Spaces:
Running
on
A100
Running
on
A100
File size: 30,385 Bytes
6922ca4 5ab4485 6922ca4 5ab4485 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
"""
DiT Alignment Score Module
This module provides lyrics-to-audio alignment using cross-attention matrices
from DiT model for generating LRC timestamps.
Refactored from lyrics_alignment_infos.py for integration with ACE-Step.
"""
import numba
import torch
import numpy as np
import torch.nn.functional as F
from dataclasses import dataclass, asdict
from typing import List, Dict, Any, Optional, Tuple, Union
# ================= Data Classes =================
@dataclass
class TokenTimestamp:
"""Stores per-token timing information."""
token_id: int
text: str
start: float
end: float
probability: float
@dataclass
class SentenceTimestamp:
"""Stores per-sentence timing information with token list."""
text: str
start: float
end: float
tokens: List[TokenTimestamp]
confidence: float
# ================= DTW Algorithm (Numba Optimized) =================
@numba.jit(nopython=True)
def dtw_cpu(x: np.ndarray):
"""
Dynamic Time Warping algorithm optimized with Numba.
Args:
x: Cost matrix of shape [N, M]
Returns:
Tuple of (text_indices, time_indices) arrays
"""
N, M = x.shape
# Use float32 for memory efficiency
cost = np.ones((N + 1, M + 1), dtype=np.float32) * np.inf
trace = -np.ones((N + 1, M + 1), dtype=np.float32)
cost[0, 0] = 0
for j in range(1, M + 1):
for i in range(1, N + 1):
c0 = cost[i - 1, j - 1]
c1 = cost[i - 1, j]
c2 = cost[i, j - 1]
if c0 < c1 and c0 < c2:
c, t = c0, 0
elif c1 < c0 and c1 < c2:
c, t = c1, 1
else:
c, t = c2, 2
cost[i, j] = x[i - 1, j - 1] + c
trace[i, j] = t
return _backtrace(trace, N, M)
@numba.jit(nopython=True)
def _backtrace(trace: np.ndarray, N: int, M: int):
"""
Optimized backtrace function for DTW.
Args:
trace: Trace matrix of shape (N+1, M+1)
N, M: Original matrix dimensions
Returns:
Path array of shape (2, path_len) - first row is text indices, second is time indices
"""
# Boundary handling
trace[0, :] = 2
trace[:, 0] = 1
# Pre-allocate array, max path length is N+M
max_path_len = N + M
path = np.zeros((2, max_path_len), dtype=np.int32)
i, j = N, M
path_idx = max_path_len - 1
while i > 0 or j > 0:
path[0, path_idx] = i - 1 # text index
path[1, path_idx] = j - 1 # time index
path_idx -= 1
t = trace[i, j]
if t == 0:
i -= 1
j -= 1
elif t == 1:
i -= 1
elif t == 2:
j -= 1
else:
break
actual_len = max_path_len - path_idx - 1
return path[:, path_idx + 1:max_path_len]
# ================= Utility Functions =================
def median_filter(x: torch.Tensor, filter_width: int) -> torch.Tensor:
"""
Apply median filter to tensor.
Args:
x: Input tensor
filter_width: Width of median filter
Returns:
Filtered tensor
"""
pad_width = filter_width // 2
if x.shape[-1] <= pad_width:
return x
if x.ndim == 2:
x = x[None, :]
x = F.pad(x, (filter_width // 2, filter_width // 2, 0, 0), mode="reflect")
result = x.unfold(-1, filter_width, 1).sort()[0][..., filter_width // 2]
if result.ndim > 2:
result = result.squeeze(0)
return result
# ================= Main Aligner Class =================
class MusicStampsAligner:
"""
Aligner class for generating lyrics timestamps from cross-attention matrices.
Uses bidirectional consensus denoising and DTW for alignment.
"""
def __init__(self, tokenizer):
"""
Initialize the aligner.
Args:
tokenizer: Text tokenizer for decoding tokens
"""
self.tokenizer = tokenizer
def _apply_bidirectional_consensus(
self,
weights_stack: torch.Tensor,
violence_level: float,
medfilt_width: int
) -> tuple:
"""
Core denoising logic using bidirectional consensus.
