Spaces:
Running
Running
AMontiB
commited on
Commit
·
6a489d1
1
Parent(s):
48e51ec
update ALL
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- app.py +144 -55
- requirements.txt +1 -0
- support/__pycache__/detect.cpython-310.pyc +0 -0
- verify_all_option.py +93 -0
__pycache__/app.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -6,6 +6,9 @@ import json
|
|
| 6 |
import argparse
|
| 7 |
from types import SimpleNamespace
|
| 8 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Try to import detector - if this fails, we'll show an error in the UI
|
| 11 |
try:
|
|
@@ -29,7 +32,7 @@ if os.environ.get("SPACE_ID"):
|
|
| 29 |
print(f"Warning: Could not download weights: {e}")
|
| 30 |
|
| 31 |
# Available detectors based on launcher.py
|
| 32 |
-
DETECTORS = ['R50_TF', 'R50_nodown', 'CLIP-D', 'P2G', 'NPR']
|
| 33 |
|
| 34 |
def process_image(image_path):
|
| 35 |
"""
|
|
@@ -67,6 +70,38 @@ def process_image(image_path):
|
|
| 67 |
print(f"Error processing image: {e}")
|
| 68 |
return image_path
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
def predict(image_path, detector_name):
|
| 71 |
# Check if detector is available
|
| 72 |
if not DETECTOR_AVAILABLE:
|
|
@@ -74,10 +109,10 @@ def predict(image_path, detector_name):
|
|
| 74 |
"error": "Detector module not available",
|
| 75 |
"details": IMPORT_ERROR,
|
| 76 |
"message": "The detection system could not be initialized. Please check the logs."
|
| 77 |
-
}, indent=2)
|
| 78 |
|
| 79 |
if not image_path:
|
| 80 |
-
return json.dumps({"error": "Please upload an image."}, indent=2)
|
| 81 |
|
| 82 |
# Process image (central crop if too large)
|
| 83 |
processed_path = image_path
|
|
@@ -87,64 +122,117 @@ def predict(image_path, detector_name):
|
|
| 87 |
print(f"Warning: Image processing failed: {e}")
|
| 88 |
# Continue with original image if processing fails
|
| 89 |
|
| 90 |
-
# Create a temporary output file path
|
| 91 |
-
output_path = "temp_result.json"
|
| 92 |
-
|
| 93 |
-
# Mock args object
|
| 94 |
-
args = SimpleNamespace(
|
| 95 |
-
image=processed_path,
|
| 96 |
-
detector=detector_name,
|
| 97 |
-
config_dir='configs',
|
| 98 |
-
output=output_path,
|
| 99 |
-
weights='pretrained', # Use default/pretrained
|
| 100 |
-
device='cpu', # Force CPU
|
| 101 |
-
dry_run=False,
|
| 102 |
-
verbose=False
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
try:
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
#
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
output = {
|
| 122 |
-
"Prediction": prediction,
|
| 123 |
-
"Confidence": f"{confidence:.4f}",
|
| 124 |
-
"Elapsed Time": f"{elapsed_time:.3f}s"
|
| 125 |
-
}
|
| 126 |
else:
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
else:
|
| 134 |
-
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
