File size: 12,820 Bytes
11860f1
 
 
 
 
 
 
 
 
 
96b5f27
 
 
 
 
11860f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388b5af
11860f1
 
 
 
 
 
 
 
 
 
 
 
 
 
140aee6
 
 
 
 
 
 
 
 
11860f1
ac82e04
 
288b94f
ac82e04
288b94f
ac82e04
 
 
 
 
 
 
 
 
288b94f
ac82e04
 
 
 
 
 
 
288b94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac82e04
11860f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac82e04
 
11860f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03f73c6
11860f1
 
 
 
 
03f73c6
11860f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
"""
Audio saving and transcoding utility module

Independent audio file operations outside of handler, supporting:
- Save audio tensor/numpy to files (default FLAC format, fast)
- Format conversion (FLAC/WAV/MP3)
- Batch processing
"""

import os

# Disable torchcodec backend to avoid CUDA dependency issues on HuggingFace Space
# This forces torchaudio to use ffmpeg/sox/soundfile backends instead
os.environ["TORCHAUDIO_USE_TORCHCODEC"] = "0"

import hashlib
import json
from pathlib import Path
from typing import Union, Optional, List, Tuple
import torch
import numpy as np
import torchaudio
from loguru import logger


class AudioSaver:
    """Audio saving and transcoding utility class"""
    
    def __init__(self, default_format: str = "flac"):
        """
        Initialize audio saver
        
        Args:
            default_format: Default save format ('flac', 'wav', 'mp3')
        """
        self.default_format = default_format.lower()
        if self.default_format not in ["flac", "wav", "mp3"]:
            logger.warning(f"Unsupported format {default_format}, using 'flac'")
            self.default_format = "flac"
    
    def save_audio(
        self,
        audio_data: Union[torch.Tensor, np.ndarray],
        output_path: Union[str, Path],
        sample_rate: int = 48000,
        format: Optional[str] = None,
        channels_first: bool = True,
    ) -> str:
        """
        Save audio data to file
        
        Args:
            audio_data: Audio data, torch.Tensor [channels, samples] or numpy.ndarray
            output_path: Output file path (extension can be omitted)
            sample_rate: Sample rate
            format: Audio format ('flac', 'wav', 'mp3'), defaults to default_format
            channels_first: If True, tensor format is [channels, samples], else [samples, channels]
        
        Returns:
            Actual saved file path
        """
        format = (format or self.default_format).lower()
        if format not in ["flac", "wav", "mp3"]:
            logger.warning(f"Unsupported format {format}, using {self.default_format}")
            format = self.default_format
        
        # Ensure output path has correct extension
        output_path = Path(output_path)
        if output_path.suffix.lower() not in ['.flac', '.wav', '.mp3']:
            output_path = output_path.with_suffix(f'.{format}')
        
        # Convert to torch tensor
        if isinstance(audio_data, np.ndarray):
            if channels_first:
                # numpy [samples, channels] -> tensor [channels, samples]
                audio_tensor = torch.from_numpy(audio_data.T).float()
            else:
                # numpy [samples, channels] -> tensor [samples, channels] -> [channels, samples]
                audio_tensor = torch.from_numpy(audio_data).float()
                if audio_tensor.dim() == 2 and audio_tensor.shape[0] < audio_tensor.shape[1]:
                    audio_tensor = audio_tensor.T
        else:
            # torch tensor
            audio_tensor = audio_data.cpu().float()
            if not channels_first and audio_tensor.dim() == 2:
                # [samples, channels] -> [channels, samples]
                if audio_tensor.shape[0] > audio_tensor.shape[1]:
                    audio_tensor = audio_tensor.T
        
