AMontiB
deal with large images
0b2abd8
raw
history blame
10.9 kB
# Deepfake Detection Gradio App - v1.1
import gradio as gr
import os
import sys
import json
import argparse
from types import SimpleNamespace
from PIL import Image
# Try to import detector - if this fails, we'll show an error in the UI
try:
from support.detect import run_detect
DETECTOR_AVAILABLE = True
IMPORT_ERROR = None
except Exception as e:
DETECTOR_AVAILABLE = False
IMPORT_ERROR = str(e)
print(f"Warning: Could not import detector: {e}")
# Create a dummy function
def run_detect(args):
raise ImportError(f"Detector not available: {IMPORT_ERROR}")
# Download weights on first run (for HF Spaces)
if os.environ.get("SPACE_ID"):
try:
from download_weights import download_all_weights
download_all_weights()
except Exception as e:
print(f"Warning: Could not download weights: {e}")
# Available detectors based on launcher.py
DETECTORS = ['R50_TF', 'R50_nodown', 'CLIP-D', 'P2G', 'NPR']
def process_image(image_path):
"""
Check if image is larger than 1024x1024 and central crop it if necessary.
Returns the path to the processed image (or original if no change).
"""
try:
with Image.open(image_path) as img:
width, height = img.size
# Check if both dimensions are larger than 1024
if width > 1024 and height > 1024:
print(f"Image size {width}x{height} exceeds 1024x1024. Performing central crop.")
# Calculate crop box
left = (width - 1024) / 2
top = (height - 1024) / 2
right = (width + 1024) / 2
bottom = (height + 1024) / 2
# Crop
img_cropped = img.crop((left, top, right, bottom))
# Save to new path
directory, filename = os.path.split(image_path)
name, ext = os.path.splitext(filename)
new_filename = f"{name}_cropped{ext}"
new_path = os.path.join(directory, new_filename)
img_cropped.save(new_path)
return new_path
return image_path
except Exception as e:
print(f"Error processing image: {e}")
return image_path
def predict(image_path, detector_name):
# Check if detector is available
if not DETECTOR_AVAILABLE:
return json.dumps({
"error": "Detector module not available",
"details": IMPORT_ERROR,
"message": "The detection system could not be initialized. Please check the logs."
}, indent=2)
if not image_path:
return json.dumps({"error": "Please upload an image."}, indent=2)
# Process image (central crop if too large)
processed_path = image_path
try:
processed_path = process_image(image_path)
except Exception as e:
print(f"Warning: Image processing failed: {e}")
# Continue with original image if processing fails
# Create a temporary output file path
output_path = "temp_result.json"
# Mock args object
args = SimpleNamespace(
image=processed_path,
detector=detector_name,
config_dir='configs',
output=output_path,
weights='pretrained', # Use default/pretrained
device='cpu', # Force CPU
dry_run=False,
verbose=False
)
try:
# Run detection
# We need to capture stdout/stderr or just trust the function
# run_detect might raise FileNotFoundError if weights are missing
run_detect(args)
# Read results
if os.path.exists(output_path):
with open(output_path, 'r') as f:
result = json.load(f)
# Format output
prediction = result.get('prediction', 'Unknown')
confidence = result.get('confidence', 0.0)
elapsed_time = result.get('elapsed_time', 0.0)
if prediction == 'fake':
output = {
"Prediction": prediction,
"Confidence": f"{confidence:.4f}",
"Elapsed Time": f"{elapsed_time:.3f}s"
}
else:
output = {
"Prediction": prediction,
"Confidence": f"{1-confidence:.4f}",
"Elapsed Time": f"{elapsed_time:.3f}s"
}
return json.dumps(output, indent=2)
else:
return json.dumps({"error": "No result file generated. Check console logs for details."}, indent=2)
except FileNotFoundError as e:
return json.dumps({
"error": str(e),
"message": f"Please ensure you have downloaded the weights for {detector_name}."
}, indent=2)
except Exception as e:
return json.dumps({"error": str(e)}, indent=2)
finally:
# Cleanup
if os.path.exists(output_path):
os.remove(output_path)
# Cleanup cropped image if it's different from original
if processed_path != image_path and os.path.exists(processed_path):
try:
os.remove(processed_path)
except Exception as e:
print(f"Warning: Could not remove temporary file {processed_path}: {e}")
# Create Gradio Interface
# Use theme only if gradio version supports it
demo = gr.Blocks(title="Deepfake Detection Space", theme=gr.themes.Soft())
with demo:
gr.Markdown("# πŸ” Deepfake Detection Space")
gr.Markdown("""
This space collects a series of state-of-the-art methods for deepfake detection, allowing for free and unlimited use.
