Spaces:
Running
on
Zero
Running
on
Zero
fix vllm
Browse files
acestep/gradio_ui.py
CHANGED
|
@@ -160,17 +160,18 @@ def create_generation_section(handler) -> dict:
|
|
| 160 |
|
| 161 |
# Service Configuration
|
| 162 |
with gr.Accordion("🔧 Service Configuration", open=True) as service_config_accordion:
|
| 163 |
-
|
| 164 |
-
|
|
|
|
| 165 |
checkpoint_dropdown = gr.Dropdown(
|
| 166 |
label="Checkpoint File",
|
| 167 |
choices=handler.get_available_checkpoints(),
|
| 168 |
value=None,
|
| 169 |
info="Select a trained model checkpoint file (full path or filename)"
|
| 170 |
)
|
| 171 |
-
with gr.Column(scale=1):
|
| 172 |
refresh_btn = gr.Button("🔄 Refresh", size="sm")
|
| 173 |
-
|
| 174 |
with gr.Row():
|
| 175 |
# Get available acestep-v15- model list
|
| 176 |
available_models = handler.get_available_acestep_v15_models()
|
|
@@ -200,13 +201,20 @@ def create_generation_section(handler) -> dict:
|
|
| 200 |
value=default_lm_model,
|
| 201 |
info="Select the 5Hz LM model checkpoint (auto-scanned from checkpoints)"
|
| 202 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
init_llm_checkbox = gr.Checkbox(
|
| 204 |
label="Initialize 5Hz LM",
|
| 205 |
value=False,
|
| 206 |
info="Check to initialize 5Hz LM during service initialization",
|
| 207 |
)
|
| 208 |
-
|
| 209 |
-
with gr.Row():
|
| 210 |
# Auto-detect flash attention availability
|
| 211 |
flash_attn_available = handler.is_flash_attention_available()
|
| 212 |
use_flash_attention_checkbox = gr.Checkbox(
|
|
@@ -223,7 +231,7 @@ def create_generation_section(handler) -> dict:
|
|
| 223 |
offload_dit_to_cpu_checkbox = gr.Checkbox(
|
| 224 |
label="Offload DiT to CPU",
|
| 225 |
value=False,
|
| 226 |
-
info="Offload DiT
|
| 227 |
)
|
| 228 |
|
| 229 |
init_btn = gr.Button("Initialize Service", variant="primary", size="lg")
|
|
@@ -319,10 +327,29 @@ def create_generation_section(handler) -> dict:
|
|
| 319 |
maximum=2.0,
|
| 320 |
value=0.7,
|
| 321 |
step=0.1,
|
| 322 |
-
scale=
|
| 323 |
-
info="Temperature for 5Hz LM sampling"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
)
|
| 325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
# Repainting controls
|
| 327 |
with gr.Group(visible=False) as repainting_group:
|
| 328 |
gr.HTML("<h5>🎨 Repainting Controls (seconds) </h5>")
|
|
@@ -495,6 +522,7 @@ def create_generation_section(handler) -> dict:
|
|
| 495 |
"init_status": init_status,
|
| 496 |
"lm_model_path": lm_model_path,
|
| 497 |
"init_llm_checkbox": init_llm_checkbox,
|
|
|
|
| 498 |
"use_flash_attention_checkbox": use_flash_attention_checkbox,
|
| 499 |
"offload_to_cpu_checkbox": offload_to_cpu_checkbox,
|
| 500 |
"offload_dit_to_cpu_checkbox": offload_dit_to_cpu_checkbox,
|
|
@@ -510,6 +538,8 @@ def create_generation_section(handler) -> dict:
|
|
| 510 |
"use_5hz_lm_row": use_5hz_lm_row,
|
| 511 |
"use_5hz_lm_btn": use_5hz_lm_btn,
|
| 512 |
"lm_temperature": lm_temperature,
|
|
|
|
|
|
|
| 513 |
"repainting_group": repainting_group,
|
| 514 |
"repainting_start": repainting_start,
|
| 515 |
"repainting_end": repainting_end,
|
|
@@ -666,11 +696,12 @@ def setup_event_handlers(demo, handler, dataset_section, generation_section, res
|
|
| 666 |
)
|
| 667 |
|
| 668 |
# Service initialization
|
| 669 |
-
def init_service_wrapper(checkpoint, config_path, device, init_llm, lm_model_path, use_flash_attention, offload_to_cpu, offload_dit_to_cpu):
|
| 670 |
"""Wrapper for service initialization, returns status and button state"""
|
| 671 |
status, enable = handler.initialize_service(
|
| 672 |
checkpoint, config_path, device, init_llm, lm_model_path,
|
| 673 |
-
|
|
|
|
| 674 |
offload_to_cpu=offload_to_cpu, offload_dit_to_cpu=offload_dit_to_cpu
|
| 675 |
)
|
| 676 |
return status, gr.update(interactive=enable)
|
|
@@ -683,6 +714,7 @@ def setup_event_handlers(demo, handler, dataset_section, generation_section, res
|
|
| 683 |
generation_section["device"],
|
| 684 |
generation_section["init_llm_checkbox"],
|
| 685 |
generation_section["lm_model_path"],
|
|
|
|
| 686 |
generation_section["use_flash_attention_checkbox"],
|
| 687 |
generation_section["offload_to_cpu_checkbox"],
|
| 688 |
generation_section["offload_dit_to_cpu_checkbox"],
|
|
@@ -690,6 +722,30 @@ def setup_event_handlers(demo, handler, dataset_section, generation_section, res
|
|
| 690 |
outputs=[generation_section["init_status"], generation_section["generate_btn"]]
|
| 691 |
)
|
| 692 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 693 |
# Generation with progress bar
|
| 694 |
def generate_with_progress(
|
| 695 |
captions, lyrics, bpm, key_scale, time_signature, vocal_language,
|
|