        # Ensure memory is contiguous
        audio_tensor = audio_tensor.contiguous()
        
        # Select backend and save
        try:
            if format == "mp3":
                # MP3 uses ffmpeg backend
                torchaudio.save(
                    str(output_path),
                    audio_tensor,
                    sample_rate,
                    channels_first=True,
                    backend='ffmpeg',
                )
            elif format in ["flac", "wav"]:
                # FLAC and WAV use soundfile backend (fastest)
                torchaudio.save(
                    str(output_path),
                    audio_tensor,
                    sample_rate,
                    channels_first=True,
                    backend='soundfile',
                )
            else:
                # Other formats use default backend
                torchaudio.save(
                    str(output_path),
                    audio_tensor,
                    sample_rate,
                    channels_first=True,
                )
            
            logger.debug(f"[AudioSaver] Saved audio to {output_path} ({format}, {sample_rate}Hz)")
            return str(output_path)
            
        except Exception as e:
            try:
                import soundfile as sf
                audio_np = audio_tensor.transpose(0, 1).numpy()  # -> [samples, channels]
                sf.write(str(output_path), audio_np, sample_rate, format=format.upper())
                logger.debug(f"[AudioSaver] Fallback soundfile Saved audio to {output_path} ({format}, {sample_rate}Hz)")
                return str(output_path)
            except Exception as e:
                logger.error(f"[AudioSaver] Failed to save audio: {e}")
                raise
    
    def _load_audio_file(self, audio_file: Union[str, Path]) -> Tuple[torch.Tensor, int]:
        """
        Load audio file with ffmpeg backend, fallback to soundfile if failed.
        
        This handles CUDA dependency issues with torchcodec on HuggingFace Space.
        
        Args:
            audio_file: Path to the audio file
            
        Returns:
            Tuple of (audio_tensor, sample_rate)
            
        Raises:
            FileNotFoundError: If the audio file doesn't exist
            Exception: If all methods fail to load the audio
        """
        audio_file = str(audio_file)
        
        # Check if file exists first
        if not Path(audio_file).exists():
            raise FileNotFoundError(f"Audio file not found: {audio_file}")
        
        # Try torchaudio with explicit ffmpeg backend first
        try:
            audio, sr = torchaudio.load(audio_file, backend="ffmpeg")
            return audio, sr
        except Exception as e:
            logger.debug(f"[AudioSaver._load_audio_file] ffmpeg backend failed: {e}, trying soundfile fallback")
        
        # Fallback: use soundfile directly (most compatible)
        try:
            import soundfile as sf
            audio_np, sr = sf.read(audio_file)
            # soundfile returns [samples, channels] or [samples], convert to [channels, samples]
            audio = torch.from_numpy(audio_np).float()
            if audio.dim() == 1:
                # Mono: [samples] -> [1, samples]
                audio = audio.unsqueeze(0)
            else:
                # Stereo: [samples, channels] -> [channels, samples]
                audio = audio.T
            return audio, sr
        except Exception as e:
            logger.error(f"[AudioSaver._load_audio_file] All methods failed to load audio: {audio_file}, error: {e}")
            raise
    
    def convert_audio(
        self,
        input_path: Union[str, Path],
        output_path: Union[str, Path],
        output_format: str,
        remove_input: bool = False,
    ) -> str:
        """
        Convert audio format
        
        Args:
            input_path: Input audio file path
            output_path: Output audio file path
            output_format: Target format ('flac', 'wav', 'mp3')
            remove_input: Whether to delete input file
        
        Returns:
            Output file path
        """
        input_path = Path(input_path)
        output_path = Path(output_path)
        
        if not input_path.exists():
            raise FileNotFoundError(f"Input file not found: {input_path}")
        
        # Load audio with fallback backends
        audio_tensor, sample_rate = self._load_audio_file(input_path)
        
        # Save as new format
        output_path = self.save_audio(
            audio_tensor,
            output_path,
            sample_rate=sample_rate,
            format=output_format,
            channels_first=True
        )
        
        # Delete input file if needed
        if remove_input:
            input_path.unlink()
            logger.debug(f"[AudioSaver] Removed input file: {input_path}")
        
        return output_path
    
    def save_batch(
        self,
        audio_batch: Union[List[torch.Tensor], torch.Tensor],
        output_dir: Union[str, Path],
        file_prefix: str = "audio",
        sample_rate: int = 48000,
        format: Optional[str] = None,
        channels_first: bool = True,
    ) -> List[str]:
        """
        Save audio batch
        
