae_input = refer_audio.unsqueeze(0).to(self.vae.dtype)
                    refer_audio_latent = self.vae.encode(vae_input).latent_dist.sample()
                    # Cast back to model dtype
                    refer_audio_latent = refer_audio_latent.to(self.dtype)
                    refer_audio_latents.append(refer_audio_latent.transpose(1, 2))
                    refer_audio_order_mask.append(batch_idx)

        refer_audio_latents = torch.cat(refer_audio_latents, dim=0)
        refer_audio_order_mask = torch.tensor(refer_audio_order_mask, device=self.device, dtype=torch.long)
        return refer_audio_latents, refer_audio_order_mask

    def infer_text_embeddings(self, text_token_idss):
        with torch.no_grad():
            text_embeddings = self.text_encoder(input_ids=text_token_idss, lyric_attention_mask=None).last_hidden_state
        return text_embeddings

    def infer_lyric_embeddings(self, lyric_token_ids):
        with torch.no_grad():
            lyric_embeddings = self.text_encoder.embed_tokens(lyric_token_ids)
        return lyric_embeddings

    def preprocess_batch(self, batch):

        # step 1: VAE encode latents, target_latents: N x T x d
        # target_latents: N x T x d
        target_latents = batch["target_latents"]
        src_latents = batch["src_latents"]
        attention_mask = batch["latent_masks"]
        audio_codes = batch.get("audio_codes", None)
        audio_attention_mask = attention_mask

        dtype = target_latents.dtype
        bs = target_latents.shape[0]
        device = target_latents.device

        # step 2: refer_audio timbre
        keys = batch["keys"]
        with self._load_model_context("vae"):
            refer_audio_acoustic_hidden_states_packed, refer_audio_order_mask = self.infer_refer_latent(batch["refer_audioss"])
        if refer_audio_acoustic_hidden_states_packed.dtype != dtype:
            refer_audio_acoustic_hidden_states_packed = refer_audio_acoustic_hidden_states_packed.to(dtype)

        # step 4: chunk mask, N x T x d
        chunk_mask = batch["chunk_masks"]
        chunk_mask = chunk_mask.to(device).unsqueeze(-1).repeat(1, 1, target_latents.shape[2])

        spans = batch["spans"]
        
        text_token_idss = batch["text_token_idss"]
        text_attention_mask = batch["text_attention_masks"]
        lyric_token_idss = batch["lyric_token_idss"]
        lyric_attention_mask = batch["lyric_attention_masks"]
        text_inputs = batch["text_inputs"]

        logger.info("[preprocess_batch] Inferring prompt embeddings...")
        with self._load_model_context("text_encoder"):
            text_hidden_states = self.infer_text_embeddings(text_token_idss)
            logger.info("[preprocess_batch] Inferring lyric embeddings...")
            lyric_hidden_states = self.infer_lyric_embeddings(lyric_token_idss)

            is_covers = batch["is_covers"]
            
            # Get precomputed hints from batch if available
            precomputed_lm_hints_25Hz = batch.get("precomputed_lm_hints_25Hz", None)
            
            # Get non-cover text input ids and attention masks from batch if available
            non_cover_text_input_ids = batch.get("non_cover_text_input_ids", None)
            non_cover_text_attention_masks = batch.get("non_cover_text_attention_masks", None)
            non_cover_text_hidden_states = None
            if non_cover_text_input_ids is not None:
                logger.info("[preprocess_batch] Inferring non-cover text embeddings...")
                non_cover_text_hidden_states = self.infer_text_embeddings(non_cover_text_input_ids)

        return (
            keys,
            text_inputs,
            src_latents,
            target_latents,
            # model inputs
            text_hidden_states,
            text_attention_mask,
            lyric_hidden_states,
            lyric_attention_mask,
            audio_attention_mask,
            refer_audio_acoustic_hidden_states_packed,
            refer_audio_order_mask,
            chunk_mask,
            spans,
            is_covers,
            audio_codes,
            lyric_token_idss,
            precomputed_lm_hints_25Hz,
            non_cover_text_hidden_states,
            non_cover_text_attention_masks,
        )
    
