MDS_demonstrator / launcher.py
AMontiB
Your original commit message (now includes LFS pointer)
9c4b1c4
raw
history blame
13.8 kB
import os
import subprocess
import time
import argparse
import yaml
import glob
import shutil
def load_config(config_path):
"""Load configuration from YAML file."""
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
return config
# smi vampire function, busy waiting for a free-enough GPU, use min_vram to set the threshold
def get_gpus():
from numpy import argwhere, asarray, diff
import re
smi = os.popen('nvidia-smi').readlines()
div = re.compile('[+]-{3,}[+]|[|]={3,}[|]')
dividers = argwhere([div.match(line) != None for line in smi])[-2:, 0]
processes = [line for line in smi[dividers[0]+1:dividers[1]] if ' C ' in line]
free = list(set([process.split()[1] for process in processes]) ^ set([str(0), str(1)]))
udiv = re.compile('[|]={3,}[+]={3,}[+]={3,}[|]')
ldiv = re.compile('[+]-{3,}[+]-{3,}[+]-{3,}[+]')
divider_up = argwhere([udiv.match(line) != None for line in smi])[0,0]
divider_down = argwhere([ldiv.match(line) != None for line in smi])[-1, 0]
gpus = [line for line in smi[divider_up+1:divider_down] if '%' in line and 'MiB' in line]
gpus = [gpu.split('|')[2].replace(' ', '').replace('MiB', '').split('/') for gpu in gpus]
memory = diff(asarray(gpus).astype(int), axis=1).squeeze()
return free, memory
def autotest(train_list, data_list, detector_name, checkpoint_name):
"""Generate task list from training and testing configurations."""
assert type(data_list) == list
task_list = []
for train_config in train_list:
train_dict = {'detector': detector_name, 'model': None, 'data': train_config['data']}
task_list.append({'type':'train', 'details':train_dict})
for data in data_list:
name = checkpoint_name #train_dict['data']
task_list.append({'type':'test', 'details':{'detector': detector_name, 'model': name, 'data': data}})
return task_list
def parse_phases(phases_str):
"""Parse phases string into list."""
if phases_str.lower() == 'both':
return ['train', 'test']
elif phases_str.lower() == 'train':
return ['train']
elif phases_str.lower() == 'test':
return ['test']
else:
raise ValueError(f"Invalid phases: {phases_str}. Must be 'train', 'test', or 'both'")
def run_demo(args):
import json
import torch
project_root = os.path.abspath(os.path.dirname(__file__))
demo_root = os.path.join(project_root, 'demo_images')
assert os.path.isdir(demo_root), f"Demo folder not found: {demo_root}"
# Build split file from demo_images
def build_demo_split_json(root_path, out_path):
test_entries = []
for mod in ['PreSocial', 'Facebook', 'Telegram', 'X']:
mod_path = os.path.join(root_path, mod)
if not os.path.isdir(mod_path):
continue
for dirpath, dirnames, filenames in os.walk(mod_path, topdown=True, followlinks=True):
if len(dirnames):
continue
rel_dir = f"{dirpath}/".replace(mod_path + os.sep, '')
parts = rel_dir.split(os.sep)[:3]
if len(parts) < 3:
continue
label, gen, sub = parts
for fname in sorted(filenames):
ext = os.path.splitext(fname)[1].lower()
if ext not in ['.png', '.jpg', '.jpeg']:
continue
stem = os.path.splitext(fname)[0]
test_entries.append(os.path.join(gen, sub, stem))
with open(out_path, 'w') as f:
json.dump({'test': sorted(list(set(test_entries)))}, f)
split_demo_file = os.path.join(project_root, 'split_demo.json')
build_demo_split_json(demo_root, split_demo_file)
def prepare_best_checkpoint(detector_dir, preferred_path=None):
weights_dir = os.path.join(detector_dir, 'checkpoint', 'pretrained', 'weights')
src_weight = None
if preferred_path:
src_weight = preferred_path if os.path.isabs(preferred_path) else os.path.normpath(os.path.join(detector_dir, preferred_path))
if not os.path.isfile(src_weight):
print(f"[demo] Preferred weights not found at {src_weight}, falling back to search")
