Spaces:
Running
on
A100
Running
on
A100
File size: 26,313 Bytes
11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 03f73c6 11860f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
#!/usr/bin/env python3
"""
Enhanced profiling script for ACE-Step inference with deep LLM analysis
This script helps diagnose why LLM generation is slow by tracking:
1. Total tokens generated vs expected throughput (200 tokens/sec baseline)
2. Per-iteration timing to detect compilation overhead or slow operations
3. Constrained decoding overhead
4. CFG overhead (2x forward passes)
5. Model forward time vs sampling/processing time
Usage:
python profile_inference.py # Standard profiling with warmup
python profile_inference.py --no-warmup # Profile first run (includes compilation)
python profile_inference.py --llm-debug # Deep LLM performance debugging
python profile_inference.py --detailed # Add cProfile function-level analysis
Inference mode options:
python profile_inference.py --thinking # Enable CoT for code generation
python profile_inference.py --use-constrained-decoding # Use FSM constrained decoding
python profile_inference.py --use-cot-metas # Enable LM to generate metadata via CoT
"""
import time
import argparse
import sys
import os
from contextlib import contextmanager
from collections import defaultdict
import json
from typing import Tuple, Dict, Any, List
from functools import wraps
# Add project root to path
project_root = os.path.abspath(os.path.dirname(__file__))
if project_root not in sys.path:
sys.path.insert(0, project_root)
import torch
from acestep.inference import generate_music, GenerationParams, GenerationConfig
from acestep.handler import AceStepHandler
from acestep.llm_inference import LLMHandler
class PreciseTimer:
"""High-precision timer with CUDA synchronization for accurate GPU timing"""
def __init__(self, device="cuda"):
self.device = device
self.timings = defaultdict(list)
self.enabled = True
def sync(self):
"""Synchronize CUDA operations for accurate timing"""
if self.enabled and self.device.startswith("cuda") and torch.cuda.is_available():
torch.cuda.synchronize()
@contextmanager
def time(self, name: str):
"""Time a code section with CUDA synchronization"""
if not self.enabled:
yield
return
self.sync()
start = time.perf_counter()
try:
yield
finally:
self.sync()
elapsed = time.perf_counter() - start
self.timings[name].append(elapsed)
def get_total(self, name: str) -> float:
"""Get total accumulated time for a section"""
return sum(self.timings.get(name, []))
def get_mean(self, name: str) -> float:
"""Get mean time per call for a section"""
times = self.timings.get(name, [])
return sum(times) / len(times) if times else 0.0
def get_count(self, name: str) -> int:
"""Get number of calls for a section"""
return len(self.timings.get(name, []))
def get_all(self, name: str) -> List[float]:
"""Get all timing samples for a section"""
return self.timings.get(name, [])
class LLMDebugger:
"""Track detailed LLM performance metrics to diagnose slow generation"""
def __init__(self):
self.reset()
def reset(self):
"""Reset all metrics"""
self.total_tokens = 0
self.generation_start = None
self.generation_end = None
self.output_text = ""
self.prompt_length = 0
def start(self, prompt_length: int = 0):
"""Mark generation start"""
self.generation_start = time.perf_counter()
self.prompt_length = prompt_length
def end(self, output_text: str = ""):
"""Mark generation end and store output"""
self.generation_end = time.perf_counter()
self.output_text = output_text
def set_token_count(self, count: int):
"""Set total token count"""
self.total_tokens = count
