File size: 3,805 Bytes
9c4b1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
import os
import sys
import json
import argparse
from types import SimpleNamespace
from support.detect import run_detect

# Download weights on first run (for HF Spaces)
if os.environ.get("SPACE_ID"):
    try:
        from download_weights import download_all_weights
        download_all_weights()
    except Exception as e:
        print(f"Warning: Could not download weights: {e}")

# Available detectors based on launcher.py
DETECTORS = ['R50_TF', 'R50_nodown', 'CLIP-D', 'P2G', 'NPR']

def predict(image_path, detector_name):
    if not image_path:
        return {"error": "Please upload an image."}
    
    # Create a temporary output file path
    output_path = "temp_result.json"
    
    # Mock args object
    args = SimpleNamespace(
        image=image_path,
        detector=detector_name,
        config_dir='configs',
        output=output_path,
        weights='pretrained', # Use default/pretrained
        device='cpu', # Force CPU
        dry_run=False,
        verbose=False
    )
    
    try:
        # Run detection
        # We need to capture stdout/stderr or just trust the function
        # run_detect might raise FileNotFoundError if weights are missing
        run_detect(args)
        
        # Read results
        if os.path.exists(output_path):
            with open(output_path, 'r') as f:
                result = json.load(f)
            
            # Format output
            prediction = result.get('prediction', 'Unknown')
            confidence = result.get('confidence', 0.0)
            elapsed_time = result.get('elapsed_time', 0.0)
            
            return {
                "Prediction": prediction,
                "Confidence": f"{confidence:.4f}",
                "Elapsed Time": f"{elapsed_time:.3f}s"
            }
        else:
            return {"error": "No result file generated. Check console logs for details."}
            
    except FileNotFoundError as e:
        return {"error": str(e), "message": f"Please ensure you have downloaded the weights for {detector_name}."}
    except Exception as e:
        return {"error": str(e)}
    finally:
        # Cleanup
        if os.path.exists(output_path):
            os.remove(output_path)

# Create Gradio Interface
with gr.Blocks(title="Deepfake Detection", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ” Deepfake Detection Library")
    gr.Markdown("""
    Upload an image and select a detector to check if it's real or fake.
    
    **Available Detectors:**
    - **R50_TF**: ResNet-50 based detector
    - **R50_nodown**: ResNet-50 without downsampling
    - **CLIP-D**: CLIP-based detector
    - **P2G**: Prompt2Guard detector
    - **NPR**: Neural Posterior Regularization
    """)
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="filepath", label="Input Image", height=400)
            detector_input = gr.Dropdown(
                choices=DETECTORS, 
                value=DETECTORS[0], 
                label="Select Detector",
                info="Choose which deepfake detection model to use"
            )
            submit_btn = gr.Button("πŸ” Detect", variant="primary")
        
        with gr.Column():
            output_json = gr.JSON(label="Detection Results")
    
    gr.Markdown("""
    ---
    ### About
    This Space provides access to multiple state-of-the-art deepfake detection models. 
    All models are trained on StyleGAN2, StableDiffusionXL, FFHQ, and FORLAB datasets.
    
    **Note:** First detection may be slower due to model loading.
    """)
    
    submit_btn.click(
        fn=predict,
        inputs=[image_input, detector_input],
        outputs=output_json
    )

if __name__ == "__main__":
    # For HF Spaces, share is automatically enabled
    demo.launch()