Args:
weights_stack: Attention weights [Heads, Tokens, Frames]
violence_level: Denoising strength coefficient
medfilt_width: Median filter width
Returns:
Tuple of (calc_matrix, energy_matrix) as numpy arrays
"""
# A. Bidirectional Consensus
row_prob = F.softmax(weights_stack, dim=-1) # Token -> Frame
col_prob = F.softmax(weights_stack, dim=-2) # Frame -> Token
processed = row_prob * col_prob
# 1. Row suppression (kill horizontal crossing lines)
row_medians = torch.quantile(processed, 0.5, dim=-1, keepdim=True)
processed = processed - (violence_level * row_medians)
processed = torch.relu(processed)
# 2. Column suppression (kill vertical crossing lines)
col_medians = torch.quantile(processed, 0.5, dim=-2, keepdim=True)
processed = processed - (violence_level * col_medians)
processed = torch.relu(processed)
# C. Power sharpening
processed = processed ** 2
# Energy matrix for confidence
energy_matrix = processed.mean(dim=0).cpu().numpy()
# D. Z-Score normalization
std, mean = torch.std_mean(processed, unbiased=False)
weights_processed = (processed - mean) / (std + 1e-9)
# E. Median filtering
weights_processed = median_filter(weights_processed, filter_width=medfilt_width)
calc_matrix = weights_processed.mean(dim=0).numpy()
return calc_matrix, energy_matrix
def _preprocess_attention(
self,
attention_matrix: torch.Tensor,
custom_config: Dict[int, List[int]],
violence_level: float,
medfilt_width: int = 7
) -> tuple:
"""
Preprocess attention matrix for alignment.
Args:
attention_matrix: Attention tensor [Layers, Heads, Tokens, Frames]
custom_config: Dict mapping layer indices to head indices
violence_level: Denoising strength
medfilt_width: Median filter width
Returns:
Tuple of (calc_matrix, energy_matrix, visual_matrix)
"""
if not isinstance(attention_matrix, torch.Tensor):
weights = torch.tensor(attention_matrix)
else:
weights = attention_matrix.clone()
weights = weights.cpu().float()
selected_tensors = []
for layer_idx, head_indices in custom_config.items():
for head_idx in head_indices:
if layer_idx < weights.shape[0] and head_idx < weights.shape[1]:
head_matrix = weights[layer_idx, head_idx]
selected_tensors.append(head_matrix)
if not selected_tensors:
return None, None, None
# Stack selected heads: [Heads, Tokens, Frames]
weights_stack = torch.stack(selected_tensors, dim=0)
visual_matrix = weights_stack.mean(dim=0).numpy()
calc_matrix, energy_matrix = self._apply_bidirectional_consensus(
weights_stack, violence_level, medfilt_width
)
return calc_matrix, energy_matrix, visual_matrix
def stamps_align_info(
self,
attention_matrix: torch.Tensor,
lyrics_tokens: List[int],
total_duration_seconds: float,
custom_config: Dict[int, List[int]],
return_matrices: bool = False,
violence_level: float = 2.0,
medfilt_width: int = 1
) -> Dict[str, Any]:
"""
Get alignment information from attention matrix.
Args:
attention_matrix: Cross-attention tensor [Layers, Heads, Tokens, Frames]
lyrics_tokens: List of lyrics token IDs
total_duration_seconds: Total audio duration in seconds
custom_config: Dict mapping layer indices to head indices
return_matrices: Whether to return intermediate matrices
violence_level: Denoising strength
medfilt_width: Median filter width
Returns:
Dict containing calc_matrix, lyrics_tokens, total_duration_seconds,
and optionally energy_matrix and vis_matrix
"""
calc_matrix, energy_matrix, visual_matrix = self._preprocess_attention(
attention_matrix, custom_config, violence_level, medfilt_width
)
if calc_matrix is None:
return {
"calc_matrix": None,
"lyrics_tokens": lyrics_tokens,
"total_duration_seconds": total_duration_seconds,
"error": "No valid attention heads found"
}
return_dict = {
"calc_matrix": calc_matrix,
"lyrics_tokens": lyrics_tokens,
"total_duration_seconds": total_duration_seconds
}
if return_matrices:
return_dict['energy_matrix'] = energy_matrix
return_dict['vis_matrix'] = visual_matrix
return return_dict
def _decode_tokens_incrementally(self, token_ids: List[int]) -> List[str]:
"""
Decode tokens incrementally to properly handle multi-byte UTF-8 characters.