def get_throughput(self) -> float:
"""Calculate actual tokens per second"""
if self.generation_start and self.generation_end and self.total_tokens > 0:
total_time = self.generation_end - self.generation_start
if total_time > 0:
return self.total_tokens / total_time
return 0.0
def print_analysis(self):
"""Print detailed LLM performance analysis"""
if not self.generation_start or not self.generation_end:
return
print("\n" + "=" * 100)
print("π LLM PERFORMANCE DEEP DIVE")
print("=" * 100)
total_time = self.generation_end - self.generation_start
throughput = self.get_throughput()
# Basic metrics table
print(f"\n{'Metric':<40} {'Value':<20} {'Notes'}")
print("-" * 100)
print(f"{'Total Tokens Generated:':<40} {self.total_tokens:<20} (new tokens only)")
print(f"{'Prompt Length (estimate):':<40} {self.prompt_length:<20} (input tokens)")
print(f"{'Total Generation Time:':<40} {total_time:<20.3f} seconds")
print(f"{'Measured Throughput:':<40} {throughput:<20.1f} tokens/sec")
print(f"{'Expected Throughput:':<40} {'200':<20} tokens/sec (baseline)")
# Calculate performance gap
if throughput > 0:
slowdown = 200.0 / throughput
efficiency = (throughput / 200.0) * 100
print(f"{'Performance vs Baseline:':<40} {efficiency:<20.1f}% of expected")
print(f"{'Slowdown Factor:':<40} {slowdown:<20.2f}x slower")
# Analyze generated output
if self.output_text:
print(f"\n{'Output Analysis:':<40}")
print(f"{' Output length:':<40} {len(self.output_text):<20} characters")
# Count audio codes
import re
code_pattern = r'<\|audio_code_\d+\|>'
codes = re.findall(code_pattern, self.output_text)
if codes:
print(f"{' Audio codes generated:':<40} {len(codes):<20} codes")
print(f"{' Expected audio duration:':<40} {f'~{len(codes)/5:.1f}s':<20} (5 codes per second)")
if total_time > 0:
print(f"{' Time per audio code:':<40} {f'{total_time/len(codes)*1000:.1f}ms':<20}")
# Check for CoT section
if '<think>' in self.output_text and '</think>' in self.output_text:
cot_start = self.output_text.find('<think>')
cot_end = self.output_text.find('</think>') + 8
cot_section = self.output_text[cot_start:cot_end]
cot_token_est = len(cot_section) // 4
print(f"{' CoT section tokens (estimate):':<40} {f'~{cot_token_est}':<20}")
# Diagnostic guidance
print("\n" + "=" * 100)
print("π§ DIAGNOSTIC GUIDANCE")
print("=" * 100)
if throughput < 50:
print("\nβ οΈ CRITICAL: Throughput is extremely low (<50 tokens/sec)")
print("\nThis is ~4x slower than expected. Likely causes:")
print(" 1. β Constrained decoding FSM overhead")
print(" β Each token triggers FSM state machine validation")
print(" β Try: set use_constrained_decoding=False in config")
print(" 2. β CFG with double forward passes")
print(" β cfg_scale > 1.0 means running model twice per token")
print(" β Check: params.lm_cfg_scale value")
print(" 3. β Running in eager mode without compilation")
print(" β PyTorch should compile kernels after warmup")
print(" β Check: torch._dynamo.config settings")
elif throughput < 100:
print("\nβ οΈ WARNING: Throughput is low (50-100 tokens/sec)")
print("\nLikely causes:")
print(" 1. Constrained decoding overhead (~30-50% slowdown expected)")
print(" 2. CFG enabled (2x compute per token if cfg_scale > 1.0)")
print(" 3. Small model or inefficient GPU utilization")
elif throughput < 150:
print("\nβ οΈ Throughput is below baseline but acceptable (100-150 tokens/sec)")
print("\nMinor overhead from:")
print(" - Constrained decoding: ~20-30% overhead")
print(" - Profiling instrumentation: ~5-10% overhead")
else:
print(f"\nβ Throughput is good ({throughput:.1f} tokens/sec)")
print(" Performance is within acceptable range")
# Global instances
timer = None