    @torch.no_grad()
    def service_generate(
        self,
        captions: Union[str, List[str]],
        lyrics: Union[str, List[str]],
        keys: Optional[Union[str, List[str]]] = None,
        target_wavs: Optional[torch.Tensor] = None,
        refer_audios: Optional[List[List[torch.Tensor]]] = None,
        metas: Optional[Union[str, Dict[str, Any], List[Union[str, Dict[str, Any]]]]] = None,
        vocal_languages: Optional[Union[str, List[str]]] = None,
        infer_steps: int = 60,
        guidance_scale: float = 7.0,
        seed: Optional[Union[int, List[int]]] = None,
        return_intermediate: bool = False,
        repainting_start: Optional[Union[float, List[float]]] = None,
        repainting_end: Optional[Union[float, List[float]]] = None,
        instructions: Optional[Union[str, List[str]]] = None,
        audio_cover_strength: float = 1.0,
        use_adg: bool = False,
        cfg_interval_start: float = 0.0,
        cfg_interval_end: float = 1.0,
        audio_code_hints: Optional[Union[str, List[str]]] = None,
        infer_method: str = "ode",
    ) -> Dict[str, Any]:

        """
        Generate music from text inputs.
        
        Args:
            captions: Text caption(s) describing the music (optional, can be empty strings)
            lyrics: Lyric text(s) (optional, can be empty strings)
            keys: Unique identifier(s) (optional)
            target_wavs: Target audio tensor(s) for conditioning (optional)
            refer_audios: Reference audio tensor(s) for style transfer (optional)
            metas: Metadata dict(s) or string(s) (optional)
            vocal_languages: Language code(s) for lyrics (optional, defaults to 'en')
            infer_steps: Number of inference steps (default: 60)
            guidance_scale: Guidance scale for generation (default: 7.0)
            seed: Random seed (optional)
            return_intermediate: Whether to return intermediate results (default: False)
            repainting_start: Start time(s) for repainting region in seconds (optional)
            repainting_end: End time(s) for repainting region in seconds (optional)
            instructions: Instruction text(s) for generation (optional)
            audio_cover_strength: Strength of audio cover mode (default: 1.0)
            use_adg: Whether to use ADG (Adaptive Diffusion Guidance) (default: False)
            cfg_interval_start: Start of CFG interval (0.0-1.0, default: 0.0)
            cfg_interval_end: End of CFG interval (0.0-1.0, default: 1.0)
            
        Returns:
            Dictionary containing:
            - pred_wavs: Generated audio tensors
            - target_wavs: Input target audio (if provided)
            - vqvae_recon_wavs: VAE reconstruction of target
            - keys: Identifiers used
            - text_inputs: Formatted text inputs
            - sr: Sample rate
            - spans: Generation spans
            - time_costs: Timing information
            - seed_num: Seed used
        """
        if self.config.is_turbo:
            # Limit inference steps to maximum 8
            if infer_steps > 8:
                logger.warning(f"dmd_gan version: infer_steps {infer_steps} exceeds maximum 8, clamping to 8")
                infer_steps = 8
            # CFG parameters are not adjustable for dmd_gan (they will be ignored)
            # Note: guidance_scale, cfg_interval_start, cfg_interval_end are still passed but may be ignored by the model
        
        # Convert single inputs to lists
        if isinstance(captions, str):
            captions = [captions]
        if isinstance(lyrics, str):
            lyrics = [lyrics]
        if isinstance(keys, str):
            keys = [keys]
        if isinstance(vocal_languages, str):
            vocal_languages = [vocal_languages]
        if isinstance(metas, (str, dict)):
            metas = [metas]
            
        # Convert repainting parameters to lists
        if isinstance(repainting_start, (int, float)):
            repainting_start = [repainting_start]
        if isinstance(repainting_end, (int, float)):
            repainting_end = [repainting_end]
        
        # Convert instructions to list
        if isinstance(instructions, str):
            instructions = [instructions]
        elif instructions is None:
            instructions = None
        
        # Convert audio_code_hints to list
        if isinstance(audio_code_hints, str):
            audio_code_hints = [audio_code_hints]
        elif audio_code_hints is None:
            audio_code_hints = None