For Chinese and other multi-byte characters, the tokenizer may split them
into multiple byte-level tokens. Decoding each token individually produces
invalid UTF-8 sequences (showing as �). This method uses byte-level comparison
to correctly track which characters each token contributes.
Args:
token_ids: List of token IDs
Returns:
List of decoded text for each token position
"""
decoded_tokens = []
prev_bytes = b""
for i in range(len(token_ids)):
# Decode tokens from start to current position
current_text = self.tokenizer.decode(token_ids[:i+1], skip_special_tokens=False)
current_bytes = current_text.encode('utf-8', errors='surrogatepass')
# The contribution of current token is the new bytes added
if len(current_bytes) >= len(prev_bytes):
new_bytes = current_bytes[len(prev_bytes):]
# Try to decode the new bytes; if incomplete, use empty string
try:
token_text = new_bytes.decode('utf-8')
except UnicodeDecodeError:
# Incomplete UTF-8 sequence, this token doesn't complete a character
token_text = ""
else:
# Edge case: current decode is shorter (shouldn't happen normally)
token_text = ""
decoded_tokens.append(token_text)
prev_bytes = current_bytes
return decoded_tokens
def token_timestamps(
self,
calc_matrix: np.ndarray,
lyrics_tokens: List[int],
total_duration_seconds: float
) -> List[TokenTimestamp]:
"""
Generate per-token timestamps using DTW.
Args:
calc_matrix: Processed attention matrix [Tokens, Frames]
lyrics_tokens: List of token IDs
total_duration_seconds: Total audio duration
Returns:
List of TokenTimestamp objects
"""
n_frames = calc_matrix.shape[-1]
text_indices, time_indices = dtw_cpu(-calc_matrix.astype(np.float64))
seconds_per_frame = total_duration_seconds / n_frames
alignment_results = []
# Use incremental decoding to properly handle multi-byte UTF-8 characters
decoded_tokens = self._decode_tokens_incrementally(lyrics_tokens)
for i in range(len(lyrics_tokens)):
mask = (text_indices == i)
if not np.any(mask):
start = alignment_results[-1].end if alignment_results else 0.0
end = start
token_conf = 0.0
else:
times = time_indices[mask] * seconds_per_frame
start = times[0]
end = times[-1]
token_conf = 0.0
if end < start:
end = start
alignment_results.append(TokenTimestamp(
token_id=lyrics_tokens[i],
text=decoded_tokens[i],
start=float(start),
end=float(end),
probability=token_conf
))
return alignment_results
def _decode_sentence_from_tokens(self, tokens: List[TokenTimestamp]) -> str:
"""
Decode a sentence by decoding all token IDs together.
This avoids UTF-8 encoding issues from joining individual token texts.
Args:
tokens: List of TokenTimestamp objects
Returns:
Properly decoded sentence text
"""
token_ids = [t.token_id for t in tokens]
return self.tokenizer.decode(token_ids, skip_special_tokens=False)
def sentence_timestamps(
self,
token_alignment: List[TokenTimestamp]
) -> List[SentenceTimestamp]:
"""
Group token timestamps into sentence timestamps.
Args:
token_alignment: List of TokenTimestamp objects
Returns:
List of SentenceTimestamp objects
"""
results = []
current_tokens = []
for token in token_alignment:
current_tokens.append(token)
if '\n' in token.text:
# Decode all token IDs together to avoid UTF-8 issues
full_text = self._decode_sentence_from_tokens(current_tokens)
if full_text.strip():
valid_scores = [t.probability for t in current_tokens if t.probability > 0]
sent_conf = sum(valid_scores) / len(valid_scores) if valid_scores else 0.0
results.append(SentenceTimestamp(
text=full_text.strip(),
start=round(current_tokens[0].start, 3),
end=round(current_tokens[-1].end, 3),
tokens=list(current_tokens),
confidence=sent_conf
))
current_tokens = []
# Handle last sentence
if current_tokens:
# Decode all token IDs together to avoid UTF-8 issues
full_text = self._decode_sentence_from_tokens(current_tokens)
if full_text.strip():
valid_scores = [t.probability for t in current_tokens if t.probability > 0]
sent_conf = sum(valid_scores) / len(valid_scores) if valid_scores else 0.0
results.append(SentenceTimestamp(
text=full_text.strip(),
start=round(current_tokens[0].start, 3),
end=round(current_tokens[-1].end, 3),
tokens=list(current_tokens),
confidence=sent_conf
))
# Normalize confidence scores
if results:
all_scores = [s.confidence for s in results]
min_score = min(all_scores)
max_score = max(all_scores)
score_range = max_score - min_score
if score_range > 1e-9:
for s in results:
normalized_score = (s.confidence - min_score) / score_range
s.confidence = round(normalized_score, 2)
else:
for s in results:
s.confidence = round(s.confidence, 2)
return results
def format_lrc(
self,
sentence_timestamps: List[SentenceTimestamp],
include_end_time: bool = False
) -> str:
"""
Format sentence timestamps as LRC lyrics format.