src_weight = None
if src_weight is None:
if not os.path.isdir(weights_dir):
return None
candidates = []
for ext in ('*.pt', '*.pth'):
candidates.extend(glob.glob(os.path.join(weights_dir, ext)))
if not candidates:
return None
src_weight = sorted(candidates)[0]
run_dir = os.path.join(detector_dir, 'checkpoint', 'demo', 'weights')
os.makedirs(run_dir, exist_ok=True)
dst_weight = os.path.join(run_dir, 'best.pt')
shutil.copy2(src_weight, dst_weight)
return dst_weight
device = f"cuda:0" if torch.cuda.is_available() else "cpu"
name = 'demo'
detectors_root = os.path.join(project_root, 'detectors')
all_methods = ['R50_nodown', 'CLIP-D', 'R50_TF', 'P2G', 'NPR']
methods = all_methods if args.demo_detector == 'all' else [args.demo_detector]
os.makedirs(os.path.join(project_root, 'logs'), exist_ok=True)
for method in methods:
det_dir = os.path.join(detectors_root, method)
if not os.path.isdir(det_dir):
continue
preferred_weights = args.weights_name or './checkpoint/pretrained/weights/best.pt'
best_path = prepare_best_checkpoint(det_dir, preferred_weights)
if best_path is None:
print(f"[demo] Skipping {method}: no pretrained weights found under checkpoint/pretrained/weights/")
continue
config_path = os.path.join(args.config_dir, f'{method}.yaml')
config = load_config(config_path) if os.path.exists(config_path) else {}
detector_args = config.get('detector_args', [])
testing_keys = config.get('testing', []) or ['all:all']
global_cfg = config.get('global', {})
num_threads = global_cfg.get('num_threads', 8)
for data_keys in testing_keys:
args_list = [
f'--name "{name}"',
f'--task test',
f'--device {device}',
f'--split_file {split_demo_file}',
f'--data_root {demo_root}',
f'--data_keys "{data_keys}"',
f'--num_threads {num_threads}',
] + detector_args
cmd_args = ' '.join(args_list)
log_file = os.path.join(project_root, 'logs', f'demo_{method}_{data_keys.replace(":","-")}.log')
with open(log_file, 'w') as f:
cwd = os.getcwd()
os.chdir(det_dir)
try:
print(f"[demo] Running {method} test with args: {cmd_args}")
runner = 'test.py'
subprocess.run(f'python -u {runner} {cmd_args}', shell=True)#, stdout=f, stderr=f)
finally:
os.chdir(cwd)
shutil.rmtree(os.path.join(det_dir, 'checkpoint', 'demo'))
print('[demo] Completed. Results saved under detectors/<method>/results/demo/<scenario>/results.csv')
def main():
# Parse command-line arguments
parser = argparse.ArgumentParser(description='Launcher for deepfake detector training and testing')
parser.add_argument('--detector', type=str, required=False,
choices=['R50_TF', 'R50_nodown', 'CLIP-D', 'P2G', 'NPR'],
help='Detector to use')
parser.add_argument('--phases', type=str, default='both',
choices=['train', 'test', 'both'],
help='Phases to run: train, test, or both (default: both)')
parser.add_argument('--config-dir', type=str, default='configs',
help='Path to configs directory (default: configs/)'),
parser.add_argument('--weights_name', type=str, default=None,
help='Name of the weights directory')
parser.add_argument('--demo', action='store_true', help='Run demo on demo_images across detectors')
parser.add_argument('--demo-detector', type=str, default='all', choices=['all', 'R50_TF', 'R50_nodown', 'CLIP-D', 'P2G', 'NPR'], help='Which detector to demo (default: all)')
# Add detect mode arguments
detect_group = parser.add_argument_group('detect', 'Single image detection options')
detect_group.add_argument('--detect', action='store_true', help='Run single image detection mode')
detect_group.add_argument('--image', type=str, help='Path to image file for detection')
detect_group.add_argument('--weights', type=str, default='pretrained', help='Path to model weights for detection')
detect_group.add_argument('--output', type=str, help='Path to save detection results')