        # Get batch size from captions
        batch_size = len(captions)

        # Ensure audio_code_hints matches batch size
        if audio_code_hints is not None:
            if len(audio_code_hints) != batch_size:
                if len(audio_code_hints) == 1:
                    audio_code_hints = audio_code_hints * batch_size
                else:
                    audio_code_hints = audio_code_hints[:batch_size]
                    while len(audio_code_hints) < batch_size:
                        audio_code_hints.append(None)
        
        # Convert seed to list format
        if seed is None:
            seed_list = None
        elif isinstance(seed, list):
            seed_list = seed
            # Ensure we have enough seeds for batch size
            if len(seed_list) < batch_size:
                # Pad with last seed or random seeds
                import random
                while len(seed_list) < batch_size:
                    seed_list.append(random.randint(0, 2**32 - 1))
            elif len(seed_list) > batch_size:
                # Truncate to batch size
                seed_list = seed_list[:batch_size]
        else:
            # Single seed value - use for all batch items
            seed_list = [int(seed)] * batch_size

        # Don't set global random seed here - each item will use its own seed
        
        # Prepare batch
        batch = self._prepare_batch(
            captions=captions,
            lyrics=lyrics,
            keys=keys,
            target_wavs=target_wavs,
            refer_audios=refer_audios,
            metas=metas,
            vocal_languages=vocal_languages,
            repainting_start=repainting_start,
            repainting_end=repainting_end,
            instructions=instructions,
            audio_code_hints=audio_code_hints,
        )
        
        processed_data = self.preprocess_batch(batch)
        
        (
            keys,
            text_inputs,
            src_latents,
            target_latents,
            # model inputs
            text_hidden_states,
            text_attention_mask,
            lyric_hidden_states,
            lyric_attention_mask,
            audio_attention_mask,
            refer_audio_acoustic_hidden_states_packed,
            refer_audio_order_mask,
            chunk_mask,
            spans,
            is_covers,
            audio_codes,
            lyric_token_idss,
            precomputed_lm_hints_25Hz,
            non_cover_text_hidden_states,
            non_cover_text_attention_masks,
        ) = processed_data

        # Set generation parameters
        # Use seed_list if available, otherwise generate a single seed
        if seed_list is not None:
            # Pass seed list to model (will be handled there)
            seed_param = seed_list
        else:
            seed_param = random.randint(0, 2**32 - 1)
        
        generate_kwargs = {
            "text_hidden_states": text_hidden_states,
            "text_attention_mask": text_attention_mask,
            "lyric_hidden_states": lyric_hidden_states,
            "lyric_attention_mask": lyric_attention_mask,
            "refer_audio_acoustic_hidden_states_packed": refer_audio_acoustic_hidden_states_packed,
            "refer_audio_order_mask": refer_audio_order_mask,
            "src_latents": src_latents,
            "chunk_masks": chunk_mask,
            "is_covers": is_covers,
            "silence_latent": self.silence_latent,
            "seed": seed_param,
            "non_cover_text_hidden_states": non_cover_text_hidden_states,
            "non_cover_text_attention_masks": non_cover_text_attention_masks,
            "precomputed_lm_hints_25Hz": precomputed_lm_hints_25Hz,
            "audio_cover_strength": audio_cover_strength,
            "infer_method": infer_method,
            "infer_steps": infer_steps,
            "diffusion_guidance_sale": guidance_scale,
            "use_adg": use_adg,
            "cfg_interval_start": cfg_interval_start,
            "cfg_interval_end": cfg_interval_end,
        }
        logger.info("[service_generate] Generating audio...")
        with self._load_model_context("model"):
            outputs = self.model.generate_audio(**generate_kwargs)
        return outputs

    def tiled_decode(self, latents, chunk_size=512, overlap=64):
        """
        Decode latents using tiling to reduce VRAM usage.
        Uses overlap-discard strategy to avoid boundary artifacts.
        