@@ -762,9 +818,9 @@ def setup_event_handlers(demo, handler, dataset_section, generation_section, res
|
|
| 762 |
)
|
| 763 |
|
| 764 |
# 5Hz LM generation (simplified version, can be extended as needed)
|
| 765 |
-
def generate_lm_hints_wrapper(caption, lyrics, temperature):
|
| 766 |
"""Wrapper for 5Hz LM generation"""
|
| 767 |
-
metadata, audio_codes, status = handler.generate_with_5hz_lm(caption, lyrics, temperature)
|
| 768 |
|
| 769 |
# Extract metadata values and map to UI fields
|
| 770 |
# Handle bpm
|
|
@@ -801,7 +857,9 @@ def setup_event_handlers(demo, handler, dataset_section, generation_section, res
|
|
| 801 |
inputs=[
|
| 802 |
generation_section["captions"],
|
| 803 |
generation_section["lyrics"],
|
| 804 |
-
generation_section["lm_temperature"]
|
|
|
|
|
|
|
| 805 |
],
|
| 806 |
outputs=[
|
| 807 |
generation_section["text2music_audio_code_string"],
|
|
|
|
| 160 |
|
| 161 |
# Service Configuration
|
| 162 |
with gr.Accordion("🔧 Service Configuration", open=True) as service_config_accordion:
|
| 163 |
+
# Dropdown options section - all dropdowns grouped together
|
| 164 |
+
with gr.Row(equal_height=True):
|
| 165 |
+
with gr.Column(scale=4):
|
| 166 |
checkpoint_dropdown = gr.Dropdown(
|
| 167 |
label="Checkpoint File",
|
| 168 |
choices=handler.get_available_checkpoints(),
|
| 169 |
value=None,
|
| 170 |
info="Select a trained model checkpoint file (full path or filename)"
|
| 171 |
)
|
| 172 |
+
with gr.Column(scale=1, min_width=90):
|
| 173 |
refresh_btn = gr.Button("🔄 Refresh", size="sm")
|
| 174 |
+
|
| 175 |
with gr.Row():
|
| 176 |
# Get available acestep-v15- model list
|
| 177 |
available_models = handler.get_available_acestep_v15_models()
|
|
|
|
| 201 |
value=default_lm_model,
|
| 202 |
info="Select the 5Hz LM model checkpoint (auto-scanned from checkpoints)"
|
| 203 |
)
|
| 204 |
+
backend_dropdown = gr.Dropdown(
|
| 205 |
+
choices=["vllm", "pt"],
|
| 206 |
+
value="vllm",
|
| 207 |
+
label="5Hz LM Backend",
|
| 208 |
+
info="Select backend for 5Hz LM: vllm (faster) or pt (PyTorch, more compatible)"
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# Checkbox options section - all checkboxes grouped together
|
| 212 |
+
with gr.Row():
|
| 213 |
init_llm_checkbox = gr.Checkbox(
|
| 214 |
label="Initialize 5Hz LM",
|
| 215 |
value=False,
|
| 216 |
info="Check to initialize 5Hz LM during service initialization",
|
| 217 |
)
|
|
|
|
|
|
|
| 218 |
# Auto-detect flash attention availability
|
| 219 |
flash_attn_available = handler.is_flash_attention_available()
|
| 220 |
use_flash_attention_checkbox = gr.Checkbox(
|
|
|
|
| 231 |
offload_dit_to_cpu_checkbox = gr.Checkbox(
|
| 232 |
label="Offload DiT to CPU",
|
| 233 |
value=False,
|
| 234 |
+
info="Offload DiT to CPU (needs Offload to CPU)"
|
| 235 |
)
|
| 236 |
|
| 237 |
init_btn = gr.Button("Initialize Service", variant="primary", size="lg")
|
|
|
|
| 327 |
maximum=2.0,
|
| 328 |
value=0.7,
|
| 329 |
step=0.1,
|
| 330 |
+
scale=1,
|
| 331 |
+
info="Temperature for 5Hz LM sampling (higher = more random, lower = more deterministic)"
|
| 332 |
+
)
|
| 333 |
+
lm_cfg_scale = gr.Slider(
|
| 334 |
+
label="CFG Scale",
|
| 335 |
+
minimum=1.0,
|
| 336 |
+
maximum=3.0,
|
| 337 |
+
value=1.0,
|
| 338 |
+
step=0.1,
|
| 339 |
+
scale=1,
|
| 340 |
+
info="Classifier-Free Guidance scale for 5Hz LM (1.0 = no CFG, higher = stronger guidance)"
|
| 341 |
)
|
| 342 |
|
| 343 |
+
# Negative prompt for CFG (only visible when LM initialized and cfg_scale > 1)
|
| 344 |
+
lm_negative_prompt = gr.Textbox(
|
| 345 |
+
label="Negative Prompt",
|
| 346 |
+
value="NO USER INPUT",
|
| 347 |
+
placeholder="Enter negative prompt for CFG (default: NO USER INPUT)",
|
| 348 |
+
visible=False,
|
| 349 |
+
info="Negative prompt used for Classifier-Free Guidance when CFG Scale > 1.0",
|
| 350 |
+
lines=2
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
# Repainting controls
|
| 354 |
with gr.Group(visible=False) as repainting_group:
|
| 355 |
gr.HTML("<h5>🎨 Repainting Controls (seconds) </h5>")
|
|
|
|
| 522 |
"init_status": init_status,
|
| 523 |
"lm_model_path": lm_model_path,
|
| 524 |
"init_llm_checkbox": init_llm_checkbox,
|
| 525 |
+
"backend_dropdown": backend_dropdown,
|
| 526 |
"use_flash_attention_checkbox": use_flash_attention_checkbox,
|
| 527 |
"offload_to_cpu_checkbox": offload_to_cpu_checkbox,
|
| 528 |
"offload_dit_to_cpu_checkbox": offload_dit_to_cpu_checkbox,
|
|
|
|
| 538 |
"use_5hz_lm_row": use_5hz_lm_row,
|
| 539 |
"use_5hz_lm_btn": use_5hz_lm_btn,
|
| 540 |
"lm_temperature": lm_temperature,
|
| 541 |
+
"lm_cfg_scale": lm_cfg_scale,
|
| 542 |
+