except Exception as e:
|
| 142 |
-
return json.dumps({"error": str(e)},
|
| 143 |
-
finally:
|
| 144 |
-
# Cleanup
|
| 145 |
-
if os.path.exists(output_path):
|
| 146 |
-
os.remove(output_path)
|
| 147 |
|
|
|
|
| 148 |
# Cleanup cropped image if it's different from original
|
| 149 |
if processed_path != image_path and os.path.exists(processed_path):
|
| 150 |
try:
|
|
@@ -193,6 +281,7 @@ with demo:
|
|
| 193 |
max_lines=20,
|
| 194 |
show_copy_button=True
|
| 195 |
)
|
|
|
|
| 196 |
|
| 197 |
with gr.Accordion("📚 Model Details", open=False):
|
| 198 |
gr.Markdown("""
|
|
@@ -235,7 +324,7 @@ with demo:
|
|
| 235 |
submit_btn.click(
|
| 236 |
fn=predict,
|
| 237 |
inputs=[image_input, detector_input],
|
| 238 |
-
outputs=output_display
|
| 239 |
)
|
| 240 |
|
| 241 |
if __name__ == "__main__":
|
|
|
|
| 6 |
import argparse
|
| 7 |
from types import SimpleNamespace
|
| 8 |
from PIL import Image
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import io
|
| 11 |
+
import numpy as np
|
| 12 |
|
| 13 |
# Try to import detector - if this fails, we'll show an error in the UI
|
| 14 |
try:
|
|
|
|
| 32 |
print(f"Warning: Could not download weights: {e}")
|
| 33 |
|
| 34 |
# Available detectors based on launcher.py
|
| 35 |
+
DETECTORS = ['ALL', 'R50_TF', 'R50_nodown', 'CLIP-D', 'P2G', 'NPR']
|
| 36 |
|
| 37 |
def process_image(image_path):
|
| 38 |
"""
|
|
|
|
| 70 |
print(f"Error processing image: {e}")
|
| 71 |
return image_path
|
| 72 |
|
| 73 |
+
def run_single_detection(image_path, detector_name):
|
| 74 |
+
output_path = f"temp_result_{detector_name}.json"
|
| 75 |
+
# Mock args object
|
| 76 |
+
args = SimpleNamespace(
|
| 77 |
+
image=image_path,
|
| 78 |
+
detector=detector_name,
|
| 79 |
+
config_dir='configs',
|
| 80 |
+
output=output_path,
|
| 81 |
+
weights='pretrained', # Use default/pretrained
|
| 82 |
+
device='cpu', # Force CPU
|
| 83 |
+
dry_run=False,
|
| 84 |
+
verbose=False
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
try:
|
| 88 |
+
run_detect(args)
|
| 89 |
+
|
| 90 |
+
if os.path.exists(output_path):
|
| 91 |
+
with open(output_path, 'r') as f:
|
| 92 |
+
result = json.load(f)
|
| 93 |
+
os.remove(output_path)
|
| 94 |
+
return result
|
| 95 |
+
return None
|
| 96 |
+
except Exception as e:
|
| 97 |
+
if os.path.exists(output_path):
|
| 98 |
+
try:
|
| 99 |
+
os.remove(output_path)
|
| 100 |
+
except:
|
| 101 |
+
pass
|
| 102 |
+
print(f"Error running {detector_name}: {e}")
|
| 103 |
+
return None
|
| 104 |
+
|
| 105 |
def predict(image_path, detector_name):
|
| 106 |
# Check if detector is available
|
| 107 |
if not DETECTOR_AVAILABLE:
|
|
|
|
| 109 |
"error": "Detector module not available",
|
| 110 |
"details": IMPORT_ERROR,
|
| 111 |
"message": "The detection system could not be initialized. Please check the logs."