llm_debugger = None
def wrap_method_with_timing(obj, method_name: str, timing_key: str):
"""Wrap a method with timing instrumentation"""
original_method = getattr(obj, method_name)
@wraps(original_method)
def timed_wrapper(*args, **kwargs):
with timer.time(timing_key):
return original_method(*args, **kwargs)
setattr(obj, method_name, timed_wrapper)
return original_method
def wrap_llm_with_debug_tracking(llm_handler):
"""Wrap LLM generation with detailed performance tracking"""
original_method = llm_handler.generate_with_stop_condition
@wraps(original_method)
def debug_wrapper(*args, **kwargs):
# Estimate prompt length
caption = kwargs.get('caption', args[0] if len(args) > 0 else "")
lyrics = kwargs.get('lyrics', args[1] if len(args) > 1 else "")
prompt_estimate = len(caption) + len(lyrics)
prompt_tokens_estimate = prompt_estimate // 4
# Start tracking
llm_debugger.reset()
llm_debugger.start(prompt_length=prompt_tokens_estimate)
# Call original with timing
with timer.time('llm_inference'):
result = original_method(*args, **kwargs)
# Extract and analyze output
output_text = ""
if isinstance(result, tuple) and len(result) >= 2:
if isinstance(result[1], list):
# Batch mode
output_text = "".join(result[1])
else:
# Single mode
cot_output = ""
if isinstance(result[0], dict):
for v in result[0].values():
if isinstance(v, str):
cot_output += v
output_text = cot_output + str(result[1])
# Count tokens
import re
code_pattern = r'<\|audio_code_\d+\|>'
codes = re.findall(code_pattern, output_text)
remaining_text = re.sub(code_pattern, '', output_text)
cot_tokens_estimate = len(remaining_text) // 4
total_tokens = len(codes) + cot_tokens_estimate
llm_debugger.set_token_count(total_tokens)
llm_debugger.end(output_text)
return result
llm_handler.generate_with_stop_condition = debug_wrapper
return original_method
def instrument_handlers(dit_handler, llm_handler, enable_llm_debug=False):
"""Add timing instrumentation to handler methods"""
originals = {}
# Instrument LLM
if llm_handler and llm_handler.llm_initialized:
if enable_llm_debug:
originals['llm_generate'] = wrap_llm_with_debug_tracking(llm_handler)
else:
originals['llm_generate'] = wrap_method_with_timing(
llm_handler, 'generate_with_stop_condition', 'llm_inference'
)
# Instrument DiT handler
originals['dit_prepare'] = wrap_method_with_timing(
dit_handler, 'prepare_batch_data', 'prepare_batch_data'
)
originals['dit_generate'] = wrap_method_with_timing(
dit_handler, 'service_generate', 'dit_inference'
)
originals['dit_decode'] = wrap_method_with_timing(
dit_handler, 'tiled_decode', 'vae_decode'
)
return originals
def restore_handlers(dit_handler, llm_handler, originals):
"""Restore original handler methods after profiling"""
if llm_handler and 'llm_generate' in originals:
llm_handler.generate_with_stop_condition = originals['llm_generate']
dit_handler.prepare_batch_data = originals['dit_prepare']
dit_handler.service_generate = originals['dit_generate']
dit_handler.tiled_decode = originals['dit_decode']
def print_profiling_results(total_time: float, show_llm_debug: bool = False):
"""Print comprehensive profiling results with performance insights"""
print("\n" + "=" * 100)
print("π― PROFILING RESULTS")
print("=" * 100)
# Define timing categories
model_sections = {
'llm_inference': 'LLM Inference (5Hz Language Model)',
'dit_inference': 'DiT Inference (Diffusion Transformer)',
'vae_decode': 'VAE Decode (Audio Decoder)',
}
non_model_sections = {
'prepare_batch_data': 'Prepare Batch Data (embedding, formatting)',
}
# Calculate totals
model_time = sum(timer.get_total(k) for k in model_sections.keys())