"lm_negative_prompt": lm_negative_prompt,
|
| 543 |
"repainting_group": repainting_group,
|
| 544 |
"repainting_start": repainting_start,
|
| 545 |
"repainting_end": repainting_end,
|
|
|
|
| 696 |
)
|
| 697 |
|
| 698 |
# Service initialization
|
| 699 |
+
def init_service_wrapper(checkpoint, config_path, device, init_llm, lm_model_path, backend, use_flash_attention, offload_to_cpu, offload_dit_to_cpu):
|
| 700 |
"""Wrapper for service initialization, returns status and button state"""
|
| 701 |
status, enable = handler.initialize_service(
|
| 702 |
checkpoint, config_path, device, init_llm, lm_model_path,
|
| 703 |
+
backend=backend,
|
| 704 |
+
use_flash_attention=use_flash_attention, compile_model=False,
|
| 705 |
offload_to_cpu=offload_to_cpu, offload_dit_to_cpu=offload_dit_to_cpu
|
| 706 |
)
|
| 707 |
return status, gr.update(interactive=enable)
|
|
|
|
| 714 |
generation_section["device"],
|
| 715 |
generation_section["init_llm_checkbox"],
|
| 716 |
generation_section["lm_model_path"],
|
| 717 |
+
generation_section["backend_dropdown"],
|
| 718 |
generation_section["use_flash_attention_checkbox"],
|
| 719 |
generation_section["offload_to_cpu_checkbox"],
|
| 720 |
generation_section["offload_dit_to_cpu_checkbox"],
|
|
|
|
| 722 |
outputs=[generation_section["init_status"], generation_section["generate_btn"]]
|
| 723 |
)
|
| 724 |
|
| 725 |
+
# Update negative prompt visibility based on LM initialization and CFG scale
|
| 726 |
+
def update_negative_prompt_visibility(init_status, cfg_scale):
|
| 727 |
+
"""Update negative prompt visibility: show only if LM initialized and cfg_scale > 1"""
|
| 728 |
+
# Check if LM is initialized by looking for "5Hz LM backend:" in status
|
| 729 |
+
lm_initialized = init_status is not None and "5Hz LM backend:" in str(init_status)
|
| 730 |
+
# Check if cfg_scale > 1
|
| 731 |
+
cfg_enabled = cfg_scale is not None and float(cfg_scale) > 1.0
|
| 732 |
+
# Show only if both conditions are met
|
| 733 |
+
return gr.update(visible=lm_initialized and cfg_enabled)
|
| 734 |
+
|
| 735 |
+
# Update visibility when init_status changes
|
| 736 |
+
generation_section["init_status"].change(
|
| 737 |
+
fn=update_negative_prompt_visibility,
|
| 738 |
+
inputs=[generation_section["init_status"], generation_section["lm_cfg_scale"]],
|
| 739 |
+
outputs=[generation_section["lm_negative_prompt"]]
|
| 740 |
+
)
|
| 741 |
+
|
| 742 |
+
# Update visibility when cfg_scale changes
|
| 743 |
+
generation_section["lm_cfg_scale"].change(
|
| 744 |
+
fn=update_negative_prompt_visibility,
|
| 745 |
+
inputs=[generation_section["init_status"], generation_section["lm_cfg_scale"]],
|
| 746 |
+
outputs=[generation_section["lm_negative_prompt"]]
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
# Generation with progress bar
|
| 750 |
def generate_with_progress(
|
| 751 |
captions, lyrics, bpm, key_scale, time_signature, vocal_language,
|
|
|
|
| 818 |
)
|
| 819 |
|
| 820 |
# 5Hz LM generation (simplified version, can be extended as needed)
|
| 821 |
+
def generate_lm_hints_wrapper(caption, lyrics, temperature, cfg_scale, negative_prompt):
|
| 822 |
"""Wrapper for 5Hz LM generation"""
|
| 823 |
+
metadata, audio_codes, status = handler.generate_with_5hz_lm(caption, lyrics, temperature, cfg_scale, negative_prompt)
|
| 824 |
|
| 825 |
# Extract metadata values and map to UI fields
|
| 826 |
# Handle bpm
|
|
|
|
| 857 |
inputs=[
|
| 858 |
generation_section["captions"],
|
| 859 |
generation_section["lyrics"],
|
| 860 |
+
generation_section["lm_temperature"],
|
| 861 |
+
generation_section["lm_cfg_scale"],
|
| 862 |
+
generation_section["lm_negative_prompt"]
|
| 863 |
],
|
| 864 |
outputs=[
|
| 865 |
generation_section["text2music_audio_code_string"],
|
acestep/handler.py
CHANGED
|
@@ -151,6 +151,7 @@ class AceStepHandler:
|
|
| 151 |
device: str = "auto",
|
| 152 |
init_llm: bool = False,
|
| 153 |
lm_model_path: str = "acestep-5Hz-lm-0.6B",
|
|
|
|
| 154 |
use_flash_attention: bool = False,
|
| 155 |
compile_model: bool = False,
|
| 156 |
offload_to_cpu: bool = False,
|
|
@@ -165,6 +166,7 @@ class AceStepHandler:
|
|
| 165 |
device: Device type
|
| 166 |
init_llm: Whether to initialize 5Hz LM model
|
| 167 |
lm_model_path: 5Hz LM model path
|
|
|
|
| 168 |
use_flash_attention: Whether to use flash attention (requires flash_attn package)
|
| 169 |
compile_model: Whether to use torch.compile to optimize the model
|
| 170 |
offload_to_cpu: Whether to offload models to CPU when not in use
|
|
@@ -285,20 +287,20 @@ class AceStepHandler:
|
|
| 285 |
if os.path.exists(full_lm_model_path):
|
| 286 |
logger.info("loading 5Hz LM tokenizer...")