|
| 112 |
+
}, indent=2), None
|
| 113 |
|
| 114 |
if not image_path:
|
| 115 |
+
return json.dumps({"error": "Please upload an image."}, indent=2), None
|
| 116 |
|
| 117 |
# Process image (central crop if too large)
|
| 118 |
processed_path = image_path
|
|
|
|
| 122 |
print(f"Warning: Image processing failed: {e}")
|
| 123 |
# Continue with original image if processing fails
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
try:
|
| 126 |
+
if detector_name == 'ALL':
|
| 127 |
+
results = []
|
| 128 |
+
# Filter out 'ALL' from detectors list
|
| 129 |
+
real_detectors = [d for d in DETECTORS if d != 'ALL']
|
| 130 |
+
|
| 131 |
+
for det in real_detectors:
|
| 132 |
+
res = run_single_detection(processed_path, det)
|
| 133 |
+
if res:
|
| 134 |
+
results.append((det, res))
|
| 135 |
+
|
| 136 |
+
if not results:
|
| 137 |
+
return "Error: No results obtained from detectors.", None
|
| 138 |
+
|
| 139 |
+
votes_real = 0
|
| 140 |
+
votes_fake = 0
|
| 141 |
+
confidences = []
|
| 142 |
+
labels = []
|
| 143 |
+
colors = []
|
| 144 |
+
total_conf = 0
|
| 145 |
+
|
| 146 |
+
for det, res in results:
|
| 147 |
+
pred = res.get('prediction', 'Unknown')
|
| 148 |
+
raw_conf = res.get('confidence', 0.0)
|
| 149 |
+
|
| 150 |
+
# Calculate display confidence (confidence of the prediction)
|
| 151 |
+
if pred == 'fake':
|
| 152 |
+
score = raw_conf
|
| 153 |
+
color = 'red'
|
| 154 |
+
else:
|
| 155 |
+
score = 1 - raw_conf
|
| 156 |
+
color = 'green'
|
| 157 |
+
|
| 158 |
+
labels.append(det)
|
| 159 |
+
confidences.append(score)
|
| 160 |
+
colors.append(color)
|
| 161 |
+
total_conf += score
|
| 162 |
+
|
| 163 |
+
# Voting logic
|
| 164 |
+
if score > 0.6:
|
| 165 |
+
if pred == 'fake':
|
| 166 |
+
votes_fake += 1
|
| 167 |
+
elif pred == 'real':
|
| 168 |
+
votes_real += 1
|
| 169 |
|
| 170 |
+
# Majority Voting
|
| 171 |
+
if votes_real > votes_fake:
|
| 172 |
+
verdict = "REAL"
|
| 173 |
+
elif votes_fake > votes_real:
|
| 174 |
+
verdict = "FAKE"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
else:
|
| 176 |
+
verdict = "UNCERTAIN"
|
| 177 |
+
|
| 178 |
+
avg_conf = total_conf / len(results) if results else 0
|
| 179 |
+
|
| 180 |
+
# Explanation
|
| 181 |
+
if verdict == "REAL":
|
| 182 |
+
explanation = f"Considering the results obtained by all models, the analyzed image results, with an average confidence of {avg_conf:.4f}, not produced by a generative AI."
|
| 183 |
+
elif verdict == "FAKE":
|
| 184 |
+
explanation = f"Considering the results obtained by all models, the analyzed image results, with an average confidence of {avg_conf:.4f}, produced by a generative AI."
|
| 185 |
+
else:
|
| 186 |
+
explanation = f"The result is uncertain. The detectors produced unconsistent results. The average confidence is {avg_conf:.4f}."
|
| 187 |
+
|
| 188 |
+
# Plotting
|
| 189 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 190 |
+
bars = ax.bar(labels, confidences, color=colors)
|
| 191 |
+
ax.set_ylim(0, 1.05)
|
| 192 |
+
ax.set_ylabel('Confidence')
|
| 193 |
+
ax.set_title('Detector Confidence Scores')
|
| 194 |
+
ax.axhline(y=0.6, color='gray', linestyle='--', alpha=0.5, label='Vote Threshold (0.6)')
|
| 195 |
+
ax.legend()
|
| 196 |
+
|
| 197 |
+
# Add value labels
|
| 198 |
+
for bar in bars:
|
| 199 |
+
height = bar.get_height()
|
| 200 |
+
ax.text(bar.get_x() + bar.get_width()/2., height,
|
| 201 |
+
f'{height:.2f}',
|
| 202 |
+
ha='center', va='bottom')
|
| 203 |
+
|
| 204 |
+
plt.tight_layout()
|
| 205 |
