AMontiB
Your original commit message (now includes LFS pointer)
9c4b1c4
raw
history blame
3.97 kB
'''
Copyright 2024 Image Processing Research Group of University Federico
II of Naples ('GRIP-UNINA'). All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
import os
import torch
import numpy as np
import tqdm
from networks import create_architecture, count_parameters
class TrainingModel(torch.nn.Module):
def __init__(self, opt):
super(TrainingModel, self).__init__()
self.opt = opt
self.total_steps = 0
self.save_dir = os.path.join('checkpoint', opt.name,'weights')
self.device = torch.device(opt.device if torch.cuda.is_available() else 'cpu')
self.model = create_architecture(opt.arch, pretrained=True, num_classes=1)
num_parameters = count_parameters(self.model)
print(f"Arch: {opt.arch} with #trainable {num_parameters}")
self.loss_fn = torch.nn.BCEWithLogitsLoss().to(self.device)
parameters = filter(lambda p: p.requires_grad, self.model.parameters())
self.optimizer = torch.optim.Adam(parameters, lr=opt.lr, betas=(opt.beta1, 0.999), weight_decay=opt.weight_decay)
self.model.to(self.device)
def adjust_learning_rate(self, min_lr=1e-6):
for param_group in self.optimizer.param_groups:
param_group["lr"] /= 10.0
if param_group["lr"] < min_lr:
return False
return True
def get_learning_rate(self):
for param_group in self.optimizer.param_groups:
return param_group["lr"]
def train_on_batch(self, data):
self.total_steps += 1
self.model.train()
input = data['img'].to(self.device)
label = data['target'].to(self.device).float()
output = self.model(input)
if len(output.shape) == 4:
ss = output.shape
loss = self.loss_fn(
output,
label[:, None, None, None].repeat(
(1, int(ss[1]), int(ss[2]), int(ss[3]))
),
)
else:
loss = self.loss_fn(output.squeeze(1), label)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss.cpu()
def save_networks(self, epoch):
save_filename = f'{epoch}.pt'
save_path = os.path.join(self.save_dir, save_filename)
# serialize model and optimizer to dict
state_dict = {
'model': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'total_steps': self.total_steps,
}
torch.save(state_dict, save_path)
def predict(self, data_loader):
model = self.model.eval()
with torch.no_grad():
y_true, y_pred, y_path = [], [], []
for data in tqdm.tqdm(data_loader):
img = data['img']
label = data['target'].cpu().numpy()
paths = list(data['path'])
out_tens = model(img.to(self.device)).cpu().numpy()[:, -1]
assert label.shape == out_tens.shape
y_pred.extend(out_tens.tolist())
y_true.extend(label.tolist())
y_path.extend(paths)
y_true, y_pred = np.array(y_true), np.array(y_pred)
return y_true, y_pred, y_path