|
| 287 |
start_time = time.time()
|
| 288 |
-
llm_tokenizer =
|
| 289 |
-
max_audio_length = 2**16 - 1
|
| 290 |
-
semantic_tokens = [f"<|audio_code_{i}|>" for i in range(max_audio_length)]
|
| 291 |
-
# 217204
|
| 292 |
-
llm_tokenizer.add_special_tokens({"additional_special_tokens": semantic_tokens})
|
| 293 |
logger.info(f"5Hz LM tokenizer loaded successfully in {time.time() - start_time:.2f} seconds")
|
| 294 |
self.llm_tokenizer = llm_tokenizer
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
| 296 |
status_msg = self._initialize_5hz_lm_vllm(full_lm_model_path)
|
| 297 |
logger.info(f"5Hz LM status message: {status_msg}")
|
| 298 |
# Check if initialization failed (status_msg starts with ❌)
|
| 299 |
if status_msg.startswith("❌"):
|
| 300 |
# vllm initialization failed, fallback to PyTorch
|
| 301 |
if not self.llm_initialized:
|
|
|
|
| 302 |
try:
|
| 303 |
self.llm = AutoModelForCausalLM.from_pretrained(full_lm_model_path, trust_remote_code=True)
|
| 304 |
if not self.offload_to_cpu:
|
|
@@ -308,15 +310,14 @@ class AceStepHandler:
|
|
| 308 |
self.llm.eval()
|
| 309 |
self.llm_backend = "pt"
|
| 310 |
self.llm_initialized = True
|
| 311 |
-
logger.info("5Hz LM initialized successfully
|
| 312 |
except Exception as e:
|
| 313 |
return f"❌ Error initializing 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}", False
|
| 314 |
# If vllm initialization succeeded, self.llm_initialized should already be True
|
| 315 |
else:
|
| 316 |
-
#
|
| 317 |
try:
|
| 318 |
self.llm = AutoModelForCausalLM.from_pretrained(full_lm_model_path, trust_remote_code=True)
|
| 319 |
-
self.llm_tokenizer = AutoTokenizer.from_pretrained(full_lm_model_path, use_fast=True, trust_remote_code=True)
|
| 320 |
if not self.offload_to_cpu:
|
| 321 |
self.llm = self.llm.to(device).to(self.dtype)
|
| 322 |
else:
|
|
@@ -324,7 +325,7 @@ class AceStepHandler:
|
|
| 324 |
self.llm.eval()
|
| 325 |
self.llm_backend = "pt"
|
| 326 |
self.llm_initialized = True
|
| 327 |
-
logger.info("5Hz LM initialized successfully
|
| 328 |
except Exception as e:
|
| 329 |
return f"❌ Error initializing 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}", False
|
| 330 |
|
|
@@ -340,7 +341,9 @@ class AceStepHandler:
|
|
| 340 |
status_msg += f"VAE: {vae_checkpoint_path}\n"
|
| 341 |
status_msg += f"Text encoder: {text_encoder_path}\n"
|
| 342 |
if init_llm and hasattr(self, 'llm') and self.llm is not None:
|
|
|
|
| 343 |
status_msg += f"5Hz LM model: {os.path.join(checkpoint_dir, lm_model_path)}\n"
|
|
|
|
| 344 |
else:
|
| 345 |
status_msg += f"5Hz LM model: Not loaded (checkbox not selected)\n"
|
| 346 |
status_msg += f"Dtype: {self.dtype}\n"
|
|
@@ -494,9 +497,9 @@ class AceStepHandler:
|
|
| 494 |
max_ratio=0.9
|
| 495 |
)
|
| 496 |
if low_gpu_memory_mode:
|
| 497 |
-
self.max_model_len = 1024
|
| 498 |
-
else:
|
| 499 |
self.max_model_len = 2048
|
|
|
|
|
|
|
| 500 |
|
| 501 |
logger.info(f"Initializing 5Hz LM with model: {model_path}, enforce_eager: False, tensor_parallel_size: 1, max_model_len: {self.max_model_len}, gpu_memory_utilization: {gpu_memory_utilization}")
|
| 502 |
start_time = time.time()
|
|
@@ -506,9 +509,9 @@ class AceStepHandler:
|
|
| 506 |
tensor_parallel_size=1,
|
| 507 |
max_model_len=self.max_model_len,
|
| 508 |
gpu_memory_utilization=gpu_memory_utilization,
|
|
|
|
| 509 |
)
|
| 510 |
logger.info(f"5Hz LM initialized successfully in {time.time() - start_time:.2f} seconds")
|
| 511 |
-
self.llm.tokenizer = self.llm_tokenizer
|
| 512 |
self.llm_initialized = True
|
| 513 |
self.llm_backend = "vllm"
|
| 514 |
return f"✅ 5Hz LM initialized successfully\nModel: {model_path}\nDevice: {device_name}\nGPU Memory Utilization: {gpu_memory_utilization:.2f}"
|
|
@@ -518,7 +521,7 @@ class AceStepHandler:
|
|
| 518 |
error_msg = f"❌ Error initializing 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
| 519 |
return error_msg
|
| 520 |
|
| 521 |
-
def generate_with_5hz_lm_vllm(self, caption: str, lyrics: str, temperature: float = 0.6) -> Tuple[Dict[str, Any], str, str]:
|
| 522 |
try:
|
| 523 |
from nanovllm import SamplingParams
|
| 524 |
|
|
@@ -534,35 +537,41 @@ class AceStepHandler:
|
|
| 534 |
)
|
| 535 |
logger.debug(f"[debug] formatted_prompt: {formatted_prompt}")
|
| 536 |
|
| 537 |
-
sampling_params = SamplingParams(max_tokens=self.max_model_len, temperature=temperature)
|
| 538 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 539 |
if isinstance(outputs, list) and len(outputs) > 0:
|
| 540 |
if hasattr(outputs[0], 'outputs') and len(outputs[0].outputs) > 0:
|
| 541 |
output_text = outputs[0].outputs[0].text
|
| 542 |
elif hasattr(outputs[0], 'text'):
|
| 543 |
output_text = outputs[0].text
|
|
|
|
|
|
|
| 544 |
else:
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
max_new_tokens=3072,
|
| 553 |
-
temperature=temperature,
|
| 554 |
-
do_sample=True,
|
| 555 |
-
pad_token_id=self.llm_tokenizer.pad_token_id,
|
| 556 |
-
eos_token_id=self.llm_tokenizer.eos_token_id
|
| 557 |
-
)
|
| 558 |
-
|
| 559 |
-
# Decode
|
| 560 |
-
generated_ids = outputs[0][inputs.input_ids.shape[1]:]
|
| 561 |
-
output_text = self.llm_tokenizer.decode(generated_ids, skip_special_tokens=False)
|
| 562 |
-
|
| 563 |
-
metadata, audio_codes = self.parse_lm_output(output_text)
|
| 564 |
-
codes_count = len(audio_codes.split('<|audio_code_')) - 1 if audio_codes else 0
|
| 565 |
-
return metadata, audio_codes, f"✅ Generated successfully\nOutput length: {len(output_text)} chars\nCodes count: {codes_count}"
|
| 566 |
|
| 567 |
except Exception as e:
|
| 568 |
error_msg = f"❌ Error generating with 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
|
@@ -639,7 +648,7 @@ class AceStepHandler:
|
|
| 639 |
error_msg = f"❌ Error generating with 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
| 640 |
return {}, "", error_msg
|
| 641 |
|
| 642 |
-
def generate_with_5hz_lm(self, caption: str, lyrics: str, temperature: float = 0.6) -> Tuple[Dict[str, Any], str, str]:
|
| 643 |
"""Generate metadata and audio codes using 5Hz LM"""
|
| 644 |
# Check if 5Hz LM is initialized
|
| 645 |
if not hasattr(self, 'llm_initialized') or not self.llm_initialized:
|
|
@@ -656,7 +665,7 @@ class AceStepHandler:
|
|
| 656 |
return {}, "", "❌ 5Hz LM backend not set. Please initialize it first."