+
return explanation, fig
|
| 206 |
+
|
| 207 |
else:
|
| 208 |
+
# Single Detector
|
| 209 |
+
res = run_single_detection(processed_path, detector_name)
|
| 210 |
|
| 211 |
+
if res:
|
| 212 |
+
prediction = res.get('prediction', 'Unknown')
|
| 213 |
+
confidence = res.get('confidence', 0.0)
|
| 214 |
+
elapsed_time = res.get('elapsed_time', 0.0)
|
| 215 |
+
|
| 216 |
+
if prediction == 'fake':
|
| 217 |
+
output = {
|
| 218 |
+
"Prediction": prediction,
|
| 219 |
+
"Confidence": f"{confidence:.4f}",
|
| 220 |
+
"Elapsed Time": f"{elapsed_time:.3f}s"
|
| 221 |
+
}
|
| 222 |
+
else:
|
| 223 |
+
output = {
|
| 224 |
+
"Prediction": prediction,
|
| 225 |
+
"Confidence": f"{1-confidence:.4f}",
|
| 226 |
+
"Elapsed Time": f"{elapsed_time:.3f}s"
|
| 227 |
+
}
|
| 228 |
+
return json.dumps(output, indent=2), None
|
| 229 |
+
else:
|
| 230 |
+
return json.dumps({"error": "Detection failed"}), None
|
| 231 |
+
|
| 232 |
except Exception as e:
|
| 233 |
+
return json.dumps({"error": str(e)}), None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
+
finally:
|
| 236 |
# Cleanup cropped image if it's different from original
|
| 237 |
if processed_path != image_path and os.path.exists(processed_path):
|
| 238 |
try:
|
|
|
|
| 281 |
max_lines=20,
|
| 282 |
show_copy_button=True
|
| 283 |
)
|
| 284 |
+
plot_output = gr.Plot(label="Confidence Scores")
|
| 285 |
|
| 286 |
with gr.Accordion("📚 Model Details", open=False):
|
| 287 |
gr.Markdown("""
|
|
|
|
| 324 |
submit_btn.click(
|
| 325 |
fn=predict,
|
| 326 |
inputs=[image_input, detector_input],
|
| 327 |
+
outputs=[output_display, plot_output]
|
| 328 |
)
|
| 329 |
|
| 330 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
|
@@ -13,6 +13,7 @@ pandas==2.2.3
|
|
| 13 |
scikit-image==0.22.0
|
| 14 |
scikit-learn==1.5.2
|
| 15 |
numpy<2.0
|
|
|
|
| 16 |
|
| 17 |
# MLOps & Infrastructure
|
| 18 |
wandb==0.16.6
|
|
|
|
| 13 |
scikit-image==0.22.0
|
| 14 |
scikit-learn==1.5.2
|
| 15 |
numpy<2.0
|
| 16 |
+
matplotlib
|
| 17 |
|
| 18 |
# MLOps & Infrastructure
|
| 19 |
wandb==0.16.6
|
support/__pycache__/detect.cpython-310.pyc
CHANGED
|
Binary files a/support/__pycache__/detect.cpython-310.pyc and b/support/__pycache__/detect.cpython-310.pyc differ
|
|
|
verify_all_option.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import json
|
| 5 |
+
import sys
|
| 6 |
+
from unittest.mock import patch
|
| 7 |
+
|
| 8 |
+
# Add current directory to path
|
| 9 |
+
sys.path.append(os.getcwd())
|
| 10 |
+
|
| 11 |
+
import app
|
| 12 |
+
from app import predict, DETECTORS
|
| 13 |
+
|
| 14 |
+
def create_dummy_image(path):
|
| 15 |
+
img = Image.new('RGB', (512, 512), color = 'red')
|
| 16 |
+
img.save(path)
|
| 17 |
+
return path
|
| 18 |
+
|
| 19 |
+
def mock_run_single_detection(image_path, detector_name):
|
| 20 |
+
# Mock results
|
| 21 |
+
results = {
|
| 22 |
+
'R50_TF': {'prediction': 'fake', 'confidence': 0.9, 'elapsed_time': 0.1},
|
| 23 |
+
'R50_nodown': {'prediction': 'real', 'confidence': 0.2, 'elapsed_time': 0.1}, # Score 0.8 (Real)
|
| 24 |
+
'CLIP-D': {'prediction': 'fake', 'confidence': 0.8, 'elapsed_time': 0.1},
|
| 25 |
+
'P2G': {'prediction': 'real', 'confidence': 0.45, 'elapsed_time': 0.1}, # Score 0.55 (Real) - Invalid Vote
|
| 26 |
+
'NPR': {'prediction': 'fake', 'confidence': 0.95, 'elapsed_time': 0.1}
|
| 27 |
+
}
|
| 28 |
+
return results.get(detector_name)
|
| 29 |
+
|
| 30 |
+
def test_all_option():
|
| 31 |
+
print("Testing 'ALL' option with MOCKED results...")