non_model_time = sum(timer.get_total(k) for k in non_model_sections.keys())
other_time = total_time - model_time - non_model_time
# Print summary table
print(f"\n{'CATEGORY':<50} {'TIME (s)':<12} {'%':<8} {'CALLS':<8}")
print("-" * 100)
# Model time breakdown
print(f"\n{'π€ MODEL TIME (Total)':<50} {model_time:<12.3f} {100*model_time/total_time:>6.1f}% {'':<8}")
for key, desc in model_sections.items():
t = timer.get_total(key)
c = timer.get_count(key)
if c > 0:
mean = timer.get_mean(key)
pct = 100 * t / total_time
print(f" {'ββ ' + desc:<48} {t:<12.3f} {pct:>6.1f}% {c:<8} (avg: {mean:.3f}s)")
# Non-model time breakdown
print(f"\n{'βοΈ NON-MODEL TIME (Total)':<50} {non_model_time:<12.3f} {100*non_model_time/total_time:>6.1f}% {'':<8}")
for key, desc in non_model_sections.items():
t = timer.get_total(key)
c = timer.get_count(key)
if c > 0:
mean = timer.get_mean(key)
pct = 100 * t / total_time
print(f" {'ββ ' + desc:<48} {t:<12.3f} {pct:>6.1f}% {c:<8} (avg: {mean:.3f}s)")
# Other time
if other_time > 0.01:
pct = 100 * other_time / total_time
print(f"\n{'π¦ OTHER TIME (I/O, overhead, audio save)':<50} {other_time:<12.3f} {pct:>6.1f}% {'':<8}")
print(f"\n{'π TOTAL TIME':<50} {total_time:<12.3f} {'100.0%':>6} {'':<8}")
# Show LLM detailed analysis if enabled
if show_llm_debug:
llm_debugger.print_analysis()
# Performance insights
print("\n" + "=" * 100)
print("π‘ PERFORMANCE INSIGHTS")
print("=" * 100)
llm_t = timer.get_total('llm_inference')
dit_t = timer.get_total('dit_inference')
vae_t = timer.get_total('vae_decode')
prep_t = timer.get_total('prepare_batch_data')
# Model time insights
if model_time > 0:
print(f"\nβ Model operations: {model_time:.3f}s ({100*model_time/total_time:.1f}% of total)")
if llm_t > 0:
print(f" - LLM: {llm_t:.3f}s ({100*llm_t/model_time:.1f}% of model time)")
if dit_t > 0:
print(f" - DiT: {dit_t:.3f}s ({100*dit_t/model_time:.1f}% of model time)")
if vae_t > 0:
print(f" - VAE: {vae_t:.3f}s ({100*vae_t/model_time:.1f}% of model time)")
# LLM bottleneck analysis
if llm_t > dit_t and llm_t > 5.0:
print(f"\nβ οΈ LLM IS THE BOTTLENECK: {llm_t:.3f}s ({100*llm_t/total_time:.1f}% of total)")
print(f"\n Possible causes:")
print(f" 1. Generating too many tokens β use --llm-debug to verify")
print(f" 2. Constrained decoding overhead β FSM validation per token")
print(f" 3. CFG overhead β cfg_scale > 1.0 = 2x forward passes")
print(f" 4. First-token latency β warmup should help")
print(f" 5. KV cache inefficiency β should be ~5-10ms/token")
# Non-model insights
if non_model_time / total_time > 0.1:
print(f"\nβ οΈ Non-model operations: {non_model_time:.3f}s ({100*non_model_time/total_time:.1f}%)")
if prep_t > 0.1:
print(f" - Batch preparation: {prep_t:.3f}s")
# I/O overhead
if other_time / total_time > 0.2:
print(f"\nβ οΈ Overhead/I/O: {other_time:.3f}s ({100*other_time/total_time:.1f}%)")
# Recommendations
print("\n" + "=" * 100)
print("π OPTIMIZATION RECOMMENDATIONS")
print("=" * 100)
if llm_t > dit_t * 2:
print("\nπ― Priority: Optimize LLM")
print(" 1. Run: python profile_inference.py --llm-debug")
print(" β Shows exact token count and throughput")
print(" 2. Check constrained decoding overhead")
print(" 3. Check CFG scaling (lm_cfg_scale parameter)")
print(" 4. Profile nanovllm engine step() timing")
print(" 5. Compare vllm vs transformers backends")
def run_profiled_generation(dit_handler, llm_handler, params, config,
enable_cprofile=False, enable_llm_debug=False):
"""Execute generation with full profiling instrumentation"""
# Instrument handlers
originals = instrument_handlers(dit_handler, llm_handler, enable_llm_debug)
try:
print("\n[Profiling] Starting generation...")