|
| 657 |
|
| 658 |
if self.llm_backend == "vllm":
|
| 659 |
-
return self.generate_with_5hz_lm_vllm(caption, lyrics, temperature)
|
| 660 |
else:
|
| 661 |
return self.generate_with_5hz_lm_pt(caption, lyrics, temperature)
|
| 662 |
|
|
|
|
| 151 |
device: str = "auto",
|
| 152 |
init_llm: bool = False,
|
| 153 |
lm_model_path: str = "acestep-5Hz-lm-0.6B",
|
| 154 |
+
backend: str = "vllm",
|
| 155 |
use_flash_attention: bool = False,
|
| 156 |
compile_model: bool = False,
|
| 157 |
offload_to_cpu: bool = False,
|
|
|
|
| 166 |
device: Device type
|
| 167 |
init_llm: Whether to initialize 5Hz LM model
|
| 168 |
lm_model_path: 5Hz LM model path
|
| 169 |
+
backend: Backend for 5Hz LM model ("vllm" or "pt")
|
| 170 |
use_flash_attention: Whether to use flash attention (requires flash_attn package)
|
| 171 |
compile_model: Whether to use torch.compile to optimize the model
|
| 172 |
offload_to_cpu: Whether to offload models to CPU when not in use
|
|
|
|
| 287 |
if os.path.exists(full_lm_model_path):
|
| 288 |
logger.info("loading 5Hz LM tokenizer...")
|
| 289 |
start_time = time.time()
|
| 290 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(full_lm_model_path, use_fast=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
logger.info(f"5Hz LM tokenizer loaded successfully in {time.time() - start_time:.2f} seconds")
|
| 292 |
self.llm_tokenizer = llm_tokenizer
|
| 293 |
+
|
| 294 |
+
# Initialize based on user-selected backend
|
| 295 |
+
if backend == "vllm":
|
| 296 |
+
# Try to initialize with vllm
|
| 297 |
status_msg = self._initialize_5hz_lm_vllm(full_lm_model_path)
|
| 298 |
logger.info(f"5Hz LM status message: {status_msg}")
|
| 299 |
# Check if initialization failed (status_msg starts with ❌)
|
| 300 |
if status_msg.startswith("❌"):
|
| 301 |
# vllm initialization failed, fallback to PyTorch
|
| 302 |
if not self.llm_initialized:
|
| 303 |
+
logger.warning("vllm initialization failed, falling back to PyTorch backend")
|
| 304 |
try:
|
| 305 |
self.llm = AutoModelForCausalLM.from_pretrained(full_lm_model_path, trust_remote_code=True)
|
| 306 |
if not self.offload_to_cpu:
|
|
|
|
| 310 |
self.llm.eval()
|
| 311 |
self.llm_backend = "pt"
|
| 312 |
self.llm_initialized = True
|
| 313 |
+
logger.info("5Hz LM initialized successfully using PyTorch backend (fallback)")
|
| 314 |
except Exception as e:
|
| 315 |
return f"❌ Error initializing 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}", False
|
| 316 |
# If vllm initialization succeeded, self.llm_initialized should already be True
|
| 317 |
else:
|
| 318 |
+
# Use PyTorch backend (pt)
|
| 319 |
try:
|
| 320 |
self.llm = AutoModelForCausalLM.from_pretrained(full_lm_model_path, trust_remote_code=True)
|
|
|
|
| 321 |
if not self.offload_to_cpu:
|
| 322 |
self.llm = self.llm.to(device).to(self.dtype)
|
| 323 |
else:
|
|
|
|
| 325 |
self.llm.eval()
|
| 326 |
self.llm_backend = "pt"
|
| 327 |
self.llm_initialized = True
|
| 328 |
+
logger.info(f"5Hz LM initialized successfully using PyTorch backend on {device}")
|
| 329 |
except Exception as e:
|
| 330 |
return f"❌ Error initializing 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}", False
|
| 331 |
|
|
|
|
| 341 |
status_msg += f"VAE: {vae_checkpoint_path}\n"
|
| 342 |
status_msg += f"Text encoder: {text_encoder_path}\n"
|
| 343 |
if init_llm and hasattr(self, 'llm') and self.llm is not None:
|
| 344 |
+
backend_info = getattr(self, 'llm_backend', 'unknown')
|
| 345 |
status_msg += f"5Hz LM model: {os.path.join(checkpoint_dir, lm_model_path)}\n"
|
| 346 |
+
status_msg += f"5Hz LM backend: {backend_info}\n"
|
| 347 |
else:
|
| 348 |
status_msg += f"5Hz LM model: Not loaded (checkbox not selected)\n"
|
| 349 |
status_msg += f"Dtype: {self.dtype}\n"
|
|
|
|
| 497 |
max_ratio=0.9
|
| 498 |
)
|
| 499 |
if low_gpu_memory_mode:
|
|
|
|
|
|
|
| 500 |
self.max_model_len = 2048
|
| 501 |
+
else:
|
| 502 |
+
self.max_model_len = 4096
|
| 503 |
|
| 504 |
logger.info(f"Initializing 5Hz LM with model: {model_path}, enforce_eager: False, tensor_parallel_size: 1, max_model_len: {self.max_model_len}, gpu_memory_utilization: {gpu_memory_utilization}")
|
| 505 |
start_time = time.time()
|
|
|
|
| 509 |
tensor_parallel_size=1,
|
| 510 |
max_model_len=self.max_model_len,
|
| 511 |
gpu_memory_utilization=gpu_memory_utilization,
|
| 512 |
+
tokenizer=self.llm_tokenizer,
|
| 513 |
)
|
| 514 |
logger.info(f"5Hz LM initialized successfully in {time.time() - start_time:.2f} seconds")
|
|
|
|
| 515 |
self.llm_initialized = True
|
| 516 |
self.llm_backend = "vllm"
|
| 517 |
return f"✅ 5Hz LM initialized successfully\nModel: {model_path}\nDevice: {device_name}\nGPU Memory Utilization: {gpu_memory_utilization:.2f}"
|
|
|
|
| 521 |
error_msg = f"❌ Error initializing 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
| 522 |
return error_msg
|
| 523 |
|
| 524 |
+
def generate_with_5hz_lm_vllm(self, caption: str, lyrics: str, temperature: float = 0.6, cfg_scale: float = 1.0, negative_prompt: str = "NO USER INPUT") -> Tuple[Dict[str, Any], str, str]:
|
| 525 |
try:
|
| 526 |
from nanovllm import SamplingParams
|
| 527 |
|
|
|
|
| 537 |
)
|
| 538 |
logger.debug(f"[debug] formatted_prompt: {formatted_prompt}")
|
| 539 |
|
| 540 |
+
sampling_params = SamplingParams(max_tokens=self.max_model_len-64, temperature=temperature, cfg_scale=cfg_scale)