|
| 32 |
+
img_path = create_dummy_image("test_image.jpg")
|
| 33 |
+
|
| 34 |
+
with patch('app.run_single_detection', side_effect=mock_run_single_detection):
|
| 35 |
+
try:
|
| 36 |
+
# Run predict with 'ALL'
|
| 37 |
+
text, fig = predict(img_path, 'ALL')
|
| 38 |
+
|
| 39 |
+
print(f"Output type: {type(text)}, {type(fig)}")
|
| 40 |
+
print(f"Text output: {text}")
|
| 41 |
+
|
| 42 |
+
if isinstance(fig, plt.Figure):
|
| 43 |
+
print("Figure created successfully.")
|
| 44 |
+
# Optional: check plot content if needed
|
| 45 |
+
else:
|
| 46 |
+
print("Figure creation failed or None returned.")
|
| 47 |
+
|
| 48 |
+
expected_verdict = "produced by a generative AI" # Majority Fake
|
| 49 |
+
if expected_verdict in text:
|
| 50 |
+
print("Verdict seems correct (Fake majority).")
|
| 51 |
+
else:
|
| 52 |
+
print(f"Unexpected verdict. Expected '{expected_verdict}' in text.")
|
| 53 |
+
|
| 54 |
+
except Exception as e:
|
| 55 |
+
print(f"Test failed with exception: {e}")
|
| 56 |
+
finally:
|
| 57 |
+
if os.path.exists(img_path):
|
| 58 |
+
os.remove(img_path)
|
| 59 |
+
|
| 60 |
+
def test_single_option():
|
| 61 |
+
print("\nTesting 'R50_TF' option with MOCKED results...")
|
| 62 |
+
img_path = create_dummy_image("test_image_single.jpg")
|
| 63 |
+
|
| 64 |
+
with patch('app.run_single_detection', side_effect=mock_run_single_detection):
|
| 65 |
+
try:
|
| 66 |
+
# Run predict with single detector
|
| 67 |
+
text, fig = predict(img_path, 'R50_TF')
|
| 68 |
+
|
| 69 |
+
print(f"Output type: {type(text)}, {type(fig)}")
|
| 70 |
+
print(f"Text output: {text}")
|
| 71 |
+
|
| 72 |
+
if fig is None:
|
| 73 |
+
print("Figure is None as expected.")
|
| 74 |
+
else:
|
| 75 |
+
print("Figure should be None for single detector.")
|
| 76 |
+
|
| 77 |
+
try:
|
| 78 |
+
json_out = json.loads(text)
|
| 79 |
+
print("JSON output parsed successfully.")
|
| 80 |
+
if json_out.get("Prediction") == "fake":
|
| 81 |
+
print("JSON content seems correct.")
|
| 82 |
+
except:
|
| 83 |
+
print("Failed to parse JSON output.")
|
| 84 |
+
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print(f"Test failed with exception: {e}")
|
| 87 |
+
finally:
|
| 88 |
+
if os.path.exists(img_path):
|
| 89 |
+
os.remove(img_path)
|
| 90 |
+
|
| 91 |
+
if __name__ == "__main__":
|
| 92 |
+
test_all_option()
|
| 93 |
+
test_single_option()
|