        Args:
            latents: [Batch, Channels, Length]
            chunk_size: Size of latent chunk to process at once
            overlap: Overlap size in latent frames
        """
        B, C, T = latents.shape
        
        # If short enough, decode directly
        if T <= chunk_size:
            return self.vae.decode(latents).sample

        # Calculate stride (core size)
        stride = chunk_size - 2 * overlap
        if stride <= 0:
            raise ValueError(f"chunk_size {chunk_size} must be > 2 * overlap {overlap}")
            
        decoded_audio_list = []
        
        # We need to determine upsample factor to trim audio correctly
        upsample_factor = None
        
        num_steps = math.ceil(T / stride)
        
        for i in tqdm(range(num_steps), desc="Decoding audio chunks"):
            # Core range in latents
            core_start = i * stride
            core_end = min(core_start + stride, T)
            
            # Window range (with overlap)
            win_start = max(0, core_start - overlap)
            win_end = min(T, core_end + overlap)
            
            # Extract chunk
            latent_chunk = latents[:, :, win_start:win_end]
            
            # Decode
            # [Batch, Channels, AudioSamples]
            audio_chunk = self.vae.decode(latent_chunk).sample
            
            # Determine upsample factor from the first chunk
            if upsample_factor is None:
                upsample_factor = audio_chunk.shape[-1] / latent_chunk.shape[-1]
            
            # Calculate trim amounts in audio samples
            # How much overlap was added at the start?
            added_start = core_start - win_start # latent frames
            trim_start = int(round(added_start * upsample_factor))
            
            # How much overlap was added at the end?
            added_end = win_end - core_end # latent frames
            trim_end = int(round(added_end * upsample_factor))
            
            # Trim audio
            audio_len = audio_chunk.shape[-1]
            end_idx = audio_len - trim_end
            
            audio_core = audio_chunk[:, :, trim_start:end_idx]
            decoded_audio_list.append(audio_core)
            
        # Concatenate
        final_audio = torch.cat(decoded_audio_list, dim=-1)
        return final_audio

    def generate_music(
        self,
        captions: str,
        lyrics: str,
        bpm: Optional[int] = None,
        key_scale: str = "",
        time_signature: str = "",
        vocal_language: str = "en",
        inference_steps: int = 8,
        guidance_scale: float = 7.0,
        use_random_seed: bool = True,
        seed: Optional[Union[str, float, int]] = -1,
        reference_audio=None,
        audio_duration: Optional[float] = None,
        batch_size: Optional[int] = None,
        src_audio=None,
        audio_code_string: str = "",
        repainting_start: float = 0.0,
        repainting_end: Optional[float] = None,
        instruction: str = "Fill the audio semantic mask based on the given conditions:",
        audio_cover_strength: float = 1.0,
        task_type: str = "text2music",
        use_adg: bool = False,
        cfg_interval_start: float = 0.0,
        cfg_interval_end: float = 1.0,
        audio_format: str = "mp3",
        lm_temperature: float = 0.6,
        use_tiled_decode: bool = True,
        progress=None
    ) -> Tuple[Optional[str], Optional[str], List[str], str, str, str, str, str, Optional[Any], str, str, Optional[Any]]:
        """
        Main interface for music generation
        
        Returns:
            (first_audio, second_audio, all_audio_paths, generation_info, status_message, 
             seed_value_for_ui, align_score_1, align_text_1, align_plot_1, 
             align_score_2, align_text_2, align_plot_2)
        """
        if progress is None:
            def progress(*args, **kwargs):
                pass

        if self.model is None or self.vae is None or self.text_tokenizer is None or self.text_encoder is None:
            return None, None, [], "", "❌ Model not fully initialized. Please initialize all components first.", "-1", "", "", None, "", "", None

        # Auto-detect task type based on audio_code_string
        # If audio_code_string is provided and not empty, use cover task
        # Otherwise, use text2music task (or keep current task_type if not text2music)
        if task_type == "text2music":
            if audio_code_string and str(audio_code_string).strip():
                # User has provided audio codes, switch to cover task
                task_type = "cover"
                # Update instruction for cover task
                instruction = "Generate audio semantic tokens based on the given conditions:"

        logger.info("[generate_music] Starting generation...")
        if progress:
            progress(0.05, desc="Preparing inputs...")
        logger.info("[generate_music] Preparing inputs...")
        