|
| 541 |
+
# Use CFG if cfg_scale > 1.0
|
| 542 |
+
if cfg_scale > 1.0:
|
| 543 |
+
# Build unconditional prompt (user input replaced with "NO USER INPUT")
|
| 544 |
+
formatted_unconditional_prompt = self.lm_tokenizer.apply_chat_template(
|
| 545 |
+
[
|
| 546 |
+
{"role": "system", "content": "# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n"},
|
| 547 |
+
{"role": "user", "content": negative_prompt}
|
| 548 |
+
],
|
| 549 |
+
tokenize=False,
|
| 550 |
+
add_generation_prompt=True,
|
| 551 |
+
)
|
| 552 |
+
outputs = self.llm.generate(
|
| 553 |
+
[formatted_prompt],
|
| 554 |
+
sampling_params,
|
| 555 |
+
unconditional_prompts=[formatted_unconditional_prompt]
|
| 556 |
+
)
|
| 557 |
+
else:
|
| 558 |
+
outputs = self.lm_model.generate([formatted_prompt], sampling_params)
|
| 559 |
+
# Extract text from output - handle different output formats
|
| 560 |
if isinstance(outputs, list) and len(outputs) > 0:
|
| 561 |
if hasattr(outputs[0], 'outputs') and len(outputs[0].outputs) > 0:
|
| 562 |
output_text = outputs[0].outputs[0].text
|
| 563 |
elif hasattr(outputs[0], 'text'):
|
| 564 |
output_text = outputs[0].text
|
| 565 |
+
elif isinstance(outputs[0], dict) and 'text' in outputs[0]:
|
| 566 |
+
output_text = outputs[0]['text']
|
| 567 |
else:
|
| 568 |
+
output_text = str(outputs[0])
|
| 569 |
+
else:
|
| 570 |
+
output_text = str(outputs)
|
| 571 |
+
metadata, audio_codes = self.parse_lm_output(output_text)
|
| 572 |
+
print(f"[debug]output_text: {output_text}")
|
| 573 |
+
codes_count = len(audio_codes.split('<|audio_code_')) - 1 if audio_codes else 0
|
| 574 |
+
return metadata, audio_codes, f"✅ Generated successfully\nOutput length: {len(output_text)} chars\nCodes count: {codes_count}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 575 |
|
| 576 |
except Exception as e:
|
| 577 |
error_msg = f"❌ Error generating with 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
|
|
|
| 648 |
error_msg = f"❌ Error generating with 5Hz LM: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
| 649 |
return {}, "", error_msg
|
| 650 |
|
| 651 |
+
def generate_with_5hz_lm(self, caption: str, lyrics: str, temperature: float = 0.6, cfg_scale: float = 1.0, negative_prompt: str = "NO USER INPUT") -> Tuple[Dict[str, Any], str, str]:
|
| 652 |
"""Generate metadata and audio codes using 5Hz LM"""
|
| 653 |
# Check if 5Hz LM is initialized
|
| 654 |
if not hasattr(self, 'llm_initialized') or not self.llm_initialized:
|
|
|
|
| 665 |
return {}, "", "❌ 5Hz LM backend not set. Please initialize it first."
|
| 666 |
|
| 667 |
if self.llm_backend == "vllm":
|
| 668 |
+
return self.generate_with_5hz_lm_vllm(caption, lyrics, temperature, cfg_scale, negative_prompt)
|
| 669 |
else:
|
| 670 |
return self.generate_with_5hz_lm_pt(caption, lyrics, temperature)
|
| 671 |
|
acestep/third_parts/nano-vllm/nanovllm/config.py
CHANGED
|
@@ -1,35 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
-
import socket
|
| 3 |
from dataclasses import dataclass
|
| 4 |
from transformers import AutoConfig
|
| 5 |
|
| 6 |
|
| 7 |
-
def find_available_port(start_port: int = 2333, max_attempts: int = 100) -> int:
|
| 8 |
-
"""Find an available port starting from start_port.
|
| 9 |
-
|
| 10 |
-
Args:
|
| 11 |
-
start_port: The starting port number to check
|
| 12 |
-
max_attempts: Maximum number of ports to try
|
| 13 |
-
|
| 14 |
-
Returns:
|
| 15 |
-
An available port number
|
| 16 |
-
|
| 17 |
-
Raises:
|
| 18 |
-
RuntimeError: If no available port is found within max_attempts
|
| 19 |
-
"""
|
| 20 |
-
for i in range(max_attempts):
|
| 21 |
-
port = start_port + i
|
| 22 |
-
try:
|
| 23 |
-
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
| 24 |
-
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
| 25 |
-
s.bind(('localhost', port))
|
| 26 |
-
return port
|
| 27 |
-
except OSError:
|
| 28 |
-
# Port is in use, try next one
|
| 29 |
-
continue
|
| 30 |
-
raise RuntimeError(f"Could not find an available port starting from {start_port} after {max_attempts} attempts")
|
| 31 |
-
|
| 32 |
-
|
| 33 |
@dataclass
|
| 34 |
class Config:
|
| 35 |
model: str
|
|
@@ -40,10 +13,9 @@ class Config:
|
|
| 40 |
tensor_parallel_size: int = 1
|
| 41 |
enforce_eager: bool = False
|
| 42 |
hf_config: AutoConfig | None = None
|
| 43 |
-
eos: int =
|
| 44 |
kvcache_block_size: int = 256
|
| 45 |
num_kvcache_blocks: int = -1
|
| 46 |
-
dist_port: int | None = None
|
| 47 |
|
| 48 |
def __post_init__(self):
|
| 49 |
assert os.path.isdir(self.model)
|
|
@@ -52,6 +24,3 @@ class Config:
|
|
| 52 |
self.hf_config = AutoConfig.from_pretrained(self.model)
|
| 53 |
self.max_model_len = min(self.max_model_len, self.hf_config.max_position_embeddings)
|
| 54 |
assert self.max_num_batched_tokens >= self.max_model_len
|
| 55 |
-
# Auto-find available port if not specified
|
| 56 |
-
if self.dist_port is None:
|
| 57 |
-
self.dist_port = find_available_port()
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
from dataclasses import dataclass
|
| 3 |
from transformers import AutoConfig
|
| 4 |
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
@dataclass
|
| 7 |
class Config:
|
| 8 |
model: str
|
|
|
|
| 13 |
tensor_parallel_size: int = 1
|
| 14 |
enforce_eager: bool = False
|
| 15 |
hf_config: AutoConfig | None = None
|
| 16 |
+
eos: int = -1
|
| 17 |