        Args:
            audio_batch: Audio batch, List[tensor] or tensor [batch, channels, samples]
            output_dir: Output directory
            file_prefix: File prefix
            sample_rate: Sample rate
            format: Audio format
            channels_first: Tensor format flag
        
        Returns:
            List of saved file paths
        """
        output_dir = Path(output_dir)
        output_dir.mkdir(parents=True, exist_ok=True)
        
        # Process batch
        if isinstance(audio_batch, torch.Tensor) and audio_batch.dim() == 3:
            # [batch, channels, samples]
            audio_list = [audio_batch[i] for i in range(audio_batch.shape[0])]
        elif isinstance(audio_batch, list):
            audio_list = audio_batch
        else:
            audio_list = [audio_batch]
        
        saved_paths = []
        for i, audio in enumerate(audio_list):
            output_path = output_dir / f"{file_prefix}_{i:04d}"
            saved_path = self.save_audio(
                audio,
                output_path,
                sample_rate=sample_rate,
                format=format,
                channels_first=channels_first
            )
            saved_paths.append(saved_path)
        
        return saved_paths


def get_audio_file_hash(audio_file) -> str:
    """
    Get hash identifier for an audio file.
    
    Args:
        audio_file: Path to audio file (str) or file-like object
    
    Returns:
        Hash string or empty string
    """
    if audio_file is None:
        return ""
    
    try:
        if isinstance(audio_file, str):
            if os.path.exists(audio_file):
                with open(audio_file, 'rb') as f:
                    return hashlib.md5(f.read()).hexdigest()
            return hashlib.md5(audio_file.encode('utf-8')).hexdigest()
        elif hasattr(audio_file, 'name'):
            return hashlib.md5(str(audio_file.name).encode('utf-8')).hexdigest()
        return hashlib.md5(str(audio_file).encode('utf-8')).hexdigest()
    except Exception:
        return hashlib.md5(str(audio_file).encode('utf-8')).hexdigest()


def generate_uuid_from_params(params_dict) -> str:
    """
    Generate deterministic UUID from generation parameters.
    Same parameters will always generate the same UUID.
    
    Args:
        params_dict: Dictionary of parameters
    
    Returns:
        UUID string
    """
    
    params_json = json.dumps(params_dict, sort_keys=True, ensure_ascii=False)
    hash_obj = hashlib.sha256(params_json.encode('utf-8'))
    hash_hex = hash_obj.hexdigest()
    uuid_str = f"{hash_hex[0:8]}-{hash_hex[8:12]}-{hash_hex[12:16]}-{hash_hex[16:20]}-{hash_hex[20:32]}"
    return uuid_str


def generate_uuid_from_audio_data(
    audio_data: Union[torch.Tensor, np.ndarray],
    seed: Optional[int] = None
) -> str:
    """
    Generate UUID from audio data (for caching/deduplication)
    
    Args:
        audio_data: Audio data
        seed: Optional seed value
    
    Returns:
        UUID string
    """
    if isinstance(audio_data, torch.Tensor):
        # Convert to numpy and calculate hash
        audio_np = audio_data.cpu().numpy()
    else:
        audio_np = audio_data
    
    # Calculate data hash
    data_hash = hashlib.md5(audio_np.tobytes()).hexdigest()
    
    if seed is not None:
        combined = f"{data_hash}_{seed}"
        return hashlib.md5(combined.encode()).hexdigest()
    
    return data_hash


# Global default instance
_default_saver = AudioSaver(default_format="flac")


def save_audio(
    audio_data: Union[torch.Tensor, np.ndarray],
    output_path: Union[str, Path],
    sample_rate: int = 48000,
    format: Optional[str] = None,
    channels_first: bool = True,
) -> str:
    """
    Convenience function: save audio (using default configuration)
    
    Args:
        audio_data: Audio data
        output_path: Output path
        sample_rate: Sample rate
        format: Format (default flac)
        channels_first: Tensor format flag
    
    Returns:
        Saved file path
    """
    return _default_saver.save_audio(
        audio_data, output_path, sample_rate, format, channels_first
    )