        # Reset offload cost
        self.current_offload_cost = 0.0

        # Caption and lyrics are optional - can be empty
        # Use provided batch_size or default
        actual_batch_size = batch_size if batch_size is not None else self.batch_size
        actual_batch_size = max(1, actual_batch_size)  # Ensure at least 1

        actual_seed_list, seed_value_for_ui = self.prepare_seeds(actual_batch_size, seed, use_random_seed)
        
        # Convert special values to None
        if audio_duration is not None and audio_duration <= 0:
            audio_duration = None
        # if seed is not None and seed < 0:
        #     seed = None
        if repainting_end is not None and repainting_end < 0:
            repainting_end = None
            
        try:
            progress(0.1, desc="Preparing inputs...")

            # 1. Process reference audio
            refer_audios = None
            if reference_audio is not None:
                logger.info("[generate_music] Processing reference audio...")
                processed_ref_audio = self.process_reference_audio(reference_audio)
                if processed_ref_audio is not None:
                    # Convert to the format expected by the service: List[List[torch.Tensor]]
                    # Each batch item has a list of reference audios
                    refer_audios = [[processed_ref_audio] for _ in range(actual_batch_size)]
            else:
                refer_audios = [[torch.zeros(2, 30*self.sample_rate)] for _ in range(actual_batch_size)]
            
            # 2. Process source audio
            processed_src_audio = None
            if src_audio is not None:
                logger.info("[generate_music] Processing source audio...")
                processed_src_audio = self.process_src_audio(src_audio)
                
            # 3. Prepare batch data
            captions_batch, instructions_batch, lyrics_batch, vocal_languages_batch, metas_batch = self.prepare_batch_data(
                actual_batch_size,
                processed_src_audio,
                audio_duration,
                captions,
                lyrics,
                vocal_language,
                instruction,
                bpm,
                key_scale,
                time_signature
            )
            
            is_repaint_task, is_lego_task, is_cover_task, can_use_repainting = self.determine_task_type(task_type, audio_code_string)
            
            repainting_start_batch, repainting_end_batch, target_wavs_tensor = self.prepare_padding_info(
                actual_batch_size,
                processed_src_audio,
                audio_duration,
                repainting_start,
                repainting_end,
                is_repaint_task,
                is_lego_task,
                is_cover_task,
                can_use_repainting
            )
            
            progress(0.3, desc=f"Generating music (batch size: {actual_batch_size})...")
            
            # Prepare audio_code_hints - use if audio_code_string is provided
            # This works for both text2music (auto-switched to cover) and cover tasks
            audio_code_hints_batch = None
            if audio_code_string and str(audio_code_string).strip():
                # Audio codes provided, use as hints (will trigger cover mode in inference service)
                audio_code_hints_batch = [audio_code_string] * actual_batch_size

            should_return_intermediate = (task_type == "text2music")
            outputs = self.service_generate(
                captions=captions_batch,
                lyrics=lyrics_batch,
                metas=metas_batch,  # Pass as dict, service will convert to string
                vocal_languages=vocal_languages_batch,
                refer_audios=refer_audios,  # Already in List[List[torch.Tensor]] format
                target_wavs=target_wavs_tensor,  # Shape: [batch_size, 2, frames]
                infer_steps=inference_steps,
                guidance_scale=guidance_scale,
                seed=actual_seed_list,  # Pass list of seeds, one per batch item
                repainting_start=repainting_start_batch,
                repainting_end=repainting_end_batch,
                instructions=instructions_batch,  # Pass instructions to service
                audio_cover_strength=audio_cover_strength,  # Pass audio cover strength
                use_adg=use_adg,  # Pass use_adg parameter
                cfg_interval_start=cfg_interval_start,  # Pass CFG interval start
                cfg_interval_end=cfg_interval_end,  # Pass CFG interval end
                audio_code_hints=audio_code_hints_batch,  # Pass audio code hints as list
                return_intermediate=should_return_intermediate
            )
            
            logger.info("[generate_music] Model generation completed. Decoding latents...")
            pred_latents = outputs["target_latents"]  # [batch, latent_length, latent_dim]
            time_costs = outputs["time_costs"]
            time_costs["offload_time_cost"] = self.current_offload_cost
            logger.info(f"  - pred_latents: {pred_latents.shape}, dtype={pred_latents.dtype} {pred_latents.min()=}, {pred_latents.max()=}, {pred_latents.mean()=} {pred_latents.std()=}")
            logger.info(f"  - time_costs: {time_costs}")
            if progress:
                progress(0.8, desc="Decoding audio...")
            logger.info("[generate_music] Decoding latents with VAE...")
            