kvcache_block_size: int = 256
|
| 18 |
num_kvcache_blocks: int = -1
|
|
|
|
| 19 |
|
| 20 |
def __post_init__(self):
|
| 21 |
assert os.path.isdir(self.model)
|
|
|
|
| 24 |
self.hf_config = AutoConfig.from_pretrained(self.model)
|
| 25 |
self.max_model_len = min(self.max_model_len, self.hf_config.max_position_embeddings)
|
| 26 |
assert self.max_num_batched_tokens >= self.max_model_len
|
|
|
|
|
|
|
|
|
acestep/third_parts/nano-vllm/nanovllm/engine/llm_engine.py
CHANGED
|
@@ -21,28 +21,6 @@ class LLMEngine:
|
|
| 21 |
self.ps = []
|
| 22 |
self.events = []
|
| 23 |
ctx = mp.get_context("spawn")
|
| 24 |
-
|
| 25 |
-
# Pre-validate port availability by attempting to bind to it
|
| 26 |
-
# This helps avoid race conditions when multiple LLMEngine instances start simultaneously
|
| 27 |
-
import socket
|
| 28 |
-
from nanovllm.config import find_available_port
|
| 29 |
-
max_port_retries = 10
|
| 30 |
-
for port_attempt in range(max_port_retries):
|
| 31 |
-
try:
|
| 32 |
-
# Test if port is actually available by binding to it
|
| 33 |
-
test_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
| 34 |
-
test_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
| 35 |
-
test_socket.bind(('localhost', config.dist_port))
|
| 36 |
-
test_socket.close()
|
| 37 |
-
# Port is available, break
|
| 38 |
-
break
|
| 39 |
-
except OSError:
|
| 40 |
-
# Port is in use, find next available
|
| 41 |
-
if port_attempt < max_port_retries - 1:
|
| 42 |
-
config.dist_port = find_available_port(start_port=config.dist_port + 1, max_attempts=10)
|
| 43 |
-
else:
|
| 44 |
-
raise RuntimeError(f"Failed to find available port after {max_port_retries} attempts")
|
| 45 |
-
|
| 46 |
for i in range(1, config.tensor_parallel_size):
|
| 47 |
event = ctx.Event()
|
| 48 |
process = ctx.Process(target=ModelRunner, args=(config, i, event))
|
|
@@ -50,7 +28,12 @@ class LLMEngine:
|
|
| 50 |
self.ps.append(process)
|
| 51 |
self.events.append(event)
|
| 52 |
self.model_runner = ModelRunner(config, 0, self.events)
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
self.scheduler = Scheduler(config)
|
| 55 |
atexit.register(self.exit)
|
| 56 |
|
|
|
|
| 21 |
self.ps = []
|
| 22 |
self.events = []
|
| 23 |
ctx = mp.get_context("spawn")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
for i in range(1, config.tensor_parallel_size):
|
| 25 |
event = ctx.Event()
|
| 26 |
process = ctx.Process(target=ModelRunner, args=(config, i, event))
|
|
|
|
| 28 |
self.ps.append(process)
|
| 29 |
self.events.append(event)
|
| 30 |
self.model_runner = ModelRunner(config, 0, self.events)
|
| 31 |
+
tokenizer = kwargs.get("tokenizer", None)
|
| 32 |
+
if tokenizer is not None:
|
| 33 |
+
self.tokenizer = tokenizer
|
| 34 |
+
else:
|
| 35 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.model, use_fast=True)
|
| 36 |
+
config.eos = self.tokenizer.eos_token_id
|
| 37 |
self.scheduler = Scheduler(config)
|
| 38 |
atexit.register(self.exit)
|
| 39 |
|
acestep/third_parts/nano-vllm/nanovllm/engine/model_runner.py
CHANGED
|
@@ -1,17 +1,44 @@
|
|
| 1 |
import pickle
|
| 2 |
-
import socket
|
| 3 |
import torch
|
| 4 |
import torch.distributed as dist
|
| 5 |
from multiprocessing.synchronize import Event
|
| 6 |
from multiprocessing.shared_memory import SharedMemory
|
| 7 |
|
| 8 |
-
from nanovllm.config import Config
|
| 9 |
from nanovllm.engine.sequence import Sequence
|
| 10 |
from nanovllm.models.qwen3 import Qwen3ForCausalLM
|
| 11 |
from nanovllm.layers.sampler import Sampler
|
| 12 |
from nanovllm.utils.context import set_context, get_context, reset_context
|
| 13 |
from nanovllm.utils.loader import load_model
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
class ModelRunner:
|
| 17 |
|
|
@@ -23,33 +50,9 @@ class ModelRunner:
|
|
| 23 |
self.world_size = config.tensor_parallel_size
|
| 24 |
self.rank = rank
|
| 25 |
self.event = event
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
dist_port = self.config.dist_port
|
| 30 |
-
max_retries = 10
|
| 31 |
-
for attempt in range(max_retries):
|
| 32 |
-
try:
|
| 33 |
-
dist.init_process_group("nccl", f"tcp://localhost:{dist_port}", world_size=self.world_size, rank=rank)
|
| 34 |
-
break
|
| 35 |
-
except RuntimeError as e:
|
| 36 |
-
if ("EADDRINUSE" in str(e) or "address already in use" in str(e).lower()) and rank == 0:
|
| 37 |
-
# Port is in use, try next port (only for rank 0)
|
| 38 |
-
if attempt < max_retries - 1:
|
| 39 |
-
# Find next available port
|
| 40 |
-
dist_port = find_available_port(start_port=dist_port + 1, max_attempts=10)
|
| 41 |
-
self.config.dist_port = dist_port
|
| 42 |
-
# If we had a previous failed attempt, destroy any partial process group
|
| 43 |
-
if dist.is_initialized():
|
| 44 |
-
try:
|
| 45 |
-
dist.destroy_process_group()
|
| 46 |
-
except:
|
| 47 |
-
pass
|
| 48 |
-
else:
|
| 49 |
-
raise RuntimeError(f"Failed to find available port after {max_retries} attempts. Last error: {e}")
|
| 50 |
-
else:
|
| 51 |
-
# Other error or non-rank-0 process, re-raise
|
| 52 |
-
raise
|
| 53 |
torch.cuda.set_device(rank)
|
| 54 |
default_dtype = torch.get_default_dtype()
|
| 55 |
torch.set_default_dtype(hf_config.torch_dtype)
|
|
@@ -144,15 +147,9 @@ class ModelRunner:
|
|
| 144 |
layer_id += 1
|
| 145 |
|
| 146 |
def prepare_block_tables(self, seqs: list[Sequence]):
|
| 147 |
-