### Training & Performance
All methods have been trained using the **[DeepShield dataset](https://zenodo.org/records/15648378)**, on images generated with **Stable Diffusion XL** and **StyleGAN 2**.
You can expect performance comparable to the results shown in [Dell'Anna et al. (2025)](https://arxiv.org/pdf/2504.20658).
### Understanding the Results
* **Prediction**: Tells if an image is **Real** or **Fake**.
* **Confidence**: The confidence with which the model determines if the image is real or fake.
* **Elapsed Time**: The time the model needed to make the prediction (excluding preprocessing or model building).
### Note
⚠️ Due to file size limitations, model weights need to be downloaded automatically on first use. This may take a few moments. \
⚠️ To provide a free service, all models run on CPU.The detection process may take a few seconds, depending on the image size and the selected detector.
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="Input Image", height=400)
detector_input = gr.Dropdown(
choices=DETECTORS,
value=DETECTORS[0],
label="Select Detector",
info="Choose which deepfake detection model to use"
)
submit_btn = gr.Button("πŸ” Detect", variant="primary")
with gr.Column():
output_display = gr.Textbox(
label="Detection Results",
lines=15,
max_lines=20,
show_copy_button=True
)
with gr.Accordion("πŸ“š Model Details", open=False):
gr.Markdown("""
### **R50_TF**
* **Description**: A ResNet50 architecture modified to exclude downsampling at the first layer. It uses "learned prototypes" in the classification head for robust detection.
* **Paper**: [TrueFake: A Real World Case Dataset of Last Generation Fake Images also Shared on Social Networks](https://arxiv.org/pdf/2504.20658)
* **Code**: [GitHub Repository](https://github.com/MMLab-unitn/TrueFake-IJCNN25)
### **R50_nodown**
* **Description**: A ResNet-50 model without downsampling operations in the first layer, designed to preserve high-frequency artifacts common in synthetic images.
* **Paper**: [On the detection of synthetic images generated by diffusion models](https://arxiv.org/abs/2211.00680)
* **Code**: [GitHub Repository](https://grip-unina.github.io/DMimageDetection/)
### **CLIP-D**
* **Description**: A lightweight detection strategy based on CLIP features. It exhibits surprising generalization ability using only a handful of example images.
* **Paper**: [Raising the Bar of AI-generated Image Detection with CLIP](https://arxiv.org/abs/2312.00195v2)
* **Code**: [GitHub Repository](https://grip-unina.github.io/ClipBased-SyntheticImageDetection/)
### **P2G (Prompt2Guard)**
* **Description**: Uses Vision-Language Models (VLMs) with conditioned prompt-optimization for continual deepfake detection. It leverages read-only prompts for efficiency.
* **Paper**: [Conditioned Prompt-Optimization for Continual Deepfake Detection](https://arxiv.org/abs/2407.21554)
* **Code**: [GitHub Repository](https://github.com/laitifranz/Prompt2Guard)
### **NPR**
* **Description**: Focuses on Neighboring Pixel Relationships (NPR) to capture generalized structural artifacts stemming from up-sampling operations in generative networks.
* **Paper**: [Rethinking the Up-Sampling Operations in CNN-based Generative Network for Generalizable Deepfake Detection](https://arxiv.org/abs/2312.10461)
* **Code**: [GitHub Repository](https://github.com/chuangchuangtan/NPR-DeepfakeDetection)
""")
gr.Markdown("""
---
### References
1. Dell'Anna, S., Montibeller, A., & Boato, G. (2025). *TrueFake: A Real World Case Dataset of Last Generation Fake Images also Shared on Social Networks*. arXiv preprint arXiv:2504.20658.
2. Corvi, R., et al. (2023). *On the detection of synthetic images generated by diffusion models*. ICASSP.
3. Cozzolino, D., et al. (2023). *Raising the Bar of AI-generated Image Detection with CLIP*. CVPRW.
4. Laiti, F., et al. (2024). *Conditioned Prompt-Optimization for Continual Deepfake Detection*. arXiv preprint arXiv:2407.21554.
5. Tan, C., et al. (2024). *Rethinking the up-sampling operations in cnn-based generative network for generalizable deepfake detection*. CVPR.
""")
submit_btn.click(
fn=predict,
inputs=[image_input, detector_input],
outputs=output_display
)
if __name__ == "__main__":
# For HF Spaces, configure server settings
if os.environ.get("SPACE_ID"):
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["."])
else:
# Local execution
demo.launch()