timer.sync()
total_start = time.perf_counter()
# Optional cProfile
prof = None
if enable_cprofile:
import cProfile
prof = cProfile.Profile()
prof.enable()
# Run generation
result = generate_music(dit_handler, llm_handler, params, config, save_dir="./")
# Stop timing
timer.sync()
total_time = time.perf_counter() - total_start
# Save cProfile if enabled
if enable_cprofile and prof:
prof.disable()
import pstats
import io
output_file = "profile_cprofile_detailed.txt"
with open(output_file, 'w') as f:
ps = pstats.Stats(prof, stream=f)
ps.sort_stats('cumulative')
ps.print_stats(100)
# Print top functions
print("\n" + "=" * 100)
print("π TOP 20 FUNCTIONS BY CUMULATIVE TIME (cProfile)")
print("=" * 100)
s = io.StringIO()
ps = pstats.Stats(prof, stream=s)
ps.sort_stats('cumulative')
ps.print_stats(20)
print(s.getvalue())
print(f"\nFull report: {output_file}")
# Print results
print_profiling_results(total_time, show_llm_debug=enable_llm_debug)
return result, total_time
finally:
restore_handlers(dit_handler, llm_handler, originals)
def load_example_config(example_file: str) -> Tuple[GenerationParams, GenerationConfig]:
"""Load configuration from example JSON file"""
try:
with open(example_file, 'r', encoding='utf-8') as f:
data = json.load(f)
params = GenerationParams(
caption=data.get('caption', ''),
lyrics=data.get('lyrics', ''),
bpm=data.get('bpm'),
keyscale=data.get('keyscale', ''),
timesignature=data.get('timesignature', ''),
vocal_language=data.get('language', 'unknown'),
duration=data.get('duration'),
thinking=data.get('think', False),
inference_steps=data.get('inference_steps', 8),
seed=data.get('seed', 42),
)
config = GenerationConfig(batch_size=data.get('batch_size', 1), seeds=[42])
return params, config
except Exception as e:
print(f" β Failed to load: {e}")
return None, None
def main():
global timer, llm_debugger
parser = argparse.ArgumentParser(
description="Profile ACE-Step inference with LLM debugging"
)
parser.add_argument("--checkpoint-dir", type=str, default="./checkpoints")
parser.add_argument("--config-path", type=str, default="acestep-v15-turbo-rl")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--lm-model", type=str, default="acestep-5Hz-lm-0.6B-v3")
parser.add_argument("--lm-backend", type=str, default="vllm")
parser.add_argument("--no-warmup", action="store_true")
parser.add_argument("--detailed", action="store_true")
parser.add_argument("--llm-debug", action="store_true",
help="Enable deep LLM debugging (token count, throughput)")
parser.add_argument("--example", type=str, default="example_05.json")
# Inference mode parameters
parser.add_argument("--thinking", action="store_true",
help="Enable CoT reasoning for LM to generate audio codes")
parser.add_argument("--use-constrained-decoding", action="store_true",
help="Use FSM-based constrained decoding for meta generation")
parser.add_argument("--use-cot-metas", action="store_true",
help="Enable LLM to generate music metadata via CoT reasoning")
args = parser.parse_args()
# Initialize
timer = PreciseTimer(device=args.device)
llm_debugger = LLMDebugger()
print("=" * 100)
print("π΅ ACE-Step Inference Profiler (LLM Performance Analysis)")
print("=" * 100)
print(f"\nConfiguration:")
print(f" Device: {args.device}")
print(f" LLM Backend: {args.lm_backend}")
print(f" LLM Debug: {'Enabled' if args.llm_debug else 'Disabled'}")
print(f" Warmup: {'Disabled' if args.no_warmup else 'Enabled'}")
print(f"\nInference Mode:")
print(f" Thinking (CoT): {'Enabled' if args.thinking else 'Disabled'}")
print(f" Constrained Decoding: {'Enabled' if args.use_constrained_decoding else 'Disabled'}")
print(f" Use CoT for Metas: {'Enabled' if args.use_cot_metas else 'Disabled'}")
# Initialize models
print(f"\nInitializing models...")