max_len = max(len(seq.block_table) for seq in seqs)
|
| 148 |
-
if max_len == 0:
|
| 149 |
-
# Return empty 2D tensor with correct shape
|
| 150 |
-
return torch.zeros((len(seqs), 0), dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
|
| 151 |
block_tables = [seq.block_table + [-1] * (max_len - len(seq.block_table)) for seq in seqs]
|
| 152 |
block_tables = torch.tensor(block_tables, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
|
| 153 |
-
# Ensure it's 2D: if only one sequence, shape should be [1, max_len]
|
| 154 |
-
if block_tables.dim() == 1:
|
| 155 |
-
block_tables = block_tables.unsqueeze(0)
|
| 156 |
return block_tables
|
| 157 |
|
| 158 |
def prepare_prefill(self, seqs: list[Sequence]):
|
|
@@ -247,29 +244,7 @@ class ModelRunner:
|
|
| 247 |
graph_vars["slot_mapping"][:bs] = context.slot_mapping
|
| 248 |
graph_vars["context_lens"].zero_()
|
| 249 |
graph_vars["context_lens"][:bs] = context.context_lens
|
| 250 |
-
|
| 251 |
-
if context.block_tables is not None and context.block_tables.numel() > 0:
|
| 252 |
-
# Ensure block_tables is 2D
|
| 253 |
-
if context.block_tables.dim() == 1:
|
| 254 |
-
# Reshape 1D to 2D: [num_blocks] -> [1, num_blocks]
|
| 255 |
-
block_tables_2d = context.block_tables.unsqueeze(0)
|
| 256 |
-
else:
|
| 257 |
-
block_tables_2d = context.block_tables
|
| 258 |
-
|
| 259 |
-
# Get dimensions
|
| 260 |
-
context_bs = block_tables_2d.size(0)
|
| 261 |
-
context_num_blocks = block_tables_2d.size(1)
|
| 262 |
-
graph_num_blocks = graph_vars["block_tables"].size(1)
|
| 263 |
-
|
| 264 |
-
# Use minimum to avoid size mismatch
|
| 265 |
-
num_blocks_to_copy = min(context_num_blocks, graph_num_blocks)
|
| 266 |
-
actual_bs = min(bs, context_bs)
|
| 267 |
-
|
| 268 |
-
# Copy block_tables with size matching
|
| 269 |
-
graph_vars["block_tables"][:actual_bs, :num_blocks_to_copy] = block_tables_2d[:actual_bs, :num_blocks_to_copy]
|
| 270 |
-
# Fill remaining with -1 if needed
|
| 271 |
-
if num_blocks_to_copy < graph_num_blocks:
|
| 272 |
-
graph_vars["block_tables"][:actual_bs, num_blocks_to_copy:] = -1
|
| 273 |
graph.replay()
|
| 274 |
return self.model.compute_logits(graph_vars["outputs"][:bs])
|
| 275 |
|
|
|
|
| 1 |
import pickle
|
|
|
|
| 2 |
import torch
|
| 3 |
import torch.distributed as dist
|
| 4 |
from multiprocessing.synchronize import Event
|
| 5 |
from multiprocessing.shared_memory import SharedMemory
|
| 6 |
|
| 7 |
+
from nanovllm.config import Config
|
| 8 |
from nanovllm.engine.sequence import Sequence
|
| 9 |
from nanovllm.models.qwen3 import Qwen3ForCausalLM
|
| 10 |
from nanovllm.layers.sampler import Sampler
|
| 11 |
from nanovllm.utils.context import set_context, get_context, reset_context
|
| 12 |
from nanovllm.utils.loader import load_model
|
| 13 |
|
| 14 |
+
import socket
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def find_available_port(start_port: int = 2333, max_attempts: int = 100) -> int:
|
| 18 |
+
"""Find an available port starting from start_port.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
start_port: The starting port number to check
|
| 22 |
+
max_attempts: Maximum number of ports to try
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
An available port number
|
| 26 |
+
|
| 27 |
+
Raises:
|
| 28 |
+
RuntimeError: If no available port is found within max_attempts
|
| 29 |
+
"""
|
| 30 |
+
for i in range(max_attempts):
|
| 31 |
+
port = start_port + i
|
| 32 |
+
try:
|
| 33 |
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
| 34 |
+
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
| 35 |
+
s.bind(('localhost', port))
|
| 36 |
+
return port
|
| 37 |
+
except OSError:
|
| 38 |
+
# Port is in use, try next one
|
| 39 |
+
continue
|
| 40 |
+
raise RuntimeError(f"Could not find an available port starting from {start_port} after {max_attempts} attempts")
|
| 41 |
+
|
| 42 |
|
| 43 |
class ModelRunner:
|
| 44 |
|
|
|
|
| 50 |
self.world_size = config.tensor_parallel_size
|
| 51 |
self.rank = rank
|
| 52 |
self.event = event
|
| 53 |
+
dist_port = find_available_port()
|
| 54 |
+
print(f"[debug]dist_port: {dist_port}")
|
| 55 |
+
dist.init_process_group("nccl", f"tcp://localhost:{dist_port}", world_size=self.world_size, rank=rank)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
torch.cuda.set_device(rank)
|
| 57 |
default_dtype = torch.get_default_dtype()
|
| 58 |
torch.set_default_dtype(hf_config.torch_dtype)
|
|
|
|
| 147 |
layer_id += 1
|
| 148 |
|
| 149 |
def prepare_block_tables(self, seqs: list[Sequence]):
|
| 150 |
+
max_len = max(len(seq.block_table) for seq in seqs)
|
|
|
|
|
|
|
|
|
|
| 151 |
block_tables = [seq.block_table + [-1] * (max_len - len(seq.block_table)) for seq in seqs]
|
| 152 |
block_tables = torch.tensor(block_tables, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
|
|
|
|
|
|
|
|
|
|
| 153 |
return block_tables
|
| 154 |
|
| 155 |
def prepare_prefill(self, seqs: list[Sequence]):
|
|
|
|
| 244 |
graph_vars["slot_mapping"][:bs] = context.slot_mapping
|
| 245 |
graph_vars["context_lens"].zero_()
|
| 246 |
graph_vars["context_lens"][:bs] = context.context_lens
|
| 247 |
+
graph_vars["block_tables"][:bs, :context.block_tables.size(1)] = context.block_tables
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
graph.replay()
|
| 249 |
return self.model.compute_logits(graph_vars["outputs"][:bs])
|
| 250 |
|