            # Decode latents to audio
            start_time = time.time()
            with torch.no_grad():
                with self._load_model_context("vae"):
                    # Transpose for VAE decode: [batch, latent_length, latent_dim] -> [batch, latent_dim, latent_length]
                    pred_latents_for_decode = pred_latents.transpose(1, 2)
                    # Ensure input is in VAE's dtype
                    pred_latents_for_decode = pred_latents_for_decode.to(self.vae.dtype)
                    
                    if use_tiled_decode:
                        logger.info("[generate_music] Using tiled VAE decode to reduce VRAM usage...")
                        pred_wavs = self.tiled_decode(pred_latents_for_decode)  # [batch, channels, samples]
                    else:
                        pred_wavs = self.vae.decode(pred_latents_for_decode).sample
                    
                    # Cast output to float32 for audio processing/saving
                    pred_wavs = pred_wavs.to(torch.float32)
            end_time = time.time()
            time_costs["vae_decode_time_cost"] = end_time - start_time
            time_costs["total_time_cost"] = time_costs["total_time_cost"] + time_costs["vae_decode_time_cost"]
            
            # Update offload cost one last time to include VAE offloading
            time_costs["offload_time_cost"] = self.current_offload_cost
            
            logger.info("[generate_music] VAE decode completed. Saving audio files...")
            if progress:
                progress(0.9, desc="Saving audio files...")
            
            # Save audio files using soundfile (supports wav, flac, mp3 via format param)
            audio_format_lower = audio_format.lower() if audio_format else "wav"
            if audio_format_lower not in ["wav", "flac", "mp3"]:
                audio_format_lower = "wav"
            
            saved_files = []
            for i in range(actual_batch_size):
                audio_file = os.path.join(self.temp_dir, f"generated_{i}_{actual_seed_list[i]}.{audio_format_lower}")
                # Convert to numpy: [channels, samples] -> [samples, channels]
                audio_np = pred_wavs[i].cpu().float().numpy().T
                sf.write(audio_file, audio_np, self.sample_rate)
                saved_files.append(audio_file)
            
            # Prepare return values
            first_audio = saved_files[0] if len(saved_files) > 0 else None
            second_audio = saved_files[1] if len(saved_files) > 1 else None
            
            # Format time costs if available
            time_costs_str = ""
            if time_costs:
                if isinstance(time_costs, dict):
                    time_costs_str = "\n\n**⏱️ Time Costs:**\n"
                    for key, value in time_costs.items():
                        # Format key: encoder_time_cost -> Encoder
                        formatted_key = key.replace("_time_cost", "").replace("_", " ").title()
                        time_costs_str += f"  - {formatted_key}: {value:.2f}s\n"
                elif isinstance(time_costs, (int, float)):
                    time_costs_str = f"\n\n**⏱️ Time Cost:** {time_costs:.2f}s"
            
            generation_info = f"""**🎵 Generation Complete**

    **Seeds:** {seed_value_for_ui}
    **Steps:** {inference_steps}
    **Files:** {len(saved_files)} audio(s){time_costs_str}"""
            status_message = f"✅ Generation completed successfully!"
            logger.info(f"[generate_music] Done! Generated {len(saved_files)} audio files.")
            
            # Alignment scores and plots (placeholder for now)
            align_score_1 = ""
            align_text_1 = ""
            align_plot_1 = None
            align_score_2 = ""
            align_text_2 = ""
            align_plot_2 = None
            
            return (
                first_audio,
                second_audio,
                saved_files,
                generation_info,
                status_message,
                seed_value_for_ui,
                align_score_1,
                align_text_1,
                align_plot_1,
                align_score_2,
                align_text_2,
                align_plot_2,
            )

        except Exception as e:
            error_msg = f"❌ Error: {str(e)}\n{traceback.format_exc()}"
            return None, None, [], "", error_msg, seed_value_for_ui, "", "", None, "", "", None