Args:
sentence_timestamps: List of SentenceTimestamp objects
include_end_time: Whether to include end time (enhanced LRC format)
Returns:
LRC formatted string
"""
lines = []
for sentence in sentence_timestamps:
# Convert seconds to mm:ss.xx format
start_minutes = int(sentence.start // 60)
start_seconds = sentence.start % 60
if include_end_time:
end_minutes = int(sentence.end // 60)
end_seconds = sentence.end % 60
timestamp = f"[{start_minutes:02d}:{start_seconds:05.2f}][{end_minutes:02d}:{end_seconds:05.2f}]"
else:
timestamp = f"[{start_minutes:02d}:{start_seconds:05.2f}]"
# Clean the text (remove structural tags like [verse], [chorus])
text = sentence.text
lines.append(f"{timestamp}{text}")
return "\n".join(lines)
def get_timestamps_and_lrc(
self,
calc_matrix: np.ndarray,
lyrics_tokens: List[int],
total_duration_seconds: float
) -> Dict[str, Any]:
"""
Convenience method to get both timestamps and LRC in one call.
Args:
calc_matrix: Processed attention matrix
lyrics_tokens: List of token IDs
total_duration_seconds: Total audio duration
Returns:
Dict containing token_timestamps, sentence_timestamps, and lrc_text
"""
token_stamps = self.token_timestamps(
calc_matrix=calc_matrix,
lyrics_tokens=lyrics_tokens,
total_duration_seconds=total_duration_seconds
)
sentence_stamps = self.sentence_timestamps(token_stamps)
lrc_text = self.format_lrc(sentence_stamps)
return {
"token_timestamps": token_stamps,
"sentence_timestamps": sentence_stamps,
"lrc_text": lrc_text
}
class MusicLyricScorer:
"""
Scorer class for evaluating lyrics-to-audio alignment quality.
Focuses on calculating alignment quality metrics (Coverage, Monotonicity, Confidence)
using tensor operations for potential differentiability or GPU acceleration.
"""
def __init__(self, tokenizer: Any):
"""
Initialize the aligner.
Args:
tokenizer: Tokenizer instance (must implement .decode()).
"""
self.tokenizer = tokenizer
def _generate_token_type_mask(self, token_ids: List[int]) -> np.ndarray:
"""
Generate a mask distinguishing lyrics (1) from structural tags (0).
Uses self.tokenizer to decode tokens.
Args:
token_ids: List of token IDs.
Returns:
Numpy array of shape [len(token_ids)] with 1 or 0.
"""
decoded_tokens = [self.tokenizer.decode([tid]) for tid in token_ids]
mask = np.ones(len(token_ids), dtype=np.int32)
in_bracket = False
for i, token_str in enumerate(decoded_tokens):
if '[' in token_str:
in_bracket = True
if in_bracket:
mask[i] = 0
if ']' in token_str:
in_bracket = False
mask[i] = 0
return mask
def _preprocess_attention(
self,
attention_matrix: Union[torch.Tensor, np.ndarray],
custom_config: Dict[int, List[int]],
medfilt_width: int = 1
) -> Tuple[Optional[np.ndarray], Optional[np.ndarray], Optional[torch.Tensor]]:
"""
Extracts and normalizes the attention matrix.
Logic V4: Uses Min-Max normalization to highlight energy differences.
Args:
attention_matrix: Raw attention tensor [Layers, Heads, Tokens, Frames].
custom_config: Config mapping layers to heads.
medfilt_width: Width for median filtering.
Returns:
Tuple of (calc_matrix, energy_matrix, avg_weights_tensor).