dit_handler = AceStepHandler()
llm_handler = LLMHandler()
print(" πΉ Initializing DiT...")
status_dit, success_dit = dit_handler.initialize_service(
project_root=project_root,
config_path=args.config_path,
device=args.device,
use_flash_attention=True,
)
if not success_dit:
print(f" β Failed: {status_dit}")
sys.exit(1)
print(f" β DiT ready")
print(" π§ Initializing LLM...")
if args.thinking or args.use_cot_metas:
status_llm, success_llm = llm_handler.initialize(
checkpoint_dir=args.checkpoint_dir,
lm_model_path=args.lm_model,
backend=args.lm_backend,
device=args.device,
)
if success_llm:
print(f" β LLM ready ({args.lm_backend})")
else:
print(f" β Failed: {status_llm}")
else:
print(f" β LLM not initialized (thinking or use_cot_metas is disabled)")
# Load example
example_file = os.path.join(project_root, "examples", "text2music", args.example)
if not os.path.exists(example_file):
print(f"\nβ Not found: {example_file}")
sys.exit(1)
print(f"\nπ Loading: {args.example}")
params, config = load_example_config(example_file)
if not params or not config:
print("β Failed to load config")
sys.exit(1)
print(f" Caption: {params.caption[:60]}...")
print(f" Batch: {config.batch_size}, Steps: {params.inference_steps}, LLM: {params.thinking}")
# Warmup
if not args.no_warmup:
print("\n" + "=" * 100)
print("π₯ WARMUP RUN")
print("=" * 100)
warmup_params = GenerationParams(
caption=params.caption,
lyrics=params.lyrics,
bpm=params.bpm,
keyscale=params.keyscale,
timesignature=params.timesignature,
vocal_language=params.vocal_language,
duration=params.duration,
thinking=args.thinking,
use_cot_metas=args.use_cot_metas,
inference_steps=params.inference_steps,
seed=params.seed,
)
warmup_config = GenerationConfig(batch_size=1, seeds=[42])
warmup_config.use_constrained_decoding = args.use_constrained_decoding
warmup_start = time.perf_counter()
warmup_result = generate_music(dit_handler, llm_handler, warmup_params, warmup_config, save_dir="./")
warmup_time = time.perf_counter() - warmup_start
print(f"\nβ Warmup: {warmup_time:.2f}s")
if not warmup_result.success:
print(f"β οΈ Warning: {warmup_result.error}")
# Reset
timer = PreciseTimer(device=args.device)
llm_debugger = LLMDebugger()
# Profiling run
print("\n" + "=" * 100)
print("β±οΈ PROFILING RUN")
print("=" * 100)
# Apply inference mode settings
config.use_constrained_decoding = args.use_constrained_decoding
# Override thinking and use_cot_metas parameters if specified via CLI
if args.thinking:
params.thinking = True
if args.use_cot_metas:
params.use_cot_metas = True
result, total_time = run_profiled_generation(
dit_handler, llm_handler, params, config,
enable_cprofile=args.detailed,
enable_llm_debug=args.llm_debug
)
if not result.success:
print(f"\nβ Failed: {result.error}")
sys.exit(1)
print(f"\nβ
Success! Generated {len(result.audios)} audio file(s)")
# Final tips
if args.detailed:
print("\nπ‘ Check profile_cprofile_detailed.txt for function-level analysis")
elif not args.llm_debug:
print("\nπ‘ Run with --llm-debug to see LLM token count and throughput analysis")
if __name__ == "__main__":
main()
|