detect_group.add_argument('--dry-run', action='store_true', help='Print commands without executing')
args = parser.parse_args()
if args.demo:
return run_demo(args)
if args.detect:
if args.detector is None:
parser.error('--detector is required for detect mode')
if args.image is None:
parser.error('--image is required for detect mode')
from support.detect import run_detect
return run_detect(args)
if args.detector is None:
parser.error('--detector is required unless --demo is specified')
# Load configuration from YAML
config_path = os.path.join(args.config_dir, f'{args.detector}.yaml')
if not os.path.exists(config_path):
raise FileNotFoundError(f"Configuration file not found: {config_path}")
config = load_config(config_path)
# Extract configuration values
global_config = config.get('global', {})
dataset_path = global_config.get('dataset_path')
device_override = global_config.get('device_override') # Can be None
if args.weights_name is not None:
global_config['name'] = args.weights_name
else:
global_config['name'] = config.get('training', [])[0]['data']
model_name = global_config.get('name')
# Handle string "null" as None
if device_override == "null" or device_override == "":
device_override = None
min_vram = global_config.get('min_vram', 16000)
split_file = os.path.abspath(global_config.get('split_file', 'split.json'))
num_threads = global_config.get('num_threads', 8)
dry_run = global_config.get('dry_run', False)
only_list = global_config.get('only_list', False)
phases = parse_phases(args.phases)
detector_args = config.get('detector_args', [])
training_configs = config.get('training', [])
test_list = config.get('testing', [])
os.makedirs('logs', exist_ok=True)
# Generate tasks
tasks = []
if training_configs:
tasks.extend(autotest(training_configs, test_list, args.detector, model_name))
print('Number of tasks:', len(tasks))
for task in tasks:
print(task)
if only_list:
return
# From here the launcher will create all the arguments to use when calling the train script
for task in tasks:
if task['type'] not in phases:
continue
cmd_args = []
if task['type'] == 'train':
cmd_args.append(f'--name "{model_name}"')#{task["details"]["model"]}"')
else:
cmd_args.append(f'--name "{task["details"]["model"]}"')
cmd_args.append(f'--split_file {split_file}')
cmd_args.append(f'--task {task["type"]}')
cmd_args.append(f'--num_threads {num_threads}')
cmd_args.append(f'--data_keys "{task["details"]["data"]}"')
cmd_args.append(f'--data_root {dataset_path}')
device = None
if device_override is not None:
device = device_override
else:
if not dry_run:
print('Waiting for GPU')
while device is None:
free, memory = get_gpus()
if len(free):
device = "cuda:" + free[0]
elif max(memory) > min_vram:
device = "cuda:" + str([i for i, mem in enumerate(memory) if mem == max(memory)][0])
time.sleep(1)
print('GPU found')
cmd_args.append(f'--device {device}')
# Add detector-specific arguments
for arg in detector_args:
cmd_args.append(arg)
cmd_args_str = ' '.join(cmd_args)
# Call train.py or test.py
if not dry_run:
#log_file = f'logs/{task["type"]}_{task["details"]["detector"]}_{task["details"]["model"]}_{task["details"]["data"]}.log'
log_file = f'logs/{task["type"]}_{task["details"]["detector"]}_{model_name}_{task["details"]["data"]}.log'
with open(log_file, 'w') as f:
cwd = os.getcwd()
os.chdir(f'./detectors/{task["details"]["detector"]}')
start_time = time.time()
runner = f'{task["type"]}.py'
print(f'Call to {runner} with: {cmd_args_str}')
subprocess.run(f'python -u {runner} {cmd_args_str}', shell=True)#, stdout=f, stderr=f)
end_time = time.time()
print(f'Execution time: {end_time-start_time:.2f} seconds')
print('#'*80)
print('#'*80)
os.chdir(cwd)
if __name__ == '__main__':
main()