"""
# 1. Prepare Tensor
if not isinstance(attention_matrix, torch.Tensor):
weights = torch.tensor(attention_matrix)
else:
weights = attention_matrix.clone()
weights = weights.cpu().float()
# 2. Select Heads based on config
selected_tensors = []
for layer_idx, head_indices in custom_config.items():
for head_idx in head_indices:
if layer_idx < weights.shape[0] and head_idx < weights.shape[1]:
selected_tensors.append(weights[layer_idx, head_idx])
if not selected_tensors:
return None, None, None
weights_stack = torch.stack(selected_tensors, dim=0)
# 3. Average Heads
avg_weights = weights_stack.mean(dim=0) # [Tokens, Frames]
# 4. Preprocessing Logic
# Min-Max normalization preserving energy distribution
# Median filter is applied to the energy matrix
energy_tensor = median_filter(avg_weights, filter_width=medfilt_width)
energy_matrix = energy_tensor.numpy()
e_min, e_max = energy_matrix.min(), energy_matrix.max()
if e_max - e_min > 1e-9:
energy_matrix = (energy_matrix - e_min) / (e_max - e_min)
else:
energy_matrix = np.zeros_like(energy_matrix)
# Contrast enhancement for DTW pathfinding
# calc_matrix is used for pathfinding, energy_matrix for scoring
calc_matrix = energy_matrix ** 2
return calc_matrix, energy_matrix, avg_weights
def _compute_alignment_metrics(
self,
energy_matrix: torch.Tensor,
path_coords: torch.Tensor,
type_mask: torch.Tensor,
time_weight: float = 0.01,
overlap_frames: float = 9.0,
instrumental_weight: float = 1.0
) -> Tuple[float, float, float]:
"""
Core metric calculation logic using high-precision Tensor operations.
Args:
energy_matrix: Normalized energy [Rows, Cols].
path_coords: DTW path coordinates [Steps, 2].
type_mask: Token type mask [Rows] (1=Lyrics, 0=Tags).
time_weight: Minimum energy threshold for monotonicity.
overlap_frames: Allowed overlap for monotonicity check.
instrumental_weight: Weight for non-lyric tokens in confidence calc.
Returns:
Tuple of (coverage, monotonicity, confidence).
"""
# Ensure high precision for internal calculation
energy_matrix = energy_matrix.to(dtype=torch.float64)
path_coords = path_coords.long()
type_mask = type_mask.long()
device = energy_matrix.device
rows, cols = energy_matrix.shape
is_lyrics_row = (type_mask == 1)
# ================= A. Coverage Score =================
# Ratio of lyric lines that have significant energy peak
row_max_energies = energy_matrix.max(dim=1).values
total_sung_rows = is_lyrics_row.sum().double()
coverage_threshold = 0.1
valid_sung_mask = is_lyrics_row & (row_max_energies > coverage_threshold)
valid_sung_rows = valid_sung_mask.sum().double()
if total_sung_rows > 0:
coverage_score = valid_sung_rows / total_sung_rows
else:
coverage_score = torch.tensor(1.0, device=device, dtype=torch.float64)
# ================= B. Monotonicity Score =================
# Check if the "center of mass" of lyric lines moves forward in time
col_indices = torch.arange(cols, device=device, dtype=torch.float64)
# Zero out low energy noise
weights = torch.where(
energy_matrix > time_weight,
energy_matrix,
torch.zeros_like(energy_matrix)
)
sum_w = weights.sum(dim=1)
sum_t = (weights * col_indices).sum(dim=1)
# Calculate centroids
centroids = torch.full((rows,), -1.0, device=device, dtype=torch.float64)
valid_w_mask = sum_w > 1e-9
centroids[valid_w_mask] = sum_t[valid_w_mask] / sum_w[valid_w_mask]
# Extract sequence of valid lyrics centroids
valid_sequence_mask = is_lyrics_row & (centroids >= 0)
sung_centroids = centroids[valid_sequence_mask]
cnt = sung_centroids.shape[0]
if cnt > 1:
curr_c = sung_centroids[:-1]
next_c = sung_centroids[1:]
# Check non-decreasing order with overlap tolerance
non_decreasing = (next_c >= (curr_c - overlap_frames)).double().sum()
pairs = torch.tensor(cnt - 1, device=device, dtype=torch.float64)
monotonicity_score = non_decreasing / pairs
else:
monotonicity_score = torch.tensor(1.0, device=device, dtype=torch.float64)
# ================= C. Path Confidence =================
# Average energy along the optimal path
if path_coords.shape[0] > 0:
p_rows = path_coords[:, 0]
p_cols = path_coords[:, 1]
path_energies = energy_matrix[p_rows, p_cols]
step_weights = torch.ones_like(path_energies)
# Lower weight for instrumental/tag steps
is_inst_step = (type_mask[p_rows] == 0)
step_weights[is_inst_step] = instrumental_weight
total_energy = (path_energies * step_weights).sum()
total_steps = step_weights.sum()
if total_steps > 0:
path_confidence = total_energy / total_steps
else:
path_confidence = torch.tensor(0.0, device=device, dtype=torch.float64)
else:
path_confidence = torch.tensor(0.0, device=device, dtype=torch.float64)
return coverage_score.item(), monotonicity_score.item(), path_confidence.item()
def lyrics_alignment_info(
self,
attention_matrix: Union[torch.Tensor, np.ndarray],
token_ids: List[int],
custom_config: Dict[int, List[int]],
return_matrices: bool = False,
medfilt_width: int = 1
) -> Dict[str, Any]:
"""
Generates alignment path and processed matrices.
