Spaces:
Runtime error
Runtime error
Commit
·
7f4b1c2
1
Parent(s):
98c9750
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
import torchvision.models as models
|
| 7 |
+
import os
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
# Set device
|
| 11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 12 |
+
|
| 13 |
+
# Load the main classifier (Detector_best_model.pth)
|
| 14 |
+
main_model = models.resnet18(weights=None) # Updated: weights=None
|
| 15 |
+
num_ftrs = main_model.fc.in_features
|
| 16 |
+
main_model.fc = nn.Linear(num_ftrs, 2) # 2 classes: AI-generated_Image, Real_Image
|
| 17 |
+
main_model.load_state_dict(torch.load('best_model (5).pth', map_location=device, weights_only=True)) # Updated: weights_only=True
|
| 18 |
+
main_model = main_model.to(device)
|
| 19 |
+
main_model.eval()
|
| 20 |
+
|
| 21 |
+
# Define class names for the classifier based on the Folder structure
|
| 22 |
+
classes_name = ['AI-generated Image', 'Real Image']
|
| 23 |
+
|
| 24 |
+
def convert_to_rgb(image):
|
| 25 |
+
"""
|
| 26 |
+
Converts 'P' mode images with transparency to 'RGBA', and then to 'RGB'.
|
| 27 |
+
This is to avoid transparency issues during model training.
|
| 28 |
+
"""
|
| 29 |
+
if image.mode in ('P', 'RGBA'):
|
| 30 |
+
return image.convert('RGB')
|
| 31 |
+
return image
|
| 32 |
+
|
| 33 |
+
# Define preprocessing transformations (same used during training)
|
| 34 |
+
preprocess = transforms.Compose([
|
| 35 |
+
transforms.Lambda(convert_to_rgb),
|
| 36 |
+
transforms.Resize((224, 224)), # Resize here, no need for shape argument in gr.Image
|
| 37 |
+
transforms.ToTensor(),
|
| 38 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # ImageNet normalization
|
| 39 |
+
])
|
| 40 |
+
|
| 41 |
+
def classify_image(image):
|
| 42 |
+
# Open the image using PIL
|
| 43 |
+
image = Image.fromarray(image)
|
| 44 |
+
|
| 45 |
+
# Preprocess the image
|
| 46 |
+
input_image = preprocess(image).unsqueeze(0).to(device)
|
| 47 |
+
|
| 48 |
+
# Perform inference with the main classifier
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
output = main_model(input_image)
|
| 51 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
| 52 |
+
confidence, predicted_class = torch.max(probabilities, 0)
|
| 53 |
+
|
| 54 |
+
# Main classifier result
|
| 55 |
+
main_prediction = classes_name[predicted_class]
|
| 56 |
+
main_confidence = confidence.item()
|
| 57 |
+
|
| 58 |
+
return f"Image is : {main_prediction} (Confidence: {main_confidence:.4f})"
|
| 59 |
+
|
| 60 |
+
# Gradio interface (updated)
|
| 61 |
+
image_input = gr.Image(image_mode="RGB") # Removed shape argument
|
| 62 |
+
output_text = gr.Textbox()
|
| 63 |
+
|
| 64 |
+
gr.Interface(fn=classify_image, inputs=image_input, outputs=[output_text],
|
| 65 |
+
title="Detect AI-generated Image ",
|
| 66 |
+
description="Upload an image to Detected AI-generated Image .",
|
| 67 |
+
theme="default").launch()
|