Args:
attention_matrix: Input attention tensor.
token_ids: Corresponding token IDs.
custom_config: Layer/Head configuration.
return_matrices: If True, returns matrices in the output.
medfilt_width: Median filter width.
Returns:
Dict or AlignmentInfo object containing path and masks.
"""
calc_matrix, energy_matrix, vis_matrix = self._preprocess_attention(
attention_matrix, custom_config, medfilt_width
)
if calc_matrix is None:
return {
"calc_matrix": None,
"error": "No valid attention heads found"
}
# 1. Generate Semantic Mask (1=Lyrics, 0=Tags)
# Uses self.tokenizer internally
type_mask = self._generate_token_type_mask(token_ids)
# Safety check for shape mismatch
if len(type_mask) != energy_matrix.shape[0]:
# Fallback to all lyrics if shapes don't align
type_mask = np.ones(energy_matrix.shape[0], dtype=np.int32)
# 2. DTW Pathfinding
# Using negative calc_matrix because DTW minimizes cost
text_indices, time_indices = dtw_cpu(-calc_matrix.astype(np.float32))
path_coords = np.stack([text_indices, time_indices], axis=1)
return_dict = {
"path_coords": path_coords,
"type_mask": type_mask,
"energy_matrix": energy_matrix
}
if return_matrices:
return_dict['calc_matrix'] = calc_matrix
return_dict['vis_matrix'] = vis_matrix
return return_dict
def calculate_score(
self,
energy_matrix: Union[torch.Tensor, np.ndarray],
type_mask: Union[torch.Tensor, np.ndarray],
path_coords: Union[torch.Tensor, np.ndarray],
time_weight: float = 0.01,
overlap_frames: float = 9.0,
instrumental_weight: float = 1.0
) -> Dict[str, Any]:
"""
Calculates the final alignment score based on pre-computed components.
Args:
energy_matrix: Processed energy matrix.
type_mask: Token type mask.
path_coords: DTW path coordinates.
time_weight: Minimum energy threshold for monotonicity.
overlap_frames: Allowed backward movement frames.
instrumental_weight: Weight for non-lyric path steps.
Returns:
AlignmentScore object containing individual metrics and final score.
"""
# Ensure Inputs are Tensors on the correct device
if not isinstance(energy_matrix, torch.Tensor):
energy_matrix = torch.tensor(energy_matrix, device='cuda', dtype=torch.float32)
device = energy_matrix.device
if not isinstance(type_mask, torch.Tensor):
type_mask = torch.tensor(type_mask, device=device, dtype=torch.long)
else:
type_mask = type_mask.to(device=device, dtype=torch.long)
if not isinstance(path_coords, torch.Tensor):
path_coords = torch.tensor(path_coords, device=device, dtype=torch.long)
else:
path_coords = path_coords.to(device=device, dtype=torch.long)
# Compute Metrics
coverage, monotonicity, confidence = self._compute_alignment_metrics(
energy_matrix=energy_matrix,
path_coords=path_coords,
type_mask=type_mask,
time_weight=time_weight,
overlap_frames=overlap_frames,
instrumental_weight=instrumental_weight
)
# Final Score Calculation
# (Cov^2 * Mono^2 * Conf)
final_score = (coverage ** 2) * (monotonicity ** 2) * confidence
final_score = float(np.clip(final_score, 0.0, 1.0))
return {
"lyrics_score": round(final_score, 4)
} |